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Abstract

We characterize the relation between exchange rates and their macroeconomic funda-

mentals without committing to a specific model of preferences, endowment or menu

of traded assets. When investors can trade home and foreign currency risk-free bonds,

the exchange rate (conditionally) appreciates in states of the world that are worse for

home investors than foreign investors. This prediction is at odds with the empirical

evidence and can only be overturned (unconditionally) if the deviations from U.I.P.

are large and exchange rates are highly predictable. Without bond Euler equation

wedges, it is impossible to match the empirical exchange rate cyclicality (the Backus-

Smith puzzle) and the deviations from U.I.P. (the Fama puzzle) as well as the lack of

predictability (the Meese-Rogoff puzzle). To relax this trade-off, we need Euler equa-

tion wedges consistent with a home currency bias, home bond convenience yields or

financial repression.
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1 Introduction

We start by listing four key stylized facts about exchange rates. First, real exchange rates
are only weakly positively correlated with relative aggregate consumption growth [Koll-
mann, 1991, Backus and Smith, 1993]. The home currency tends to depreciate when the
home investors experience adverse macro-economic shocks and thus have high marginal
utility growth. Exchange rates are weakly pro-cyclical. Second, more generally, exchange
rates seem disconnected from the other macro variables that should determine them [Ob-
stfeld and Rogoff, 2000]. Third, as documented by Tryon [1979], Hansen and Hodrick
[1980] and Fama [1984], interest rate differences do not predict changes in exchange rates
with the right sign to enforce the uncovered interest rate parity (U.I.P.). Instead, currency
returns are predictable, but exchange rates themselves are not. In order to explain the neg-
ative slope coefficients, risk premia have to be extremely volatile [Fama, 1984]. Fourth,
other macro variables also fail to predict exchange rates, as shown by Meese and Rogoff
[1983]. It is hard to beat a random walk when predicting exchange rates.

We show that these four stylized facts are not separate phenomena in a large class of
international real business cycle models, as long as investors can trade home and foreign
risk-free bonds. We cannot match all of these facts without imputing a home currency
bias to bond market investors, effectively deviating from the standard Euler equations
and segmenting bond markets by their currency denomination.

In a complete-market setting, real exchange rates have to appreciate—conditionally
and unconditionally—when the domestic marginal utility growth is higher than the for-
eign marginal utility growth to enforce no arbitrage. When domestic investors have a
higher marginal willingness than foreign investors to pay for consumption in some state
tomorrow, i.e. to save into that state, then the state-contingent interest rate is correspond-
ingly lower at home, and the real exchange rate has to appreciate in that state to keep
arbitrageurs from borrowing domestically and investing abroad in that state of the world.
The exchange rate has to appreciate to keep the state prices at home and abroad aligned
state-by-state. When investors have power utility, this state-contingent version of interest
rate parity induces a perfectly negative correlation with aggregate consumption growth.
That’s why international economists refer to the first stylized fact as the Backus-Smith
puzzle.

Shutting down trade in other securities markets does not alleviate the puzzle. An
average version of this state-contingent interest rate parity prediction survives even when
we restrict the menu of assets traded. The exchange rate has to appreciate in bad states
for the home investor to keep the state prices at home and abroad aligned and enforce
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the bond Euler equations. As long as we also want to match the third and fourth stylized
facts, it is not possible to jointly match the first and second stylized facts in a large class
of models with cross-currency bond investments.

Standard two-country international real business cycle (IRBC) models feature four
Euler equations that must hold in equilibrium. These equations implicitly describe the
risk-adjusted returns home and foreign investors require for holding home and foreign
risk-free bonds. More concretely, let mt,t+1 and m∗

t,t+1 denote the home and foreign SDF
in log, let rt and r∗t denote the home and foreign risk-free rates in log, and let st denote
the log spot exchange rate in units of foreign currency per dollar. When st increases, the
home currency appreciates. Then, the four bond Euler equations are given by:

1 = Et [exp(mt,t+1 + rt)] ,

1 = Et [exp(mt,t+1 − ∆st+1 + r∗t )] ,

1 = Et
[
exp(m∗

t,t+1 + r∗t )
]

,

1 = Et
[
exp(m∗

t,t+1 + ∆st+1 + rt)
]

.

The first two equations are the Euler equations for the home investor investing in do-
mestic and foreign currency risk-free bonds. The second set of two Euler equations per-
tain to the foreign investor. In this paper, we start from these Euler equations and show
how they impose strong restrictions on the exchange rate’s cyclicality, which is defined
as the covariance between the exchange rate movement ∆st+1 and the SDF differential
mt,t+1 − m∗

t,t+1. A positive covariance means that the home currency’s exchange rate
tends to appreciate when the home investors’ marginal utility growth rate is higher than
the foreign investors’.

First, we characterize the conditional exchange rate cyclicality. We obtain a stark re-
sult, building on the work by Lustig and Verdelhan [2019]. The conditional covariance is
still positive, which means that the exchange rate has to be conditionally counter-cyclical
to enforce these bond Euler equations. A more restrictive version of this conditional result
was derived by Lustig and Verdelhan [2019]. Second, we characterize the unconditional
exchange rate cyclicality in order to link our result directly to the Kollmann [1991] and
Backus and Smith [1993] evidence.1 To replicate unconditionally pro-cyclical exchange
rates, the first stylized fact, we need very volatile forward premia or highly predictable
exchange rates. The first condition is at odds with the Tryon [1979], Hansen and Hodrick
[1980], and Fama [1984] evidence on the violation of U.I.P, the second stylized fact. The

1The unconditional cyclicality is equal to the mean of the conditional exchange rate cyclicality plus a
term that captures the extent to which exchange rates can be predicted by the expected SDF differential.
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second condition is at odds with the Meese and Rogoff [1983] evidence, the third stylized
fact.

We end up with an impossibility result: when investors can trade domestic and foreign
currency bonds, we cannot generate procyclical exchange rates (stylized fact 1) while
matching the observed U.I.P. deviations (stylized fact 3) and the lack of exchange rate
predictability (stylized fact 4). Our results allow for arbitrary currency risk premia. While
U.I.P. deviations may help to generate an exchange rate disconnect, we show that they are
not sufficient. Our analytical results show that we also need a counterfactual amount of
exchange rate predictability to deliver pro-cyclical exchange rates.

Our results have the following implications for equilibrium models of exchange rates.
First, the key ingredient needed to make progress on the disconnect and Backus-Smith
puzzles is not the market incompleteness itself. It is not sufficient to shut down asset
markets other than the bond market. Second, our work distinguishes between currency
risk premium shocks and cross-currency bond Euler equation wedges as sources of U.I.P.
deviations. In the literature, these are sometimes referred to collectively as U.I.P. or finan-
cial shocks [see, e.g., Farhi and Werning, 2014, Itskhoki and Mukhin, 2021]. As long as all
of the cross-currency bond Euler equations hold, we find that the Backus-Smith puzzle
reappears. Financial shocks cannot overturn this result unless the Euler equations are vi-
olated. Third, we show analytically that cross-currency bond Euler equation wedges are
needed which impute a home currency bias to bond investors. They act as if they face
large (perceived or real) transaction costs or inconvenience yields associated with buying
bonds denominated in a currency that is different from their home currency. Conversely,
domestic investors need to act as if they derive large convenience yields from bonds de-
nominated in domestic currency. We need to effectively shut domestic investors out of
the foreign currency bond market. Large convenience yields on domestic bonds may in-
stead be a symptom of governments engaging in financial repression, a catch-all term for
measures aimed at lowering the government’s cost of borrowing below the market rate.

There is a wealth of evidence to support the notion that investors act as if they face
large transaction costs in buying foreign securities [Lewis, 1995]. Moreover, there is re-
cent empirical evidence to specifically support a home currency bias in bonds. Maggiori,
Neiman, and Schreger [2020] report strong evidence of a home currency bias in interna-
tional mutual fund holdings of corporate bonds. The only exception is the dollar, the
international reserve currency. Investors will buy dollar-denominated bonds. Maggiori
et al. [2020] attribute this home currency bias to the costs of currency hedges and behav-
ioral bias.

Surprisingly, we find that only the mean of the cross-currency bond Euler equation
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wedges matters. The covariance of these wedges with the SDFs does not matter for dis-
connect. The level of the wedges matters, because these cross-currency wedges are sub-
stitutes for covariance of the pricing kernel with the exchange rate. The average wedge
replaces the currency risk premium in generating U.I.P. deviations.

Chari, Kehoe, and McGrattan [2002] analyze a complete-market model of exchange
rates with sticky prices and identify the Backus-Smith puzzle as the key failure of their
model. Corsetti, Dedola, and Leduc [2008], Pavlova and Rigobon [2012] consider incom-
plete market models of exchange rates. In their model, domestic and foreign investors
only invest in a risk-free bond that pays off in a global numéraire, implicitly dropping
all 4 Euler equations. This implicitly introduces wedges in one of the four bond Euler
equations. They report progress on the Backus-Smith puzzle.

A different strand of the literature segments the markets and thus introduces wedges
into the bond Euler equations. Alvarez, Atkeson, and Kehoe [2002a, 2009a] consider
a Baumol-Tobin style model in which investors pay a cost to transact in currency and
bond markets. Relatedly, Jiang, Krishnamurthy, and Lustig [2018], Jiang, Krishnamurthy,
Lustig, and Sun [2021] explore the dollar exchange rate implications of convenience yields
earned on dollar safe assets, another type of the Euler equation wedges. To the extent that
investors derive larger convenience yields from foreign bonds, these will exacerbate the
Backus-Smith puzzle.2

Finally, a third strand of the literature imputes a central role to financial intermedi-
aries, drawing on insights from the literature on intermediary asset pricing. Gabaix and
Maggiori [2015], Itskhoki and Mukhin [2021], Fukui, Nakamura, and Steinsson [2023]
all consider models in which most investors cannot directly access currency markets. In
Itskhoki and Mukhin [2021], domestic investors only invest in the domestic bond mar-
ket. Only the intermediaries can trade foreign currencies. This approach implies bond
Euler equation wedges for domestic and foreign investors. Similarly, Gourinchas, Ray,
and Vayanos [2020], Greenwood, Hanson, Stein, and Sunderam [2020] study models with
preferred-habitat investors and global arbitrageurs. This class of models remove all Euler
equations we consider and only keep one Euler equation that captures the global arbi-
trageurs’ long-short portfolio decision.

Other recent work by Hassan [2013], Dou and Verdelhan [2015], Chien, Lustig, and
Naknoi [2020], Jiang and Richmond [2023] takes a different tack by introducing hetero-
geneity in household trading technologies. Active households can freely trade bonds and
other state contingent claims, whereas the inactive households have no access to the asset

2There is a growing literature on convenience yields in bond markets, starting with Krishnamurthy and
Vissing-Jorgensen [2012]
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market. In this case, while the four Euler equations we consider in this paper hold for the
active households without any wedges, their marginal utilities have different cyclicality
than the country-level aggregate marginal utilities. As a result, the model disconnects
aggregate consumption from the SDF of the Euler equation to which the model applies.

Lustig and Verdelhan [2019] ask whether market incompleteness helps to resolve out-
standing currency puzzles. They focus only on the conditional Backus-Smith puzzle, not
the unconditional version, the focus of our paper. In closely related work, Chernov, Had-
dad, and Itskhoki [2023] conclude that the moments of asset returns in financial markets
are not informative about exchange rates, once they rule out the asset market structure
with 4 bond Euler equations as implausible. We reach a different conclusion, because we
keep the asset structure, but allow for wedges. Instead, we derive tight restrictions on the
bond Euler equation wedges from the same asset return moments to make progress on
these puzzles.

The paper is organized as follows. We start by discussing the benchmark complete-
market case in section 2. Next, section 3 discuss the conditional Backus-Smith puzzle in
the incomplete-market case. Section 4 analyzes the unconditional Backus-Smith puzzle
in the incomplete-market case. Finally, section 5 inserts bond Euler equation wedges. In
this section, we characterize the restrictions these wedges need to satisfy in order to make
progress on the unconditional Backus-Smith puzzle. Lastly, Appendix contains the proof
of the propositions.

2 Complete Markets and Exchange Rate Puzzles

In the case of complete markets, exchange rates act as shock absorbers for the shocks to
the pricing kernels: ∆st+1 = mt+1 − m∗

t+1. This expression for the log change in the real
exchange rate has puzzling implications.

1. Volatility puzzle: As was noted by Brandt, Cochrane, and Santa-Clara [2006b], the
implied volatility of the exchange rate will be too high if the market price of risk
clears the Hansen-Jagannathan bounds, unless the pricing kernels are highly corre-
lated across countries.

vart(∆st+1) = vart(m∗
t+1) + var(mt+1)

− 2ρt(mt+1, m∗
t+1)stdt(mt+1)stdt(m∗

t+1).

We would need a correlation of the pricing kernels ρt(mt+1, m∗
t+1) close to one. In the

case of the standard Breeden-Lucas SDF mt+1 = log δ − γ∆ct+1, this would imply
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close to perfectly correlated consumption growth across countries: ρt(∆ct+1, ∆c∗t+1).
This prediction is counterfactual [see Backus, Kehoe, and Kydland, 1992].

2. Counter-cyclicality/Backus-Smith puzzle:

covt(mt,t+1 − m∗
t,t+1, ∆st+1) = vart(∆st+1) > 0.

When markets are complete, the unconditional exchange rate cyclicality satisfies

cov(mt,t+1 − m∗
t,t+1, ∆st+1) = var(∆st+1) > 0.

We obtain a very general result: in any complete-market models, the unconditional
exchange rate cyclicality is always positive: a higher marginal utility growth in the
home country is associated with a home currency appreciation. The model can only
generate exchange rate disconnect by shrinking the variance of the exchange rate
to zero. In the Breeden-Lucas case, the implied changes in the log exchange rates
are perfectly negatively correlated with consumption growth differences ρt(∆ct+1 −
∆c∗t+1, ∆st+1) = −1, which is strongly counterfactual [Kollmann, 1991, Backus and
Smith, 1993].

These puzzles are partially governed by the specific nature of the pricing kernel. The
Breeden-Lucas SDF assumes time-additive utility. Colacito and Croce [2011] impute a
preference for early resolution to uncertainty to the stand-in investor in an endowment
economy with long run risks [Bansal and Yaron, 2004]. In this LRR economy, it is feasible
to make progress on the volatility puzzle by choosing highly correlated persistent com-
ponents of consumption growth, while still matching the low correlation of consumption
growth observed in the data. In this LRR economy, we can push the correlation of the pric-
ing kernels ρt(mt+1, m∗

t+1) to one by choosing perfectly correlated long-run consumption
growth ρt(xt+1, x∗t+1) = 1. However, this mechanism does not resolve the Backus-Smith
puzzle. In their benchmark calibration, ρt(∆ct+1 − ∆c∗t+1, ∆st+1) = −0.8. Next, we exam-
ine this cyclicality of the exchange rate when we shot down some asset markets. In closely
related work, Verdelhan [2010] explores the habit model’s exchange rate implications, and
concludes that this model cannot entirely resolve the Backus-Smith puzzle.
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3 Conditional Exchange Rate Cyclicality and Incomplete

Markets

We start by assuming that investors can invest in risk-free bonds denominated in domes-
tic and foreign currency. Our analysis is silent on the rest of the market structure.

3.1 Gaussian case

We assume that the return, exchange rate and pricing kernel innovations are jointly nor-
mally distributed. Then, the four risk-free bond Euler equations imply:

0 = Et[mt,t+1] +
1
2

vart(mt,t+1) + rt,

0 = Et[mt,t+1] +
1
2

vart(mt,t+1)− Et[∆st+1] +
1
2

vart(∆st+1) + covt(mt,t+1,−∆st+1) + r∗t ,

0 = Et[m∗
t,t+1] +

1
2

vart(m∗
t,t+1) + r∗t ,

0 = Et[m∗
t,t+1] +

1
2

vart(m∗
t,t+1) + Et[∆st+1] +

1
2

vart(∆st+1) + covt(m∗
t,t+1, ∆st+1) + rt.

Reorganizing the terms, we can obtain two expressions that relate the expected excess
return of a strategy that goes long in foreign currency and borrows at the domestic risk-
free rate to the riskiness of the exchange rate

(r∗t − rt)− Et[∆st+1] +
1
2

vart(∆st+1) = −covt(mt,t+1,−∆st+1),

(rt − r∗t ) + Et[∆st+1] +
1
2

vart(∆st+1) = −covt(m∗
t,t+1, ∆st+1).

The first expression takes the home investors’ perspective. If the foreign currency tends
to appreciate (i.e., higher −∆st+1) in the home investors’ high marginal utility states (i.e.,
higher mt,t+1), then, the foreign currency is a good hedge and the home investors demand
lower expected returns to hold it. As a result, the foreign currency has a lower expected
excess return leading to a lower (r∗t − rt)−Et[∆st+1] +

1
2 vart(∆st+1) on the left-hand side.

Similarly, the second expression takes the foreign investors’ perspective, and relates the
currency excess return to the covariance between the foreign investors’ SDF and the ex-
change rate movement.

Given the exchange rate variance vart(∆st+1) is positive, these expressions imply

Et[∆st+1] + rt − r∗t > covt(mt,t+1,−∆st+1),
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−(Et[∆st+1] + rt − r∗t ) > covt(m∗
t,t+1, ∆st+1),

which leads to the following proposition.

Proposition 1. In the log-normal case, the conditional exchange rate cyclicality satisfies

covt(mt,t+1 − m∗
t,t+1, ∆st+1) = vart(∆st+1) > 0. (1)

Lustig and Verdelhan [2019] derive a version of this result assuming incomplete mar-
ket wedges that are jointly log-normal with the SDF and the exchange. Our derivation
does not use incomplete market wedges.

In this paper, we define the exchange rate cyclicality as the covariance between the
exchange rate movement ∆st+1 and the SDF differential mt,t+1 − m∗

t,t+1. This propo-
sition shows that exchange rate innovations are counter-cyclical in a Gaussian model.
The home currency’s exchange rate tends to unexpectedly appreciate when the home in-
vestors’ marginal utility growth is unexpectedly higher than the foreign investors’.

While Lustig and Verdelhan [2019] find that market incompleteness helps with the
Brandt, Cochrane, and Santa-Clara [2006a] puzzle in reducing volatility, it cannot change
the sign of the conditional covariance. We have not assumed that markets are complete
to derive this result. In the case of complete markets, state-contingent interest rate par-
ity obtains mt,t+1 − m∗

t,t+1 = ∆st+1 and this covariance result is directly obtained. Our
proposition shows that this result is much more general, as long as investors can freely
trade home and foreign risk-free bonds. In other words, the risk-free bond Euler equa-
tions discipline the joint dynamics of the exchange rates and marginal utility growth to
imply counter-cyclical exchange rates.

3.2 Non-Gaussian Case

Some dynamic asset pricing models are not conditionally Gaussian [Rietz, 1988, Longstaff
and Piazzesi, 2004, Barro, 2006, Farhi and Gabaix, 2016]. This result can be extended to
non-normal settings. We can define conditional entropy as follows:

Lt(Xt+1) = (log Et[Xt+1]− Et[xt+1]) .

We can use µit to denote the i-th central conditional moment of log X. Then we can state:

log Et exp(sxt+1) =
∞

∑
j=1

sjκj,t/j! = kt(xt+1; s)
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where κ1t = µ1t, κ2t = µ2t, κ3t = µ3t, κ4t = µ4t − 3µ2
2t. This implies that the conditional

entropy can be stated as the sum of the higher order cumulants:

Lt(Xt+1) =
∞

∑
j=2

κj,t/j! = kt(xt+1; 1)− κ1.

The log of the currency risk premium (in levels) earned by domestic investors can be
stated as:

(r∗t − rt)− Et[∆st+1] + Lt

[
St

St+1

]
= −Ct

(
Mt+1,

St

St+1

)
,

where co-entropy is defined as Ct(xt+1, yt+1) = Lt(xt+1yt+1)− Lt(xt+1)− Lt(yt+1) [Backus,
Boyarchenko, and Chernov, 2018]. If xt+1 and yt+1 are independent, then Ct(xt+1, yt+1) =

0. If we define the cumulant generating function,

log Et exp(s1xt+1 + s2yt+1) = kt(s1, s2)

then Ct(xt+1, yt+1) = kt(1, 1)− kt(1, 0)− kt(0, 1). A long position in foreign currency is
risky for the domestic investor when the foreign currency tends to depreciate (and the
home currency appreciates) in worse states for the domestic investor, i.e. when

Ct

(
Mt+1,

St

St+1

)
< 0

is more negative. Similarly, the log of the currency risk premium (in levels) earned by
domestic investors can be stated as the co-entropy of the domestic SDF with the domestic
currency’s rate of appreciation:

(rt − r∗t ) + Et[∆st+1] + Lt

[
St+1

St

]
= −Ct(M∗

t+1,
St+1

St
).

Proposition 2. In the non-normal case, the conditional exchange rate cyclicality satisfies

−Ct(M∗
t+1,

St+1

St
)− Ct

(
Mt+1,

St

St+1

)
= Lt

[
St

St+1

]
+ Lt

[
St+1

St

]
> 0. (2)

In the normal case, we recover the covariance result in Proposition 1. When the domes-
tic currency appreciates in worse states for the domestic investor, we have Ct

(
Mt+1, St

St+1

)
<

0. Similarly, when the foreign currency appreciates in worse states for the foreign investor,
we have Ct(M∗

t+1, St+1
St

) < 0.
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Because the right-hand side is positive, as entropy is non-negative, we know that ex-
change rates will have to be counter-cyclical for at least one of the countries, and possibly
both.

4 Unconditional Exchange Rate Cyclicality and Incomplete

Markets

In IRBC models that link the SDFs to aggregate consumption shocks, we are interested in
understanding how the exchange rate moves in response to relative consumption growth.
Backus and Smith [1993] summarize this relationship by regressing the exchange rate
movement on relative consumption growth, and find procyclical exchange rates. To re-
late our result to this Backus-Smith coefficient, we need to characterize the unconditional
exchange rate cyclicality. To do so, we use the law of total covariance:

cov(mt,t+1 − m∗
t,t+1, ∆st+1) = E[covt(mt,t+1 − m∗

t,t+1, ∆st+1)] + cov(Et[mt,t+1 − m∗
t,t+1], Et[∆st+1]).

Our previous result shows the conditional exchange rate cyclicality covt(mt,t+1 −m∗
t,t+1, ∆st+1)

is always positive. To generate a negative unconditional cyclicality cov(mt,t+1 −m∗
t,t+1, ∆st+1),

we need a negative cov(Et[mt,t+1 − m∗
t,t+1], Et[∆st+1]) that is greater in magnitude than

the average conditional cyclicality E[covt(mt,t+1 − m∗
t,t+1, ∆st+1)]. In other words, the ex-

change rate movement needs to be strongly predictable by the expected SDF differential
Et[mt,t+1 − m∗

t,t+1]. This connects the unconditional exchange rate cyclicality to exchange
rate predictability.

Recall the case of complete markets, ∆st+1 = mt,t+1 − m∗
t,t+1. The exchange rate has to

absorb all of the shocks to the pricing kernels in each state of the world. When markets
are complete, the unconditional exchange rate cyclicality satisfies

cov(mt,t+1 − m∗
t,t+1, ∆st+1) = var(∆st+1) > 0.

In any complete-market models (which by definition allows home and foreign agents
to trade risk-free bonds), the unconditional exchange rate cyclicality is always positive: a
higher marginal utility growth in the home country is associated with a home currency
appreciation. The model can only generate exchange rate disconnect by shrinking the
variance of the exchange rate to zero.

Next, we consider a more general case of less than complete markets in which we shut
down some trade in non-bond asset markets. We begin by introducing some concepts.
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The Fama Regression Coefficient b We use ft to denote the log of the one-period for-
ward exchange rate in units of foreign currency per dollar. The log excess return on
buying foreign currency forward is

rxt+1 = ft − st+1 = −∆st+1 + ft − st,

where ft − st denotes the forward discount and ∆st+1 denotes the appreciation of the
home currency. When the Covered Interest Rate Parity holds, we further obtain ft − st =

r∗t − rt and, as a result, we can restate the log excess return on a long position in foreign
currency as rxt+1 = −∆st+1 + r∗t − rt.

Now, consider the standard Tryon [1979], Hansen and Hodrick [1980], Fama [1984]
time-series regression:

∆st+1 = a + b( ft − st) + εt+1.

In the data, the slope coefficient b tends to be negative: a higher-than-usual foreign in-
terest rate predicts further appreciation of the foreign currency. Following Fama [1984],
we use pt = Et[rxt+1] = ft − Et[st+1] to denote the currency risk premium and qt =

Et[∆st+1] to denote the expected exchange rate movement. The forward discount can be
decomposed as ft − st = pt + qt. When the Covered Interest Rate Parity holds, pt =

r∗t − rt − Et[∆st+1], and pt + qt = r∗t − rt.
As shown by Fama, the slope coefficient in this regression can be restated as:

cov( ft − st, Et[∆st+1])

var( ft − st)
=

cov(pt + qt, qt)

var(pt + qt)
=

cov(pt, qt) + var(qt)

var(pt + qt)

To get negative slope coefficient b, we need cov(pt,qt)
var(qt)

< −1. Two necessary conditions
have to be satisfied in order to obtain negative slope coefficients: corr(pt, qt) < 0 and
std(pt) > std(qt). Risk premia have to be more volatile than the expected change in the
spot rate. Backus, Foresi, and Telmer [2001] analyze sufficient conditions for these U.I.P.
violations in a large class of affine asset pricing models.

The Meese-Rogoff R2 The Meese and Rogoff [1983] puzzle states that exchange rates
are hard to forecast. Put differently, the R2 = var(Et[∆st+1])/var(∆st+1) in a forecasting
regression is low. In a recent survey of exchange rate predictability, Rossi [2013] concludes
that the Meese-Rogoff findings have not been conclusively overturned.3 There is some

3At higher frequencies ranging from one day to one month, order flow seems to predict changes in the
spot exchange rate [see Evans and Lyons, 2002, 2005]. This data is proprietary and may not be available
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limited evidence of exchange rate predictability but the evidence usually is specific to
certain countries, horizons and the predictability is not stable.

When the linear projection yields the best forecast, we can obtain this R2 from a pro-
jection of the exchange rate changes on its predictors. We will assume the linear predictor
yields the best forecast. Let R2 denote the fraction of the predictable variation in the ex-
change rate:

R2 =
var(Et[∆st+1])

var(∆st+1)
,

and let R2
Fama denote the R2 of the Fama regression:

R2
Fama =

var(b( ft − st))

var(∆st+1)
.

Our main result characterizes the unconditional exchange rate cyclicality. Without
loss of generality, we assume that the covariance between the home SDF’s conditional
variance and the exchange rate movement from the home perspective is higher than the
covariance between the foreign SDF’s conditional variance and the exchange rate move-
ment from the foreign perspective:

cov (vart(mt,t+1), Et[∆st+1]) ≥ cov
(
vart(m∗

t,t+1),−Et[∆st+1]
)

.

If this condition is not satisfied, we simply need to swap the labeling of the home and
foreign countries.

Proposition 3. Each of the following is a necessary condition for a negative unconditional ex-
change rate cyclicality, i.e., cov(mt,t+1 − m∗

t,t+1, ∆st+1) < 0:
(a)

std (vart(mt,t+1))

std(∆st+1)
≥ 1√

R2
+
√

R2

(
1
b

R2
Fama
R2 − 1

)
. (3)

If the Fama regression yields the best predictor of the exchange rate movement, then, we can
simplify this formula to

std (vart(mt,t+1))

std(∆st+1)
≥ 1√

R2
+
√

R2
(

1
b
− 1
)
=

1√
R2

−
√

R2 + sign(b)
std( ft − st)

std(∆st+1)
. (4)

in real-time to all investors. Gourinchas and Rey [2007] report evidence that the net foreign asset position
predicts changes in the exchange rate out-of-sample.
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(b) √
std(Et[rxt+1])

std(Et[∆st+1])
+

std (vart(mt,t+1))

std(Et[∆st+1])
≥ std(∆st+1)

std(Et[∆st+1])
=

1√
R2

.

Between these conditions,

• (a) ⇒ (b).

• If Fama regression yields the best predictor and b /∈ (0, 1), (b) ⇒ (a); otherwise (b) is a
weaker condition.

Conditions (a) and (b) are necessary, but not sufficient conditions for a negative un-
conditional exchange rate cyclicality. The bounds tighten as the R2 decreases: as exchange
rates become less predictable, we need more variations in the conditional risk premia and
the conditional price of risk to generate a negative unconditional exchange rate cyclical-
ity. In the limit, as we approach the Meese and Rogoff [1983]’s benchmark random walk
case in which exchange rate movements are not predictable, 1/

√
R2 on the right-hand

side approaches infinity. The model simply cannot deliver pro-cyclical exchange rates.
As such, these bounds deliver an impossibility result: if we take Meese and Rogoff [1983]
random walk result regarding exchange rate predictability at face value, then we cannot
make progress on the Backus and Smith [1993] puzzle regarding exchange rate cyclicality.

In the data, the exchange rate movements are only moderately predictable. Let us
consider a simple calculation. Suppose R2 = 10% at the one-year horizon, and the Fama
regression coefficient is b = −1. Then, Eq. (4) becomes std (vart(mt,t+1))/std(∆st+1) ≥
2.53. With an annualized exchange rate volatility of std(∆st+1) = 10%, then, the SDF
needs to have a very high variability in its variance std (vart(mt,t+1)) ≥ 25.3. As the
variance is non-negative and a two-standard-deviation band is 25.3 × 2 = 50.6, in cer-
tain states, the log SDF needs to have a variance of 50.6 per annum, and a volatility of√

50.6 = 7.1 = 711% per annum. This implies the existence of an asset with a very high
Sharpe ratio according to the Hansen-Jagannathan bound. In other words, when the in-
vestors can freely trade risk-free bonds, a negative unconditional exchange rate cyclicality
requires a very volatile SDF.

On the other hand, while it is enticing to conclude that, holding R2 constant, a small
but negative Fama coefficient b can lower the right-hand side of Eq. (3) and make this
condition more likely to hold, we note that

√
R2 and b are closely related. When the b

shrinks towards zero, the R2 shrinks towards zero as well. In fact, Eq. (4) shows that,
holding R2 constant, a small but negative b means a high forward premium volatility

13



std( ft − st) relative to the exchange rate volatility std(∆st+1), which is also rejected by the
data.

We make two more observations. First, in the case of U.I.P. (b = 1), Eq. (4) becomes:

std (vart(mt,t+1))

std(∆st+1)
≥ 1√

R2
.

A natural case to consider under the U.I.P. is the case of constant market prices of risk.
Then, we get an impossibility result: 0 ≥ 1/

√
R2, so the unconditional exchange rate

cyclicality cannot be negative.
Second, in the case of a fully predictable exchange rate movement, the R2 tends to one

and Eq. (4) becomes:

std (vart(mt,t+1))

std(∆st+1)
≥ 1

b
.

As long as the slope coefficient b is negative, then the bound is trivially satisfied, even
when the R2 is very high but not equal to 1.

4.1 Role of the Horizon

We consider a long-horizon Fama regression:

∆st,t+k = ak + bk( f k
t − st) + εt+k.

Similarly, we use R2
Fama,k to denote the R2 of this regression, and we define

R2
k =

var(Et[∆st,t+k])

var(∆st,t+k)
.

There are opposing forces on the left-hand side of the bounds we derived. As we in-
crease the horizon, std (vart(mt,t+k)) increases faster than the

√
k, while std(Et[∆st,t+k])

converges to zero if a long-run version of PPP holds and the real exchange rate is station-
ary.4 On the other hands, as k → ∞, a long-run version of U.I.P kicks in and bk → 1.
In fact, long-run U.I.P. is implied by no arbitrage when real exchange rates are stationary
[Lustig, Stathopoulos, and Verdelhan, 2019].

Proposition 4. Each of the following is a necessary condition for a negative unconditional ex-
change rate cyclicality, i.e., cov(mt,t+k − m∗

t,t+k, ∆st,t+k) < 0:

4As noted by Rogoff [1996], the real exchange rate’s rate of convergence to its long-run mean is slow.
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(a)

std (vart(mt,t+k))

std(∆st,t+k)
≥ 1√

R2
k

+
√

R2
k

(
1
bk

R2
Fama,k

R2
k

− 1

)
.

If the Fama regression yields the best predictor of the exchange rate movement, then, we can
simplify this formula to

std (vart(mt,t+k))

std(∆st,t+k)
≥ 1√

R2
k

+
√

R2
k

(
1
bk

− 1
)
=

1√
R2

k

−
√

R2
k + sign(bk)

std( f k
t − st)

std(∆st,t+k)

(b) √
std(Et[rxt,t+k])

std(Et[∆st,t+k])
+

std (vart(mt,t+k))

std(Et[∆st,t+k])
≥ std(∆st,t+k)

std(Et[∆st,t+k])
=

1√
R2

k

.

Among these conditions,

• (a) ⇒ (b).

• If Fama regression yields the best predictor and b /∈ (0, 1), (b) ⇒ (a); otherwise (b) is a
weaker condition.

5 Bond Euler Equation Wedges

Our result shows that IRBC models with the four bond Euler equations cannot simulta-
neously generate a negative Backus-Smith coefficient and replicate the Fama regression
coefficient and the Meese-Rogoff puzzle.

We need to entertain models that break these four Euler equations in one way or an-
other. First, Corsetti et al. [2008], Pavlova and Rigobon [2012] consider incomplete-market
settings in which only one type of bond is traded. When the bond is denominated in a
country’s numéraire, this set-up drops two of our four Euler equations. When the bond
is denominated in a basket of country-level numéraires, this set-up drops all of our four
Euler equations and supplement with two new ones.

Second, Alvarez, Atkeson, and Kehoe [2002b, 2009b] consider models in which agents
need to pay a cost to access the financial market, which is equivalent to adding addi-
tional wedges in the four Euler equations we consider in this paper. Relatedly, Jiang et al.
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[2018], Jiang, Krishnamurthy, and Lustig [2020], Jiang et al. [2021] introduce bond conve-
nience yields to the dollar safe assets, which introduce another type of the Euler equation
wedges. However, we show that one version of the convenience yield dynamics which
is supported by the data – convenience yields on dollar bonds – does not resolve the
exchange rate cyclicality puzzle.

Third, Gabaix and Maggiori [2015], Itskhoki and Mukhin [2021], Fukui et al. [2023]
consider models in which domestic investors can only hold local bonds. They introduce a
financial intermediary who can trade currencies. This set-up effectively removes the two
cross-country Euler equations out of the four Euler equations we consider in this paper,
and replaces them with an additional Euler equation that captures the trade-off of the
international intermediary. Similarly, Gourinchas et al. [2020], Greenwood et al. [2020]
study models with preferred-habitat investors and global arbitrageurs, which remove all
Euler equations we consider and only keep one Euler equation that captures the global
arbitrageurs’ long-short portfolio decision.

We explain how these models implicitly insert cross-currency Euler equation wedges
that are consistent with a home currency bias in bonds to improve the model’s fit with
the data. There is a wealth of empirical evidence that investors act as if they face large
transaction costs, capital controls or other frictions when buying foreign securities [Lewis,
1995]. This is as typically referred to as the home bias puzzle. Alternatively, they may be
inserting domestic bond Euler equation wedges as well.

We start by analyzing the case in which we only allow cross-currency Euler equation
wedges in section 5.1. Next, in section 5.2, we allow for wedges in the domestic bond
Euler equations as well.

5.1 Cross-Currency Wedges and the Home Currency Bias

We start by allowing for wedges only in the Euler equations of investors buying foreign
currency risk-free bonds. These wedges for the domestic and foreign investor respectively
are denoted (ξt, ξ∗t ). Then, the four Euler equations can be expressed as follows:

1 = Et [exp(mt,t+1 + rt)] ,

exp(ξt) = Et [exp(mt,t+1 − ∆st+1 + r∗t )] ,

1 = Et
[
exp(m∗

t,t+1 + r∗t )
]

,

exp(ξ∗t ) = Et
[
exp(m∗

t,t+1 + ∆st+1 + rt)
]

.
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These wedges are security-specific. They only apply to the bonds denominated in a cur-
rency different from the home currency. Investors apply a lower SDF to the bond payoffs
that accrue in foreign currency. Positive wedges are akin to inconvenience yields derived
from holding bonds denominated in foreign currency. They effectively segment the home
currency from the foreign currency bond markets.

This approach nests the models by Gabaix and Maggiori [2015], Itskhoki and Mukhin
[2021] because they remove the two cross-country Euler equations. This approach nests
the model by Alvarez et al. [2002b, 2009b] who consider models in which agents need
to pay a cost to access securities and currency markets. This approach nests convenience
yields earned by foreign investors Jiang et al. [2018, 2021] which would correspond to neg-
ative Euler equation wedges. This also nests Corsetti et al. [2008], Pavlova and Rigobon
[2012] who consider incomplete-market settings in which only one type of bond denomi-
nated in a global numéraire is traded.

Reorganizing the terms, we obtain two expressions that relate the expected excess
return of a strategy that goes long the foreign bond to the perceived risks from the home
and foreign perspectives as well as the wedges:

(r∗t − rt)− Et[∆st+1] +
1
2

vart(∆st+1) = −covt(mt,t+1,−∆st+1) + ξt,

(rt − r∗t ) + Et[∆st+1] +
1
2

vart(∆st+1) = −covt(m∗
t,t+1, ∆st+1) + ξ∗t .

Combining these expressions, we directly obtain the following result.

Proposition 5. In the presence of Euler equation wedges, the conditional exchange rate cyclicality
is given by:

covt(mt,t+1 − m∗
t,t+1, ∆st+1) = vart(∆st+1)− (ξ∗t + ξt).

The conditional correlation is given by:

corrt(mt,t+1 − m∗
t,t+1, ∆st+1) =

stdt(∆st,t+1)

stdt(mt,t+1 − m∗
t,t+1)

(
1 − (ξ∗t + ξt)

vart(∆st,t+1)

)
.

In order to obtain conditionally pro-cyclical exchange rates covt(mt,t+1 − m∗
t,t+1, ∆st+1) <

0, we need positive wedges that exceed the exchange rate variance, i.e., vart(∆st+1) <

(ξ∗t + ξt). There is no need to shrink the conditional variance to zero in order to gener-
ate an exchange rate disconnect between innovations to the SDF and innovations to the
exchange rate. We need positive wedges to mitigate the conditional version of the Backus-
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Smith puzzle. These wedges reduce the need for exchange rates to respond to shocks to
the pricing kernel in order to enforce the bond Euler equation wedges.

A natural example would be a model in which foreign investors cannot invest in the
domestic risk-free bond, but the domestic investors can invest in the foreign risk-free
bond. In this case, ξt = 0. In order to obtain conditionally pro-cyclical exchange rates,
we need a home currency bias. Domestic investors are willing to forgo a return equal to
at least the variance of exchange rates when considering foreign currency bonds: ξ∗t >

vart(∆st+1).

Proposition 6. In the presence of only cross-border Euler equation wedges, each of the following
is a necessary condition for a negative unconditional exchange rate cyclicality, i.e., cov(mt,t+1 −
m∗

t,t+1, ∆st+1) < 0:
(a)

std (vart(mt,t+1))

std(∆st+1)
≥ 1√

R2

(
1 − E(ξ∗t + ξt)

var(∆st+1)

)
+
√

R2

(
1
b

R2
Fama
R2 − 1

)
.

If the Fama regression yields the best predictor of the exchange rate movement, then, we can sim-
plify the formula to

std (vart(mt,t+1))

std(∆st+1)
≥ 1√

R2

(
1 − E(ξ∗t + ξt)

var(∆st+1)

)
+
√

R2
(

1
b
− 1
)

=
1√
R2

(
1 − E(ξ∗t + ξt)

var(∆st+1)

)
−
√

R2 + sign(b)
std( ft − st)

std(∆st+1)
.

(b) √
std(Et[rxt+1])

std(Et[∆st+1])
+

std (vart(mt,t+1))

std(Et[∆st+1])
≥ 1

R2

(
1 − E(ξ∗t + ξt)

var(∆st+1)

)
.

Among these conditions,

• (a) ⇒ (b).

• If Fama regression yields the best predictor and b /∈ (0, 1), (b) ⇒ (a); otherwise (b) is a
weaker condition.

Armed with a home currency bias, these conditions can now be satisfied even if the
exchange rate is close to a random walk and R2 = 0, as long as the sum of the wedges
exceeds the variance of the spot exchange rate changes. If these wedges are large enough
to flip the sign on the right-hand side, then we do not need to rely on a highly volatile
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market price of risk and/or large U.I.P. deviations. This being the case, condition (a) is
always satisfied if b ≤ 0, even if the market price of risk is constant, while condition (b) is
satisfied even in the case of U.I.P with constant market prices of risk when b = 1.

Importantly, only the first moment of the cross-currency wedges matter. These wedges
are substitutes for covariance between the pricing kernel and the change in the spot ex-
change rate. The variance of the wedge is irrelevant. The wedge can even be fixed.

5.2 Home Bond Wedges, Convenience Yields and Financial Repression

Next, we allow for wedges in the Euler equations of investors buying risk-free domes-
tic bonds. These home wedges for the domestic and foreign investor respectively are
denoted (ϕt, ϕ∗

t ). Then, the four Euler equations can be expressed as follows:

exp(ϕt) = Et [exp(mt,t+1 + rt)] ,

exp(ξt) = Et [exp(mt,t+1 − ∆st+1 + r∗t )] ,

exp(ϕ∗
t ) = Et

[
exp(m∗

t,t+1 + r∗t )
]

,

exp(ξ∗t ) = Et
[
exp(m∗

t,t+1 + ∆st+1 + rt)
]

.

Assuming log-normality, we obtain

ϕt = Et[mt,t+1] +
1
2

vart(mt,t+1) + rt,

ξt = Et[mt,t+1] +
1
2

vart(mt,t+1)− Et[∆st+1] +
1
2

vart(∆st+1) + covt(mt,t+1,−∆st+1) + r∗t ,

ϕ∗
t = Et[m∗

t,t+1] +
1
2

vart(m∗
t,t+1) + r∗t ,

ξ∗t = Et[m∗
t,t+1] +

1
2

vart(m∗
t,t+1) + Et[∆st+1] +

1
2

vart(∆st+1) + covt(m∗
t,t+1, ∆st+1) + rt.

Reorganizing the terms, we obtain two expressions that relate the expected excess
return of a strategy that goes long the foreign bond to the perceived risks from the home
and foreign perspectives as well as the wedges:

(r∗t − rt)− Et[∆st+1] +
1
2

vart(∆st+1) = −covt(mt,t+1,−∆st+1) + ξt − ϕt,

(rt − r∗t ) + Et[∆st+1] +
1
2

vart(∆st+1) = −covt(m∗
t,t+1, ∆st+1) + ξ∗t − ϕ∗

t .
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By combining these equations, we directly obtain

covt(mt,t+1 − m∗
t,t+1, ∆st+1) = vart(∆st+1)− (ξ∗t + ξt) + (ϕt + ϕ∗

t ).

In order to obtain pro-cyclical exchange rates covt(mt,t+1 − m∗
t,t+1, ∆st+1) < 0, we need

vart(∆st+1) < (ξ∗t + ξt) − (ϕt + ϕ∗
t ). Clearly, in addition to positive cross-currency Eu-

ler equation wedges, negative domestic bond equation wedges will help to satisfy this
condition.

Next, we derive restrictions on the wedges that are needed to change the sign of the
unconditional exchange rate cyclicality.

Proposition 7. Let ω = E[−(ξ∗t + ξt) + (ϕt + ϕ∗
t )] − cov (ϕ∗

t , qt) + cov (ϕt, qt) denote the
new adjustment term that arises from the wedges. In the presence of Euler equation wedges, each
of the following is a necessary condition for a negative unconditional exchange rate cyclicality, i.e.,
cov(mt,t+1 − m∗

t,t+1, ∆st+1) < 0:
(a)

std (vart(mt,t+1))

std(∆st+1)
≥ 1√

R2

(
1 +

ω

var(∆st+1)

)
+
√

R2

(
1
b

R2
Fama
R2 − 1

)

If the Fama regression yields the best predictor of the exchange rate movement, then, we can sim-
plify the formula to

std (vart(mt,t+1))

std(∆st+1)
≥ 1√

R2

(
1 +

ω

var(∆st+1)

)
+
√

R2
(

1
b
− 1
)

=
1√
R2

(
1 +

ω

var(∆st+1)

)
−
√

R2 + sign(b)
std( ft − st)

std(∆st+1)
.

(b) √
std(Et[rxt+1])

std(Et[∆st+1])
+

std (vart(mt,t+1))

std(Et[∆st+1])
≥ 1

R2

(
1 +

ω

var(∆st+1)

)
.

Among these conditions,

• (a) ⇒ (b).

• If Fama regression yields the best predictor and b /∈ (0, 1), (b) ⇒ (a); otherwise (b) is a
weaker condition.

As was the case of conditional covariance, this proposition shows that a sufficiently
negative ω, which can be obtained by assuming positive transaction costs, i.e., ξt + ξ∗t > 0,
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is able to lower the right-hand side of the inequalities (a)–(b), and make it easier to attain
a negative unconditional exchange rate cyclicality. Alternatively, we need a sufficiently
negative Euler equation wedge for domestic bonds ϕt + ϕ∗

t < 0, which can be interpreted
either as a convenience yield from holdings of domestic bonds, or, alternatively, a symp-
tom of financial repression. Governments routinely adopt measures to allow themselves
to borrow at below-market rates. This is usually referred to as financial repression [see
Reinhart, Kirkegaard, and Sbrancia, 2011, Chari, Dovis, and Kehoe, 2020].

During the Great Financial Crisis, banks were induced by their national governments
to buy the sovereign debt of their countries [Acharya and Steffen, 2015, De Marco and
Macchiavelli, 2016, Ongena, Popov, and Van Horen, 2019]. Since the 2008 GFC, central
banks in advanced economies have increased the size of their balance sheets to purchase
government bonds, a new wave of financial repression [see Hall and Sargent, 2022, for
a comparison of the pandemic and two World Wars]. Financial repression come in other
forms, including macro-prudential regulation that favors government bonds, direct lend-
ing to the government by domestic pension funds and banks, moral suasion used to
increase domestic bank holdings of government bonds [see Acharya and Steffen, 2015,
De Marco and Macchiavelli, 2016, Ongena et al., 2019, for examples from Europe during
the GFC].5 Japan is a textbook example of financial repression. The Bank of Japan has
implemented a yield curve control policy.

6 Conclusion

In order to break the relation between exchange rates and macro fundamentals, mod-
els need to impute a home currency bias to bond market investors. Alternatively, these
investors need to derive large convenience yields from their holdings of domestic bonds.

5Chari et al. [2020] derive conditions under which forcing banks to hold government debt may be opti-
mal, because it acts as a commitment device.
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Appendix

A Proof

A.1 Proposition 1

Proof. Combining

Et[∆st+1] + rt − r∗t = covt(mt,t+1,−∆st+1) +
1
2

vart(∆st+1),

−(Et[∆st+1] + rt − r∗t ) = covt(m∗
t,t+1, ∆st+1) +

1
2

vart(∆st+1),

we directly obtain

covt(mt,t+1 − m∗
t,t+1, ∆st+1) = vart(∆st+1) > 0.

A.2 Proposition 2

Proof. The US Euler equations are given by

Et[exp(mt+1 + rt)] = 1

Et[exp(mt+1 + r∗t − ∆st+1)] = 1

where mt+1 = log Mt+1. By the definition of entropy and co-entropy, we recast the equa-
tions as follows

0 = log Et[exp(mt+1 + rt)]

= log Et[exp(mt+1)] + rt

= log Et[mt+1] + Lt(Mt+1) + rt

0 = log Et[exp(mt+1 + r∗t − ∆st+1)]

= log Et[exp(mt+1 − ∆st+1)] + r∗t

= Et[mt+1 − ∆st+1] + Lt(Mt+1
St

St+1
) + r∗t

= Et[mt+1 − ∆st+1] + r∗t + Ct(Mt+1,
St

St+1
) + Lt(Mt+1) + Lt(

St

St+1
)
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Subtract the first equation from the second to get

r∗t − rt + Et[∆st+1] + Lt(
St

St+1
) = −Ct(Mt+1,

St

St+1
).

Similarly, from the foreign Euler equations we obtain

rt − r∗t − Et[∆st+1] + Lt(
St+1

St
) = −Ct(M∗

t+1,
St+1

St
)

Add up the two equations to get the proposition. Note that entropy is always greater
than zero, which ensures the inequality in the proposition.

A.3 Proposition 3

Proof. Using the definition of pt and qt, we can restate the covariance as follows:

cov(Et[mt,t+1 − m∗
t,t+1], Et[∆st+1]) = cov(pt + qt, qt) +

1
2

cov
(
vart(m∗

t,t+1), qt
)
− 1

2
cov (vart(mt,t+1), qt) .

Note cov(pt + qt, qt) = b × var(pt + qt) by the construction of the Fama regression.
Then,

cov(Et[mt,t+1 − m∗
t,t+1], Et[∆st+1]) = b × var(pt + qt) +

1
2

cov
(
vart(m∗

t,t+1), qt
)
− 1

2
cov (vart(mt,t+1), qt) .

A negative unconditional exchange rate cyclicality then implies

cov(mt,t+1 − m∗
t,t+1, ∆st+1) = E[vart(∆st+1)] + b × var(pt + qt)

+
1
2

cov
(
vart(m∗

t,t+1), qt
)
− 1

2
cov (vart(mt,t+1), qt) ≤ 0

Rearranging terms,

1
2

cov (vart(mt,t+1), qt) +
1
2

cov
(
vart(m∗

t,t+1),−qt
)
≥ E[vart(∆st+1)] + b × var(pt + qt)

By assumption,

cov (vart(mt,t+1), qt) ≥
1
2

cov (vart(mt,t+1), qt) +
1
2

cov
(
vart(m∗

t,t+1),−qt
)

≥ E[vart(∆st+1)] + b × var(pt + qt)
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Hence, a necessary (but not sufficient) condition is given by:

std (vart(mt,t+1)) ≥
E[vart(∆st+1)] + b × var( ft − st)

std(Et[∆st+1])

std (vart(mt,t+1)) ≥
var(∆st+1)− var(Et[∆st+1]) + b × var( ft − st)

std(Et[∆st+1])

std (vart(mt,t+1)) + std(Et[∆st+1]) ≥
var(∆st+1) + b × var( ft − st)

std(Et[∆st+1])

std (vart(mt,t+1))

std(Et[∆st+1])
+ 1 ≥ var(∆st+1) + b × var( ft − st)

var(Et[∆st+1])

which implies

std (vart(mt,t+1))

std(Et[∆st+1])
+ 1 − b × var( ft − st)

var(Et[∆st+1])
≥ var(∆st+1)

var(Et[∆st+1])
=

1
R2 (5)

Now, notice that

b =
cov(∆st+1, ft − st)

var( ft − st)
=

std(∆st+1)

std( ft − st)
corr(∆st+1, ft − st).

We obtain

std (vart(mt,t+1))

std(∆st+1)
√

R2
+ 1 − b × var( ft − st)

var(∆st+1)R2 ≥ 1
R2

std (vart(mt,t+1))

std(∆st+1)
+
√

R2 − b × corr(∆st+1, ft − st)2

b2
√

R2
≥ 1√

R2

std (vart(mt,t+1))

std(∆st+1)
≥ 1√

R2
−
√

R2 +
R2

Fama

b
√

R2

When Fama Regression yields the best predictor, R2
Fama = R2, the formula is simplified

to

std (vart(mt,t+1))

std(∆st+1)
≥ 1√

R2
−
√

R2 +
1
b

√
R2,

where

1
b

√
R2 =

1
b
|b|std( ft − st)

std(∆st+1)
= sign(b)

std( ft − st)

∆st+1
.

Hence, we arrive at condition (a).
Next, we show condition (b). By using the definition of covariance and imposing
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symmetry:

cov(Et[mt,t+1 − m∗
t,t+1], Et[∆st+1]) = cov(pt + qt, qt)− cov (vart(mt,t+1), qt)

= var(qt) + cov(pt, qt)− cov (vart(mt,t+1), qt) .

Using the definition of the covariance, this covariance expression on the left-hand side
can be bounded below as follows:

cov(Et[mt,t+1 − m∗
t,t+1], Et[∆st+1]) ≥ var(qt)− std(pt)std(qt)− std(qt)std (vart(mt,t+1)) .

This lower bound can be restated as:

cov(Et[mt,t+1 − m∗
t,t+1], Et[∆st+1]) ≥ var(qt)

(
1 − std(pt)

std(qt)
− std (vart(mt,t+1))

std(qt)

)
.

To get a negative unconditional Backus Smith coefficient, we need the following con-
dition:

cov(mt,t+1 − m∗
t,t+1, ∆st+1) = E[vart(∆st+1)] + cov(Et[mt,t+1 − m∗

t,t+1], Et[∆st+1]) ≤ 0.

This can be restated as follows:

−E[vart(∆st+1)] ≥ cov(Et[mt,t+1 − m∗
t,t+1], Et[∆st+1]) ≥ var(qt)

(
1 − std(pt)

std(qt)
− std (vart(mt,t+1))

std(qt)

)
.

Rearranging terms, we obtain the following result:

std(pt)

std(qt)
+

std (vart(mt,t+1))

std(qt)
≥ 1 +

E[vart(∆st+1)]

var(qt)
.

Note that

1 +
E[vart(∆st+1)]

var(qt)
=

var(Et[∆st+1]) + E[vart(∆st+1)]

var(Et[∆st+1])
=

var(∆st+1)

var(Et[∆st+1])
.

Hence, we obtain the necessary condition (b) by using the definition of the uncondi-
tional variance: √

std(pt)

std(qt)
+

std (vart(mt,t+1))

std(qt)
≥ std(∆st+1)

std(qt)
=

1√
R2

.

To compare conditions (a) and (b), note that condition (a) can be written as Eq. (5),
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reproduced below,

std (vart(mt,t+1))

std(Et[∆st+1])
+ 1 − b × var( ft − st)

var(Et[∆st+1])
≥ 1

R2 ,

it suffices to compare the term std(Et[rxt+1])/std(Et[∆st+1]) = std(pt)/std(qt) in (b) with
1 − bvar( ft − st)/var(Et[∆st+1]) = 1 − bvar(pt + qt)/var(qt) in (a). Consider the general
case, when Fama regression does not necessarily yield the best predictor. Take conditional
expectation on both sides of the regression yields

qt = a + b(pt + qt) + xt

where xt = Et[εt+1] satisfies that

cov(xt, pt + qt) = cov(εt+1, pt + qt)− cov(εt+1 − xt, pt + qt) = 0

cov(xt, qt) = cov(xt, b(pt + qt)) + var(xt) = var(xt)

Hence, var(qt) = b2var(pt + qt) + var(xt), and

1 − b
var(pt + qt)

var(qt)
= 1 − 1

b

(
1 − var(xt)

var(qt)

)
=

(
1 − 1

b

)
+

1
b

var(xt)

var(qt)
.

On the other hand, pt = −a/b + (1/b − 1)qt − xt/b, which implies

std(pt)

std(qt)
=

1
std(qt)

√(
1
b
− 1
)2

var(qt) +
1
b2 var(xt)−

2
b

(
1
b
− 1
)

var(xt)

=

√(
1
b
− 1
)2

+

(
2
b
− 1

b2

)
var(xt)

var(qt)
.

Note that(
1 − b

var(pt + qt)

var(qt)

)2

=

(
1
b
− 1
)2

+

(
2
b
− 2

b2

)
var(xt)

var(qt)
+

1
b2

(
var(xt)

var(qt)

)2

=

(
std(pt)

std(qt)

)2

− 1
b2

(
1 − var(xt)

var(qt)

)
var(xt)

var(qt)

which implies that, when var(xt) > 0, i.e., the Fama regression does not yield the best
predictor, condition (a) is always tighter.
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When var(xt) = 0, i.e., Fama regression yields the best predictor, we obtain

(
1 − b

var(pt + qt)

var(qt)

)2

=

(
std(pt)

std(qt)

)2

,

and

1 − b
var(pt + qt)

var(qt)
=

(
1 − 1

b

)
.

When 1 − 1/b > 0, i.e., b < 0 or b > 1, condition (a) and (b) are equivalent. Otherwise,
1 − b var(pt+qt)

var(qt)
< 0 < std(pt)

std(qt)
, and condition (a) is tighter.

A.4 Proposition 4

The proof is identical to the proof of Proposition 3. Just replace the one-period objects
(e.g., mt,t+1) with the multi-period objects (e.g., mt,t+k).

A.5 Propositions 6 and 7

Proof. From

ϕt = Et[mt,t+1] +
1
2

vart(mt,t+1) + rt,

ξt = Et[mt,t+1] +
1
2

vart(mt,t+1)− Et[∆st+1] +
1
2

vart(∆st+1) + covt(mt,t+1,−∆st+1) + r∗t ,

ϕ∗
t = Et[m∗

t,t+1] +
1
2

vart(m∗
t,t+1) + r∗t ,

ξ∗t = Et[m∗
t,t+1] +

1
2

vart(m∗
t,t+1) + Et[∆st+1] +

1
2

vart(∆st+1) + covt(m∗
t,t+1, ∆st+1) + rt,

we obtain

Et[mt,t+1 − m∗
t,t+1] =

1
2

vart(m∗
t,t+1) + r∗t − ϕ∗

t −
1
2

vart(mt,t+1)− rt + ϕt

Then

cov(Et[mt,t+1 − m∗
t,t+1], Et[∆st+1]) = cov(pt + qt, qt) +

1
2

cov
(
vart(m∗

t,t+1), qt
)
− 1

2
cov (vart(mt,t+1), qt)

− cov (ϕ∗
t , qt) + cov (ϕt, qt)

= b × var(pt + qt) +
1
2

cov
(
vart(m∗

t,t+1), qt
)
− 1

2
cov (vart(mt,t+1), qt)
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− cov (ϕ∗
t , qt) + cov (ϕt, qt)

A negative unconditional exchange rate cyclicality then implies

cov(mt,t+1 − m∗
t,t+1, ∆st+1)

=E[vart(∆st+1)− (ξ∗t + ξt) + (ϕt + ϕ∗
t )] + b × var(pt + qt)

+
1
2

cov
(
vart(m∗

t,t+1), qt
)
− 1

2
cov (vart(mt,t+1), qt)− cov (ϕ∗

t , qt) + cov (ϕt, qt) ≤ 0

Rearranging terms,

1
2

cov (vart(mt,t+1), qt) +
1
2

cov
(
vart(m∗

t,t+1),−qt
)
− cov (ϕt, qt) + cov (ϕ∗

t , qt)

≥E[vart(∆st+1)− (ξ∗t + ξt) + (ϕt + ϕ∗
t )] + b × var(pt + qt)

By assumption,

cov (vart(mt,t+1), qt)− cov (ϕt, qt) + cov (ϕ∗
t , qt)

≥E[vart(∆st+1)− (ξ∗t + ξt) + (ϕt + ϕ∗
t )] + b × var(pt + qt)

Let ω = E[−(ξ∗t + ξt) + (ϕt + ϕ∗
t )]− cov (ϕ∗

t , qt) + cov (ϕt, qt) denote the new adjust-
ment term that arises from the wedges. Then, a necessary (but not sufficient) condition is
given by:

std (vart(mt,t+1)) ≥
E[vart(∆st+1)] + ω + b × var( ft − st)

std(Et[∆st+1])

std (vart(mt,t+1)) ≥
var(∆st+1)− var(Et[∆st+1]) + ω + b × var( ft − st)

std(Et[∆st+1])

std (vart(mt,t+1)) + std(Et[∆st+1]) ≥
var(∆st+1) + ω + b × var( ft − st)

std(Et[∆st+1])

std (vart(mt,t+1))

std(Et[∆st+1])
+ 1 ≥ var(∆st+1) + ω + b × var( ft − st)

var(Et[∆st+1])

which implies

std (vart(mt,t+1))

std(Et[∆st+1])
+ 1 − b × var( ft − st)

var(Et[∆st+1])
≥ var(∆st+1) + ω

var(Et[∆st+1])

=
1

R2

(
1 +

ω

var(∆st+1)

)
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Recall that R2
Fama = b2var( ft − st)/var(∆st+1). Hence,

std (vart(mt,t+1))

std(∆st+1)
√

R2
+ 1 − b × var( ft − st)

var(∆st+1)
√

R2
≥ 1

R2

(
1 +

ω

var(∆st+1)

)
std (vart(mt,t+1))

std(∆st+1)
+
√

R2 −
R2

Fama
b

≥ 1√
R2

(
1 +

ω

var(∆st+1)

)
std (vart(mt,t+1))

std(∆st+1)
≥ 1√

R2

(
1 +

ω

var(∆st+1)

)
−
√

R2 +
R2

Fama

b
√

R2

When Fama Regression yields the best predictor, R2
Fama = R2, the formula is simplified to

std (vart(mt,t+1))

std(∆st+1)
≥ 1√

R2

(
1 +

ω

var(∆st+1)

)
−
√

R2 +

√
R2

b

where

1
b

√
R2 =

1
b
|b|std( ft − st)

std(∆st+1)
= sign(b)

std( ft − st)

∆st+1
.

Hence, we arrive at condition (a).
Similarly, condition (b) can be derived as√

std(Et[rxt+1])

std(Et[∆st+1])
+

std (vart(mt,t+1))

std(Et[∆st+1])
≥ 1

R2

(
1 +

ω

var(∆st+1)

)
.

the relation between condition (a) and (b) depends only on the Fama regression but not
the Euler equations, thus are identical to that in Proposition 3.
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