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I. Introduction

What is the nature of fluctuations in macroeconomic time series?
Despite a growing literature on asymmetry and nonlinearity, most analyses of
macroeconomic time series still employ linear models that assume (either
implicitly or explicitly) Gaussian innovations.! Indeed, reflecting this
Gaussian orientation, most stylized facts for macroeconomic time series have
been computed using only the first two moments of the data.? However,
anomalies may be present in macroeconomic time series that are ignored and
left unexplained by traditional linear models. One such anomaly is the
possibility that there are large but infrequent shocks to macroeconomic time
series. Events such as oill shocks, wars, natural disasters, and changes in
policy regimes are examples of relatively infrequently occurring events that
may have important effects on macroeconomic time series.

The purpose of this paper is to determine the prevalence and nature of
large shocks in macroeconomic time series. We attempt to establish the
frequency, timing, and persistence of large shocks and whether they are
important contributors to the wvariation in macroeconomic time series.
Furthermore, we attempt to match these shocks with identifiable economic
events. With these objectives in mind, we search for outliers in fifteen
macroeconomic time series.

We find significant evidence in favor of the "large shock" hypothesis in
post-World War II quarterly data. Not only is there evidence of large shocks
in each of the fifteen macroeconomic time series examined, but in some of the
series these shocks account for a substantial proportion of the total
variance in the series--more than 50 percent for aggregate wage and price

inflation and nearly 40 percent for consumption expenditure, M1 and M2




growth.

In addition, three basic patterns emerge in the identified outliers.
First, many of the identified outliers seem to be associated with business
cycles, in particular turning points and recessions. Second, there appears
to be a clustering of outliers within series and across series--outliers tend
to be bunched up over time and series tend to have outliers on the same date.
Third, outlier dates in output and employment series do not overlap
substantially with outlier dates in nominal price series such as the GNF
deflator. That is, there appears to be a dichotomy between outlier behavior
of real versus nominal macroeconomic time series.

Our results support and extend the evidence found by Blanchard and
Watson (1986), who examined this large shock/small shock hypothesis within
the context of a structural vector autogression (VAR) that included aggregate
prices, output, money, and a fiscal policy variable. They found excess
kurtosis in the residuals of their VAR and, hence, argued that this is
consistent with large infrequent shocks. However, they had difficulty
linking large residuals from this VAR to economic events and suggested that
large, infrequent shocks do not dominate business cycle fluctuations.

Our analysis differs from Blanchard and Watson in several ways. We use
the outlier identification procedure of Tsay (1988) to determine the date and
type of outliers in the data we examine. The advantages of this procedure
are that it does not depend on a priori information about when outliers have
occurred, and, it is quite flexible in modeling the dynamic effects of
cutliers. Because it is a univariate method, we analyze each series
separately. While univariate analysis by its nature limits the kinds of

interesting economic interactions that can be uncovered, it does allow us to




3
examine many more series more flexibly than is possible in a multivariate
framework.,

In addition to explaining the excess kurtosis and/or skewness found in
the fifteen time series, controlling for outliers eliminates much of the
evidence of nonlinearity in many of the time series examined. This points to
a link between identified outliers and possible nonlinearity in the time
series. While generalized autoregressive conditionally heteroscedastic
(GARCH) variance models are also capable of capturing the nonlinearity in
many of the time series, GARCH models do not offer as rich an explanation of
non-Gaussian behavior in many macroeconomic time series as the outlier model
does. Apparently, important anomalies go unexplained by GARCH
specifications, leaving standardized residuals that are frequently non-
Gaussian and that appear to contain outliers.

The remainder of the paper is organized as follows. In Section II we
provide a formal description of the larpge shock hypothesis. We discuss the
outlier search procedure in Section IJI. In Section IV we present empirical
results for fifteen macroeconomic time series. We also attempt to link the
outlier dates with identifiable economic events. In Section V we examine the
linkage between outliers and evidence of nonlinearity. We conclude in

Section VI.

IT. Outlier Model

We begin by positing a univariate time series model in which there are
two components: a regular component and an outlier component. The idea is
that there are extraordinary, infrequently occurring events or shocks that

have large, dramatic effects on time series. Again, economic examples of
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these types of shocks might include the effects of an oil shock, a change in
policy regime, the effects of a war or natural disaster, etc. These
extraordinary shocks are orthogonal to shocks in the regular component and
need not have the same dynamic effect on the time series as a regular shock,

To formalize this notion, consider the following outlier model described
in Tsay (1988). Let

Y, = B,(L)e.I, + B,(L)a,, (1)
where w,I, is an outlier variable, and a, is a Gaussian variate with zero mean

and wvariance o?

.+ Let B,(L)a, be the moving average representation of an
ARMA(p,q) where B,{(L) = 4(L)/4(L). 4(L) is a lag polynomial of order q, and
¢(L) is a lag polynomial of order p. One can think of B,(L)a, as the regular
component of the time series Y,; that is, in the absence of extraordinary
large shocks or outliers, B (L)a, is the moving average representation of Y,.

The variable w,I, is the outlier variable. I, is an indicator wvariable
that takes the wvalue of zero when no outlier is present and is one in the
presence of a large shock. w, is the size of the outlier. B,(L) represents
the effect that the outlier has on Y,. If B,(L) = 1, then w, is an additive
outlier (AQ); this outlier has only a one period effect on the series. If
B,(L) = B,(L), then w, is an innovative outlier (I0); this outlier has the
same dynamics as the regular component. If B (L) = 1/(1-L}), then w, is a
level shift outlier (LS). Level shifts have a permanent effect on the time
series; in effect, they permanently shift the mean of the series.® Thus,
these outlier types are distinguished by the persistence they have on the
time series with the additive outlier having the least persistence and the

level shift with the most persistence.

If outrliers occur randomly--for example, if they are determined by a
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Bernoulli distribution where Prob[I, = 1] = X and Prob{I, = 0] = 1l-A--the
unconditional distribution of w. I, will not be normal. If the conditional
distribution of w, is N(0,0%,), then for the Bernoulli distribution case the
unconditional wvariance of w/I, is

Var(w.I,) = Ao?,, (2)
but it will display excess kurtoszis of

bo(w I) = 3 = 3(1-))/A, (3
where for a random variable, say X., b,(X,) = E(X.*)/E(X.%)?. The more
infrequent the outlier shocks are (the smaller i), the greater excess
kurtosis there is in w, and, hence, Y,.*

Skewness is likely to be present also. If w, has a nonzero mean, then
w. I, and Y, will exhibit skewness.® Even if the unconditional mean of o, is
zero, nonzero sample third moments are likely to occur in relatively small
samples with only a few outliers. Thus, skewness is also likely to be

present if outliers have occurred.

I1T, Searching for Outliers

If the date and type of the outlier is known, one can model the
irregular component in the form of an intervention model (Box and Tiao
(1975)) in which estimates of w, can be obtained from the ccefficients on the
intervention dummies. In our empirical work below, once possible
outliers/level shifts have been identified, we use an intervention model to
estimate w,. However, before we can estimate this Intervention model, we must
determine the timing of outliers.

To determine the existence of outliers, we use the outlier detection

method described by Tsay (1988). Define y, = (¢(L)/#(L))¥,, which is
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equivalent to the ARMA residuals under the null hypothesis of no outliers.
Define #(L) = 1 - mL - m,L2 = ... = (L)/6(L) and n(L) = 1 - 5,L - n,L? -
= n(L)/(1-L). Tsay suggests the following test statistics for the various
types of outliers:

Aro,t = Ye/%a,

Mo, e = P20 e(Ye = 1mB"" m¥es)/(Pae 0a), and

As,e = P (¥ - 12TC MYe41)/(PL,x Ta),

where p%, . = (1 + 37 =,2)71, p2 = (1 + ;,57% %)™, o2, is the variance
of a,, and T is the sample size. Let Ay, = Mmax (Aro maxs 2a0,max» ALS,max}» Where
Ajmax = MaXigeer {[Ay,¢|) j = 10, AO, LS. If the A, statistic exceeds a given
eritical value, then an outlier has oceurred. In this application, we choose
a critical value of three; roughly, only shocks greater than three standard
deviations are considered as outliers.

Tsay suggests a sequential algorithm for Identifying outliers. First,
estimate an ARMA model and extract the residuals and the residual variance.
Second, search for outliers in the residuals using the statistics described
above. If an outlier is found, remove the effect of the outlier and
recalculate the residuals and residual wvariance. Continue searching and
adjusting until no more outliers are indicated. Reestimate the ARMA model
using the adjusted series and extract the residuals. Once again, search for
outliers, Stop the algorithm when no additional outliers are found,

Note that the initially estimated ARMA model 1is the cotrrect
specification of the regular dynamies (B,(L)) under the null hypothesis of no
outliers. If, however, outliers are found, then the initial ARMA model for
the regular component will be misspecified. Unfortunately, misspecification

of the initial ABRMA model can lead to missidentification of outliers. 1In
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particular, series in which a level shift outlier is present will exhibit a
high degree of serial correlation regardless of the regular dynamics. 1In
this case, the initial ARMA model for the repgular dynamics implies greater
serial correlation than is in fact the case and, therefore, the residuals
from this model will not reflect the true nature of the outlier. Balke
(1991) has shown that an outlier search where the initial ARMA model is
estimated oftens misidentify level shifts as innovative outliers or misses
the level shifts altogether.®

Therefeore, in order to control for this type of misspecification, we use
a modification to the Tsay procedure suggested by Balke (1991). Here, in
addition to conducting an outlier search as in Tsay, we also conduct an
outlier search in which the initial ARMA model is specified as an ARMA(0,0).
This ARMA model is less likely to misidentify level shifts as innovative
outliers than is the case when estimating an initial ARMA model. The problem
with begimming the outlier search with an ARMA{0,0) iz that there is a
tendency to identify spurious level shifts when there is substantial serial
correlation in the regular component.

If a level shift is indicated in the course of the ARMA(0,0) search,
then we use the results from both outlier searches in our identification of
outlier dates. Once outlier dates and types have been identified, we
estimate an intervention model using dummy variables to model the outlier
effects. To lessen the possibility of spurious outliers or level shifts, we
stepwise eliminate intervention dummies with a t-statistic whose absolute
value is less than a prespecified critical value--dropping the intervention
dummy with the lowest t-statistic at each step, As in the outlier searches,

we use a critical value of three for our stepwise elimination.’
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The dynamic structure of the various ocutlier types imposes restrictions
on the Iintervention model. For example, for the case where the model is
given by

Ye = €¢ t (1_L)-1wLSILS,t + wpolpg,r + (1-4L) twiolig,. + (1-¢L)a,,
where ¢, is a constant term, I,, = 1 (j = I0,A0,LS) if an outlier is
identified to have occurred at time t and O otherwise, Rewriting this
equation yields

Ye = €' + (1-4L)(1-L)lorsIis,. + (1-dL)wpolao,c + wrolro,c + #¥e-y + a:-
Nonlinear least squares is used to estimate the above equation so that the
restrictions implied by the different outlier types can be Imposed during

estimation.

IV. FEmpirical Analysis
In this section we examine fifteen quarterly macroeconomic time series
spanning 1947Q1-1990Q2 to determine whether ocutliers are present in these

series. ®

The output series include real GNP, real consumption, real fixed
investment (which includes residential as well as business investment), and
industrial production. We also examine civilian noninstitutional employment
and the unemployment rate as well as labor productivity in manufacturing.
The price series we examine are the GNP deflator, the consumer price index
(CPI), nominal compensation per hour in manufacturing, the Standard and Poors
500 stock price index, as well as yields on AAA bonds. We also examine the
monetary base, M1, and M2.%? We use growth rates (log first differences) for
all the series except for the unemployment rate, which is analyzed in first

differences. After differencing, an autoregressive model was estimated for

each series. Autoregressive lags were added until there was no evidence of
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linear serial correlation in the residuals. Because some analysts have
suggested that the growth rate of money contains a time trend (Stock and
Watson (1989)), we included a time trend for the money growth series.

Table 1 displays the ARI specifications of all the variables.!® The
residuals from autoregressive models indicate that all but two of the series-
-the money base and the unemployment rate--show significant (at the 5% level)
evidence of excess kurtosis. Many of the series also show significant
skewmess.!! Clearly, the assumption of Gaussian errors is not appropriate.

Consistent with the evidence of excess kurtosis, we detect evidence of
outliers in all the series. These outliers can explain a substantial
proportion of the volatility in some of the time series. For most of the
series, outliers explain a little less than 20 percent of the wvolatility in

the series.12

However, large shocks explain more than 50 percent of the
velatility in the GNP deflator, the GPI, and nominal compensation while both
consumption, M1, and M2 outliers account for nearly 40 percent of the
variance of those series. Furthermore, once the outliers have been removed,
we find no evidence of significant exceszs kurtosis or skewness in any of the
series, except unemployment. Thus, it appears that the large shock
hypothesis is statistically plausible.

Before examining the identified outliers in detail, it may be useful to
illustrate the procedure by which the final intervention models are
determined, Table 2 provides an illustration of how the combine/reduce
procedure suggested by Balke (1991) works. Table 2 shows the steps taken
between the identification of the initial intervention model by the outlier

searches and the final intervention model for the nominal compensation

series. The compensation series is a nice example since all three types of
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outliers are present and several steps must be taken before the final
intervention model is chosen. Because we used a critical value of three in
both the outlier search and the stepwise reduction of the intervention model,
a couple of outliers (the level shift in 1968Ql and the additive outlier In
1982Q1) are eliminated even though they have t statistics well over two.
Most of the series examined in this paper require far fewer steps to arrive
at the final specification than is the case for compensation.?

In order to discern patterns in the identified outliers, we present the
outlier results in two ways. Table 3 describes the outliers found for each
series, the type and size of the outlier as well as the date at which it
occurred, In addition, we also try to link the date of each outlier to an
economic phenomenon or event that occurred at or near that date. For
example, real GNP experienced an imnovative outlier in 1950Ql and an additive
outlier in 1980Q2. The first quarter of 1950 corresponds to the first full
quarter of a recovery while 1980Q2 corresponds to the trough of the 1980
recession. Table 4 organizes the same information in a different way,
presenting the outlier dates in chronological order and listing the series
that have outliers on that date. By listing the outlier dates 1in
chronological order, it is easier to show the patterns of outliers across
time as well as determine which series experience outliers at the same date.

An examination of Tables 3 and 4 suggest a few rough patterns that
appear to exist among the outliers and that are linked with identifiable
economic events. First, many of the identified outliers seem to be
associated with business cycles, in particular recessions or early in the
recovery. Second, there appears to be a clustering of cutliers within series

and across series., Third, the number and type of outliers for the real
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output and employment series are substantially different from those of the
nominal price series,

In many respects, the pattern of outliers we found are similar te the
"large shocks" identified by Blanchard and Watson. Based on an examination
of a four wvariable VAR that included real GNP, the GNP deflator, Ml and a
fiscal policy wvariable, they also found that "large shocks" were common
during turning points and recessions and tended to be clustered across time
and series. Because our criterion for Iidentifying a large shock was more
restrictive than Blanchard and Watson, we found fewer large shocks per
series. However, when aggrepating across series so that we compare the dates
listed in Table 3 to the dates found in Blanchard and Watson, many of the
same dates show up in both analyses.

In the following three subsections we examine further the three basic

patterns of outliers previously mentioned.

Business Cvcles and Outliers

Well over half of the outliers in the output and employment series are
associated with business cycles, in particular, recessions. Both outliers in
the real GNP series are associated with turning points in the business cycle.
Aside from the Korean War outliers, all of the outliers in consumption are
associated with recessions. Real fixed investment, industrial production,
labox productivity, employment, unemployment rates all have outliers
associated with recessions or turning points. In addition, several nominal
series  experience outliers associated with the business cycle.
Interestingly, four of the five outliers associated with M2 occur during the

first quarter of business cyele expansions,
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However, not every business cycle or recession is represented (no
outliers are present from the 1970 recession) nor do all the series
experience outliers at the same date or even during the same recession. 1In
fact, the 1980Q2 recession is the only common outlier date for real GNP,
fixed investment, and consumption. Perhaps, the relatively short but steep
recession in 1980 makes it easier for the outlier identification procedure to
classify this recession as an outlier.

Overall, the fact that turning points in the business cycle and
recessions feature prominently in the identified outlier dates suggests that
post war U.S. business cycle behavior is inconsistent with linear gaussian
models. Even a linear, Gaussilan, multivariate framework 1is unlikely to
explain this outlier behavior since linear aggregation of different Gaussian
random variables is still Gaussian.!®* We must look elsewhere to model
business eycles. Furthermore, the fact that each business cyele is captured
in different ways by the outliers suggests a multi-causal approach to
business cycles—-as Blanchard and Watson (1986) suggest, all business cycles
are not alike.

Clustering of Outliers

Several series show a clustering of outliers across time. For example,
the GNP deflator and the CPI show numerous outliers in the late 1940s and
early 1950s and relatively fewer outliers in the rest of the sample.
Similarly, more than half the outliers for M1 occur in the three year period
between 1979Q3 and 1982Q4. This reflects the well-documented increase in the
volatility of M1 money growth over this period. This period coincides with
a change in monetary policy operating procedures as well as being a period of

financial innovation and deregulation. This clustering of outliers across
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time would be symptomatic of series with ARCH variance processes.

There is also a clustering of outliers across series. The clustering of
outliers across series suggests that there may be common sources for these
groups of outliers. The GNP deflator, the CPI, and compensation show
evidence of level shifts at or near the same time: late 1967/early 1968,
early 1973, and 1982Q4.'° These level shifts are associated with the Vietnam
war expansion, the acceleration of inflation of the early-to-mid 1970s, and
the Voleker disinflation. The first two level shifts are more likely picking
up the general acceleration in Inflatiom during those time periods rather
than the direct effect of a particular shock or event. All three level
shifts are in a sense reflecting changes in inflationary regimes that
occurred during these time periods,

Several dates have more than two outliers. For example, zix series have
outliers in 1982Q4--GNP deflator, CPI, compensation, stock prices, AAA bond
vields, and M1. Two additional dates have at least three outliers associated
with them: real GNP, consumption, fixed investment, and M1 have outliers in
1980Q2; employment, unemployment, and industrial production have outliers at
1975Q1. The recessions of 1957-58, 1974-75, and 1980 contain multiple
outliers. Similarly, numerous outliers, both real and nominal, are present
during the Korean War,

Real wversus Nominal Qutliers

The pattern of outliers in the real output and employment series is
substantially different from that of the nominal price series. The real
output series (GNP, consumption, fixed investment, industrial production,
etc.) and the employment series tend to have fewer outliers and the

iImportance of these outliers is substantially less than the nominal price
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series (the GNP deflator, the CPI, and nominal compensation). Furthermore,
the timing and typé of the real series outliers is different from that of the
nominal series outliers. Outliers in real series tend to be associated with
business cycles and are all temporary; there are no large permanent shifts in
the growth rates of these series., The nominal price series, except for the
Korean War outliers, exhibit almost no overlap with the dates of the outliers
for the real series.

Furthermore, the growth rates of the price series do exhibit lewel shift
outliers, or permanent large shocks. These level shifts reflect changes in
the average inflation rate that occurred at or around these dates. Yet,
these level shiftz do not coincide with outliers (temporary or permanent) in
any of the real series. These results suggest a dichotomy between the real
output series and the aggregate price series and that fluctuations in these
series may have different sources.l®
Miscellaneous Outliers

In addition to the general patterns discussed above, there are some
interesting outliers among the individual series. The GNP deflator
experiences an innovative outlier in 1974Q3 which reflects the 1ifting of the
Nixon-era wage and price controls. The 1986Q2 outlier in the CPI reflects
the decline in energy prices that occurred during 1986, The outlier search
and intervention model for AAA yields indicates an innovative outlier in
1979Q4 and additive outliers in 1980Q1l and 1982Q4. These outliers reflect
the increased volatility and magnitudes of interest rates during this period.
Steel strikes in 1952 and 1959 show up as outliers in fixed investment in
1952Q3 and industrial production in 1959Q3.

The growth rate of stock prices shows outliers in 1957Q4, 1974Q3,
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19820Q4, and 1987Q4. Three of the four outliers occur during recessions and
two (1974Q3 and 1982Q4) coincide with outliers in the inflation rate (GNP
deflator). The 1987Q4 outlier reflects the stock market crash of October
1987. Friedman and Laibson (1989) using different techniques decompose stock
market returns into ordinary and extraordinary components. They also find
four "large shocks" occurring in 1962Q2, 1970Q2, 1974Q3 and 1987Q4. While
the standardized residuals from the our "large shock" intervention model are
relatively large in 1962Q2 and 1970Q2 (-2.68 and -2,23 respectively), they
are not large enough to classified as outliers.

Finally, the outlier results sugpest a puzzle with respect to the
relationship between consumption and real GNP. Outliers in the consumption
series explain nearly 40 percent of the variation in the growth rate of
consumption. In addition, five of the six consumption outliers are negative.
Of the negative outliers, three are associated with recessions. The
preponderance of negative outliers for consumption is consistent with the
finding of Dynarski and Sheffrin (1986), who found substantial negative
skewness in consumption. Because controlling for these outliers appears to
eliminate the skewness in the consumption residuals, our analysis suggests
that the source of the consumption asymmetry is primarily due to large
negative responses of consumption during recessions and during the Korean
War.'” The 1950Q3 outlier in consumption coincides with the ocutbreak of the
Korean War which began in June 1950. The boom in consumption in 1950Q3 was
followed by a negative cutlier in 1950Q4. The consumption boom during 1950Q3
may have been caused by consumer purchases in anticipation of wartime
shortages that were present during World War II. Consumers, having made

large purchases initially (especially durables), may have cut back on
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additional purchases, hence the negative outliers in 1950Q4 and 1951Q2.

V. Outliers and Nonlinearity

It is clear that linear, univariate models with Gaussian innovations do
not adequately characterize many commonly used macroeconomic time series. Omn
the other hand, the large shock/outlier models adequately characterizes the
data; the residuals of the large shock models exhibit very little excess
kurtosis and skewness and, furthermore, the outliers often correspond to
identifiable economic events. However, it may be possible that evidence of
outliers may reflect the presence of deeper nonlinearities. Indeed, as we
have suggested above, a clustering of outliers across time would be
consistent with ARCH variance processes. Chaotic or other nonlinear behavior
in time series such as that examined by Brock and Sayers (1988) may produce
outlier type behavior in simple 1linear models. To examine these
possibilities, we test for GARCH and general nonlinearity in the residuals of
the basic ARI model and in the residuals of the outlier adjusted model. If
GARCH is indicated, we calculate the standardized residuals from the GARCH
model and examine whether there remains excess kurtosis and skewness as well
as any residual nonlinearity.

Table 5 summarizes the tests for GARCH and general nonlinearity. A
GARCH(p,q) model for the variance was specified based on the autocorrelations
and partial autocorrelations of the squared residuals. The ARI-GARCH models
were then estimated via maximum likelihood and tested by a Likelihood Ratio
test.'® To determine whether GARCH type processes were present in the
residuals of the outlier/intervention model, we examined the Ljung-Box Q

statistic for general autocorrelation in the squared residuals and conducted




17
Lagrange Multiplier test as in Engle (1982) for particular GARCH(O,q)
models.!® To test for general nonlinearity, we use the Brock, Dechert,
Scheinkman (1987) (BDS) statistic., Because the BDS tests were not always
conclusive, in our summary of the tests we categorize the test for
nonlinearity as either rejecting linearity (Y), failing to reject linearity
(N), or providing mixed results (M).

The residuals from the basic linear autoregressive model for most of the
series show some evidence of either GARCH or nonlinearity. After fitting the
outlier model, the evidence of GARCH and nonlinearity in many of these series
disappears.?® The primary exceptions are the unemployment rate, the CPI, and
AAA bond yields. For the CPI, the nonlinearity is primarily due to
relatively large innovations during the Korean War--again, symptomatic of
GARCH. For M2, fitting the outlier model actually increased the significance
of the GARCH test.

Of course, as we suggested above, clusters of outliers may reflect GARCH
behavior and vice versa., For example, the fact that most of the temporary
outliers for inflation occur in the late 1940s and early 1950s or that Ml
outliers occurred during 1979Q3 - 198204 may be evidence of GARCH.
Furthermore, GARCH was equally adept at explaining the nonlinearity in many
of the series. However, even after estimating GARCH models, almost all the
series still showed significant excess kurtosis and/or skewness.  GARCH
models are in some sense a parsimenicus characterization of the large shock
hypothesis, but the presence of significant excess kurtosis and skewness
suggests that the random outlier model for most of these series may still be
a better characterization of the data than GARCH.?!' Indeed, for many series

it is as if a large shock initiates the GARCH process.
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The fact that controlling for outliers lessens the evidence of
nonlinearities raises several issues. It could be possible that the world is
indeed linear but subject to infrequent, large shocks. This causes possible
misspecifications in linear, Gaussian models, and, consequently, the
residuals from these models show evidence of nonlinearity. On the other
hand, it is possible that there are indeed nonlinearities that the linear
outlier model captures as outliers. There are numerous other nonlinear
models which we did not examine, such as Hamilton’'s (1989) Markov regime
switching model and threshold autoregreszsion models (Tong (1983)), that may
capture the excess skewness and kurtosis as well as the nonlinearities in the
data. Indeed, because the timing of many of the outliers coincided with
identifiable economic events such as recessions, this suggests that business

cycles could be modeled as nonlinear processes.

V. _Concluding Remarks

We have shown that within the context of linear autoregressive models
there is significant evidence that large, infrequent shocks are an important
source of variability in many macroeconomic time series. In additiom, the
estimated outliers account for nearly all of the excess kurtosis and skewness
present in the data and are capable of explaining much of the nonlinearity
present in the data. Furthermore, several patterns emerge from the outlier
analysis: many of the identified outliers seem to be associated with turning
peints in the business cycle; outliers tend to be clustered both within
series and across series; and there appears to be a dichotomy between real
and mnominal series with respect to large shocks. Because so many of the

outliers are associated with recessions, our analysis implies that linear,
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Gaussian models of the business cycle are not appropriate.

Our analysis also suggests several extensions. The fact that many
series have outliers at the same date suggests that a multivariate outlier
analysis may prove useful in shedding additional light on the source of these
outliers, Additionally, the link present between outliers in linear models
and evidence of nonlinearity in some of the series warrants further

investigation.
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Notes
1, There is a growing literature on nonlinear models for macroeconomic time
series. The following studies found evidence of nonlinearity: Hinich and

Patterson (1985) and Scheinkman and LeBaron (1989a) for stock price data, Hsich
(1989) for exchange rate data, and Brock and Sayers (1988) for industrial
production and employment series. Examinations of asymmetry include Neftei
(1984) (see, however, Sichel (1989)), DeLong and Summers (1986), and Falk (1986).
The Markov regime switching model of Hamilton (1989) is another example of a
nonlinear time series model. There 1is also the large literature on
autoregressive conditional heteroscedasticity (ARCH) and numerous extensions of
ARCH. Prominent papers in this literature include Engle (1982), Weiss (1984),
Bollerslev (1986), and more recently Nelson (1991).

2. See, for example, the stylized fact discussion at the beginning of the
Blanchard and Fischer (1988).

3. Rappoport and Reichlin (1989} and Balke and Fomby (19921) discuss shifting
trends in terms of infrequent permanent shocks. See Perron (1989), Chen and Tiao
(1990), and Balke and Fomby (1991) for discussions of the effect of level shifts
on Dickey-Fuller tests, ARIMA models, and measures of persistence.

4, More general Markov models, such as a two-state Markov model with
persistence (for example, Hamilton (1989)), will also imply excess kurtesis.

5. When the conditional mean of w, is nonzero [(w.|I,~1 ~ N{(u,0%,)], the
unconditional third central moment is E(w.I, - Au)® = 3X(Ll-2)o?, + (A - 3A% +
223y 3,

6. See Balke (1991) for a Monte Carlo examination of the sensitivity of outlier
gsearch methods to initial ARMA specificatioms.

7. In a previous version of this paper we used a critical value of two. For
most of the series, the final intervention model was very similar to those

presented below.

8. The unemployment and employment data span 1948Q1 to 1990Q2.

9. We used seasonally adjusted data for industrial production, productivity,
employment, unemployment, CPI, compensation, and the money measures because these
series are most often examined in a seasonally adjusted form. The use of

seasonally adjusted data probably makes it even more difficult to uncover
outliers.

10. Tables that detail the basic ARI model and outlier/intervention model
results are available upon request,
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11. Under the null hypothesis of normality or zero excess kurtosis (by(e.) = 3},
the statistic TY/2(b, - 3)/(24)Y2 ~ AN(0,1), where b, is the measure of kurtosis.
For skewness, the statistic T2(m,/(m,)3/2)/(6)/2 ~ AN(0,1), where m, is the
sample third central moment and m, is the sample variance.

12, The proportion of the total variance explained by outliers is calculated by
comparing the variance of the raw series (in most cases this is the growth rate
of the series) and variance of the outlier component. In terms of the model
described by equation (1), this proportion is:

Var[(B,(L)w.I.] / Var[Y.].

13. The specifications of the final intervention models for the other series are
presented in the supplementary tables.

14, 1In fact, aggregation, both over time or across series, will tend to obscure
infrequent shocks or outliers.

15. While the final specification of compensation did not contain a level shift
in 1967/68, as Table 2 suggested, there was some evidence of a level shift at
this time--its t-stat was 2.62 which failed to meet the prespecified critical
value,

16, King, Plosser, Stock, and Watson (1991) sugpgest a similar dichotomy in the
long-run trend components. Here the dichotomy shows up with respect to large
shocks, in particular, the level shift shocks.

17. 1If consumption is disaggregated into consumption of durables and consumption
of nondurables and services, most of this excess asymmetry and most of the
outliers are coming from consumer durables.

18. See the supplementary tables for presentation of the tests for GARCH and the
maximum likelihood estimates of the ARI-GARCH model.

19. Since we were only interested in establishing the presence of GARCH type
behavior in the residuals of the outlier/intervention model, we did not estimate
the full intervention-GARCH model by maximum likelihood.

20. Scheinkman and LeBaron (1989b) also found that controlling for unusual
periods reduced the evidence of nonlinearity in real GNP. In their examination
of nonlinearity in real GNP data over the period 1872-1986, they included dummy
variables to account for the Great Depression (1930-39) and World War II (1940-
45y,

21, While we do not conduct a formal search for outliers in the ARI/ARCH model,
casual inspection of the standardized residuals from the ARCH model suggest that
sipgnificant outliers remain.




Variable

Real GNP
Consumption

Fixed Investment
Indust. Prod,
Productivity (Man)
Unemployment rate
Employment

GNP deflator

CPI

Compensation
per hour (manuf.)

AAA bond yields
Stock prices
Money Basef

M1f

M2£

Basic ARI Model

Model
(2,1)
(2,1
(1,1)
(4,1)
(4,1)
(2,1)
(1.1)
(2,1)
(4,1)

(3,1

(2,1
(1,1
1D
(1,1

(1,1)

0

0.

0

0

SEE

.0100
0078
.0253
.0188
.0104
.3330
.0050
.0056
.0052

.0069

.0394
.0560
.0048
.0078

.0058

3

5

10.

9"
6*
7Y
Oi

.1

1

Significant at the 5 percent level.

* Kurtosis in the

Skewness in the

¢ Kurtoesis in the

Skewness in the

ARI model residuals.

ARI model residuals.

residuals after adjusting for outliers.

residuals after adjusting for outliers.

Includes a linear time trend.

Table 1

Kurt.® Skew.P

0.03
-0.59*
-0.16
-0.49"
-0.55"

0.44"
-0.44"

0.08
-0.83"

1.06"

-0.14
-0.50"
-0.25

0.85"

Outlier Model

Present SEE Kurt.® Skew.¢

yes

yes

yes

yes

ves

yes

yes

yes

ves

yes

ves

yes

yes

yes

yes

0

a.

.0093

0060

L0226

.0167

L0094

L3242

.0044

.0038

.0038

.0052

.0353

.0476

. 0047

.0050

.00486

Proportion of variance (in percent) attributable to outliers.

2

2,

.8

6

-0.11
~-0.03
0.13
0.14
-0.05
0.40*
-0.23
~0.28
0.11

0.28

0.03
0.29
~0.17
0.02

0.18

Variance
Explained®

las
38%
13%
19%
19%

6%
21%
78%
61%

33%

22%
26%
21%
41%

40%




Table 2

Example of Stepwise Reduction of Intervention Model: Nominal Compensation

ARMA specification before

OQutliers and level shifts
A01948Q1, A01949Q4,

Outliers and level shifts
A01948Q1, A01949Q4,
1.51982Q3, LS1982Q4,

outlier search: ARMA(3,0)

identified by an ARMA(3,0) search:
101950Q4, AD1952Q4, A01982Q1, A01990Q2

identified by an ARMA(Q0,0) search:
AD1950Q4, 151953Q1, I101956Q2, LS1968Q1, LS1973Q1,

A01990Q2

Intervention variables included in the initial intervention model:
A01948Q1, A01949Q4, A01950Q4, 101950Q4, A01952Q4, LS1953Q1, I01956Q2,
L51968Q1, LS1973Q1, A01982Q1, 1S1982Q3, LS19820Q4, A01990Q2

Intervention variables eliminated:

Iteration

1

Variable
A01950Q4
A01990Q2
151982Q3
15195391
LS1968Q1

A019282Q1

Final intervention model:

Acomp,
(4.97)

+

(4.81)

+

(3.18)

0.006 -+ 0.350 Acomp,_,

(4.99)

0.025 A01948Q1,

0.016 AQ1952Q4,

- 0.014 LS1982Q4,

(-6.50)

R?2 = 0.635 SEE = 0.0052

t-statistic
0.71
0.77
-1.46
=1.47
2.62

2.68

(0.44)

- 0.020 A01949Q4,
(-4.00)

+ 0.017 101956Q2,
(3.24)

t-statistics are In parenthesis,.

+ 0.031 Acomp, , + 0.094 Accmp,.,

(1.37)

+ 0.034 101950Q4,
(6.31)

+ 0.011 LS1973Q1,
(6.33)




Table 3

Outlier Dates and Magnitudes by Variable

Variable Type Date Size S.E. Events
GNP Growth 10 1950Q1 0.039 0.009 lst quarter of recovery
AO 1980Q2 -0.031 0.009 trough
Consumption I0 1950Q3 0.027 0.006 Korean War
10 1950Q4 -0.035 0.007 Korean War
AO 1951Q2 -0.022 0.006 Korean War
AO 1958Q1 -0.019 0,006 trough
AO 197404 -0.023 0.006 recession
AO 1980Q2 -0.028 0.006 trough
Fixed Investment A0 1952Q3 -0.088 0.019 effect of steel strike
A0 1980Q2 -0.102 0.019 trough
Industrial 10 1959Q3 -0.059 0.017 steel strike
Production AQ 1960Q1 0.046 0.014 peak
I0 1975Q1 ~0.079 0,017 trough
Labor 10 1957Q4 -0.033 0.009 1st quarter of recession
Productivity I0 1959Q2 -0,040 0.010 steel strike
(Manufacturing) AD 1974Q1 -0.032 0,009 1st quarter of recession
Unemployment I0 1975Q1 1.045 0.330 trough
Rate
Employment I0 1950Q2 0.016 0.004 2nd quarter of recovery
Growth AOQ 1953Q1 0.019 0.004 Korean War
I0 1958Q1 -0.014 0.004 recession
AO 1975Q1 -0.013 0.004 trough
Inflation AD 1947Q4 0.015 0.004 Post-World War II inflation
(GNP Deflator) LS 1948Q4 -0.017 0.003 end of post-WWII inflation/expansion
I0 1950Q3 0.021 0.004 Korean War
AO 1951Q1 0.017 0.004 Korean War
AQ 1952G4 0.012 0.004 Korean War
AOD 195401 0.014 0.004 Korean War disarmament
LS 1967Q4 0.009 0.002 Vietnam War build up
LS 1973Q2 0.006 0.002 Nixon expansion/food price shocks
I0 1974Q3 0.015 0.004 end of wage and price controls
LS 1982Q4 -0.010 0.002 Volcker disinflation, trough




Table 3 continued

. 004 end of post-WWIT inflation

Inflation 10 1948Q4 -0.020 0
(CPI) AQ 1951Q1 0.023 0.003 Korean War
AO 1951Q3 -0.017 0.003 Korean War, price controls
LS 1967Q3 0.007 0.002 Vietnam War
LS 197301 0.009 0.002 Nixon expansion/food price shocks
LS 198204 -0.011 0.002 Volcker disinflation, trough
AQ 1986Q2 -0.011 0.002 reduction in energy prices
Compensation AOD 1948Q1 0.025 0.005 Post-WWII inflation
per hour AD 1949Q4 -0.020 0,005 trough
(Manufacturing) I0 1950Q4 0.034 0.005 Korean War
AD 1952Q4 0.016 0.005 Korean War
I0 1956Q2 0.017 0.005
LS 1973Q1 0.011 0.002 Nixon expansion/food price shocks
LS 1982Q4 -0.014 0,002 Voleker disinflation, trough
AAA Yields 10 1979Q4 0.125 0.036 0il shock, peak
Growth AD 1980Q1 0.101 0.037 0il shock, lst gquarter of recession
AO 1982Q4 -0.141 0.037 Volcker disinflation, trough
SP500 Index AO 1957Q4 -0.138 0.045 1zt quarter of recession
Growth 10 1974Q3 -0.176 0.048 end of wage and price controls
10 1982Q4 0.170 0.048 Volcker disinflation, trough
AO 1987Q4 -0.261 0.045 October 1987 stock market crash
Money Base LS 1963Q1 0.006 0.002
Growth LS 1987Q3 -0.008 0.003
M1 Growth AOD 1959Q1 -0.016 0.004
10 1959Q4 -0.016 0,005 quarter before peak
AO 1979Q3 0.019 0.004 quarter before peak
10 1980Q2 -0.029 0.005 "Monetarist experiment", trough
10 1980Q3 0.048 0.005 "Monetarist experiment"”, lst quarter
of recovery
AOQ 19381Q1 -0.016 0.004 "Monetarist experiment”
AO 1982qQ2 -0.014 0.004 "Monetarist experiment”, recession
10 198204 0.019 0.005 Volcker disinflation, trough
LS 1985Q1 0.012 0,003
LS 1987Q3 -0.022 0.003
A0 1989Q2 -0.015 0.005
M2 Growth AQ 1958Q2 0.014 0.005 lst quarter of recovery
I0 1975Q2 0.017 0.005 1st quarter of recovery
AD 1980Q3 0.017 0.004 1st quarter of recovery
AD 1983Q1 0.025 0.004 lst quarter of recovery
Ls 1985Q2 -0.014 0.003




Table 4

Outlier Dates in Chromological Order

Date Variable Events
1947G4 GNP deflator post-WWII expansion
1948Q1 compensation post-WWII expansion
194804 GNP deflator{-), CPI(-) recession, lst guarter
194904 compensation(-) recession, trough
1950Q1 real GNP expansion, lst quarter
1950Q2 employment expansion, 2nd quarter
1950Q3 consumption, GNP deflator Korean War
195004 consumption(-), cempensation Korean War
1951Q1 GNP deflator, CPI Korean War
1951Q2 consumption(-) Korean War
1951Q3 CPI(-) Korean War, price controls
1952Q3 fixed investment(-) Korean War, steel strike
1952Q4 GNP deflator, compensation Korean War
1953Q1 employment Korean War, quarter before peak
1954Q1 GNP deflator Korean War disarmament
1956Q2 compensation
1957Q4 stock prices(-), productivity(-) recession
1958Q1 consumption(-), employment(-) recession, trough
1958Q2 M2 lst quarter of recovery
1959Q1 M1(-)
1959Q2 productivity(-) steel strike
1959Q3 industrial production(-) steel strike
1959Q4 M1(-)
1960Q1 industrial production peak
1963Q1 money base
1967Q3 CPI Vietnam War expansion
1967Q4 GNP deflator Vietnam War expansion
1973Q1 CPI, compensation Nixon expansion
1973Q2 GNP deflator Nixon expansion
1974Q1 productivity(-) recession, lst quarter
197403 GNP deflator, stock prices(-) recession, end of price controls
197404 consumption(-) recession
1975Q1 employment (-}, unemployment(-), recession, trough

industrial production{-)
1975Q2 M2 lst quarter of recovery
1979Q3 M1
1979Q4 AAA bond yields peak
1980Q1 AAA bond yields recession
1980Q2 real GNP(-), consumption(-), recession, trough
fixed investment(-), M1(-)

1980Q3 M1, M2 1st gquarter of recovery
1981Q1 M1(-)
1982Q2 M1(-) recession




1982Q4

1983Q1
198501
1985Q2
1986Q2
1987Q3
1987Q4
1989Q2

Note:

Table 4 continued

GNP deflator(-), CPI(-), Volcker disinflation, recession, trough
compensation(-), stock prices, M1,

AAA bond yields(-)

M2 lst quarter of recovery

M1

M2(-)

CPI(-) reduction in energy prices

money base(-), M1(-)

stock prices{-) October crash

M1(-)

(-) indicates that the outlier or level shift was negative.




Basic ARI Model After GARCH Outlier Model
Variable GARCH* __ Nonlin® Kurt® Skew® Nonlin® GARCHf Nonlin&
Real GNP nomne N - - - none N
Consumption GARCH(1,1) N Y N M none N
Fixed Investment GARCH(0,1) M Y Y N none N
Indust. Prod. GARCH(0,1) Y Y Y N none N
Productivity (Man) GARCH({1,1) Y Y Y N none N
Unemployment rate GARCH(1,3) Y Y Y M Yes Y
Employment GARCH(0,1) M N N M none M
GNP deflator GARCH(O0,4) Y Y N N none N
CPI GARCH(1,1) Y Y Y N Yes Y
Compensation GARCH(0,3) Y N Y N none N
per hour (manuf.)
AAA bond yields GARCH(0,2) ¥ Y N N Yes Y
Stock prices none N - - none N
Money Base none N - - - none N
M1 GARCH(1,1) N Y N M Yes N
M2 none Y - - - Yes N

Table 5

Summary of Tests for ARCH and Nonlinearity

Y ~ strong evidence (sipgnificant at 5 percent level).

N - weak evidence.

M - mixed evidence.

* Evidence of GARCH at the 5 percent level in the ARI model residuals.

o

Evidence of nonlinearity in the ARI model residuals using BDS statistics.
Excess kurtosis in the standardized residuals in GARCH model (5 percent level).

Excess skewness in the standardized residuals in GARCH model (5 percent level),

Evidence of nonlinearity in the standardized residuals in GARCH model using BDS
statisties.

f Evidence of GARCH at the 5 percent level in the outlier model residuals.

& Evidence of nonlinearity in the ocutlier model residuals using BDS statistics,




Supplementary Tables for

Large Shocks, Small Shocks, and Economic Fluctuations:
Qutliers in Macroeconomic Time Series

Nathan S. Balke
and

Thomas B, Fomby

General Notes:

We employ two tests for GARCH. The first is the Lagrange Multiplier
(LM) test for GARCH(0,q) versus the null of homoscedasticity. This is the LM
test described by Engle (1982). The test statistic is given by T*R? where the
R? term is from squared residuals regression and T is the number of
observations. This test is asymptotically distributed x> with q degrees of
freedom. We also use the Likelihood Ratio (LR) test for GARCH(p,q) versus the
null of homoscedasticity. We use the LR test for testing for GARCH in the
residuals of the basic ARI model since we are also interested in estimating
via maximimum likelihood a particular GARCH model. We use the LM test to test
for GARCH(0,q) in the intervention model since all we wish to do is determine
whether ARCH type behavior is still present the residuals of the intervention
model .

The BDS statistics are calculated using the residuals of the Basic and
Outlier models and the standardized residuals of the ARCH model. Under the
null of linearity the asymptotic distribution of the BDS statistics is N(0,1).
The first row corresponds to the BDS statistics with "e" set equal to one
standard deviation of the residuals. The second row corresponds to an "e" set
equal to 0.5 standard deviation.




Table Al
ARI and Intervention Models for real GNP

Basic ARI Model

Agnp, = 0,004 + 0.323 Agnp.; + 0.132 Agnp,.,
(0.001) (0.077) (0.077)

SEE = 0.0100, kurtosis = 3,910, skewness = 0.028

First ten autocorrelations of squared residuals:
0.08 0.11 0.04 0.10 -0.05 -0.00 -0.01 0.01L 0.01 -0.04

Ljung-Box Q for squared residuals: Q(12) -~ 6.273 (p = 0.9017)
LR Test for GARCH(D,1) = 1,888 (p = 0.169)
LR Test for GARCH(1l,1) = 5.798 (p =~ 0.0551)

Test for nonlinearity in the residuals: BDS statisties

Embedding dimension 2 3 4
BDS(e=1.0) 0.96 1.82 2,33
BDS{e=0.5) 0.46 0.64 0.03

Outlier/Intervention Model

Agnp, = 0.004 + 0.377 Agnp..; + 0.113 Agnp, .,

(0.001) (0.074) (0.074)
+ 0.039 101950Ql, - 0.030 A01980Q2,
(0.009) (0.009)

SEE = 0.0093, kurtosis = 2.801, skewness = -0.111

First ten autocorrelations of squared residuals:
0.09 0.08 0.16 0.02 -0,02 -0.00 -0.08 0.04 0.10 0.09

Ljung-Box Q for squared residuals: Q(12) = 13.112 (p = 0.3605)
1M Test for GARCH(0,3) = 6.011 (p = 0.1111)

Test for momlinearity in the residuals: BDS statistics

Embedding dimension 2 3 4
BDS(e=1.0) 0.44 1.01 1.51
BDS(e=0.5) -0.47 0.31 -0.19

Notes: Data are in logarithms. Sample period is 1947Q4-19%0Q2.
I0date, = 1 if t = date, AOdate, = (1 - 0.377L - 0.113L2?)IOdate,
0 otherwise




Table A2
ARI and Intervention Models for Consumption

Basic ART Model

Ac, = 0.006 + 0,047 Ac,, + 0.218 Ac,,
(0.001)  (0.075) (0.075)

SEE

0.0078, kurtosis = 5.635, skewness = -0.585

First ten autocorrelations of squared residuals:
0.23 0.17 0.12 -0.01 -0.02 0.01 -0.06 0.02 -0.02 -0.04

Ljung~-Box Q for squared residuals: Q{12) = 18.483 (p = 0.1019)
IR Test for GARCH{(0,1) = 8.671 (p = 0.0032)
IR Test for GARCH(1,1) = 13.663 (p = 0.0011)

Test for nonlinearity in the residuals: BDS statistics

Embedding dimension 2 3 4
BDS (e=1.0) -0.55 0.05 0.72
BDS{e=0.5) -1.07 -0.61 -1.16

Maximum likelihood estimates of GARCH Model for Basic ARI Model

Ac, = 0.005 + 0,118 Ac,., + 0.224 Ac,, + ¢,
(0.001)  (0.102) (0.088)

0%, = 0.0002 + 0,490 o2, + 0.190 €2,
(0.0001)  (0.212) (0.080)

Excess kurtosls and skewness in the standardized residuals:
kurtosis = 4,173, skewness = -0.335

Examination of nonlinearity in the standardized residuals: BDS statistics

Embedding dimension 2 3 4
BDS(e=1.0) -1.87 -1.82 -1.139
BDS(e=0.5) -2.30 -1.65 -1.47

Outlier/Intervention Model

Ae, = 0.005 + 0.144 Ac,, + 0.238 Ac,., + 0.027 1I01950Q3,
(0.001) (0.073) {(0.0701) (0.006)
- 0.035 101950Q4, - 0.022 A01951Q2, - 0.019 A01958Ql,
(0.007) (0.006) (0,006)
- 0.023 A01974Q4, - 0.028 A01980Q2,
(0.006) (0.0086)
SEE = 0.0060, kurtosis = 2.568, skewness = ~0.033




Table A2 (continued)

Consumption

First ten autocorrelations of squared residuals:

-0.10 -0.00 0.12 -0.05 O,

04 -0.14 -0,05 0,03 0.03 -0.01

Ljung-Box Q for squared residuals: Q(12) = 10.057 (p = 0.6109)
LM Test for GARCH(0,3) = 4.017 (p = 0.2597)

Test for nonlinearity in the residuals: BDS statistics

Embedding dimension 2 3
BDS(e=1.0) -1.71 -1.63
BDS(e=0.5) -1.98 -2.02

Notes: Data are in logarithms,

I0date, = 1 if t = date
0 otherwise

ADdate, = (1 - .144L - 0.

4
-1.55
-1.79

Sample period 1is 1947GQ4-1990Q2.

238L2%) IOdate,




Table A3
ART and Intervention Models for Fixed Investment

Basis ART Model

Ai, = 0,004 + 0.471 Ai_,, SEE = 0.,0253
(0.002) (0.068) kurtosis = 4,709, skewness = -0,156

First ten autocorrelations of squared residuals:
0.16 0.00 -0.07 -0.09 -0.05 0.01 0.05 0.10 0.05 0.11

Ljung-Box Q for squared residuals: Q(12) = 13.767 (p = 0.3159)
LR Test for GARCH(O,l) = 4.9271 (p = 0.0264)

BDS sgtatistics for nonlinearity in the residuals

Embedding dimension 2 3 4
BDS8(e=1.0) 1.96 1.71 1.17
BDS(e=0.5) 1.98 1.32 0.40

Maximum likelihood estimates of GARCH Model for Basic ARI Model

Al, = 0.004 + 0.493 Ai,, + e, o, = 0.0005 + 0.137 €2,
(0.002)  (0.071) (0.0001)  (0.009)

Kurtosis and skewness in the standardized residuals:
kurtosis = 4,793, skewness =~ -0.379

Examination of nonlinearity in the standardized residuals: BDS statisties
Embedding dimension 2 3 4

BDS (e=1.0) -0.2¢6 -0.26 -0.60
BDS(e=0.5) 0.35 0.31 -0.01

Outlier/Intervention Model

Al, = 0.004 + 0.547 Ai,.; - 0,088 A01952Q3, - 0.102 A01980Q2,
(0.002) (0.064) (0.019) (0.019)

SEE = 0.0226, kurtosis = 3.016, skewness = 0.133

First ten autocorrelations of squared residuals:
0.05 0.05 0.00 -0.03 0.02 0.04 0.05 0,01 0.04 0.12

Ljung-Box Q for squared residuals: Q(12) = 5,104 (p = 0,954)
IM Test for GARCH(0,1) = 0.367 (p = 0.5449)

BDS statistics for nonlinearity in the residuals

Embedding dimension- 2 3 4
BDS(e=1.0) 0.88 0.76 0.30
BDS(e=0.5) 0.45 0.73 0.11

Notes: Data are in logarithms. Sample period is 1947Q3-1990Q2.
I0date, = 1 if t = date, A0date, = (1 - 0.547L) ICdate,
0 otherwise




Table A&
ARI and Intervention Models for Industrial Production

Basic ARI Model

Aip, = 0.008 + 0.604 Aip,, - 0.317 Aip,., + 0.258 Aip,., - 0.356 Aip,.,
(0.002)  (0.073) (0.084) (0.084) (0.073)

SEE = 0,0188, kurtosis = 5.006, ckewness = -0,491

First ten autocorrelations of squared residuals:
0.21 0.08 0.07 0.15 0.06 0.00 0,11 0.02 0.08 -0.05

Ljung-Box Q for squared residuals: Q(12) = 18.119 (p = 0.1121)
IR Test for GARCH(0,1) = 13.080 (p = 0.0003)

BDS statistics for nonlinearity in the residuals

Embedding dimension 2 3 4
BDS(e=1.0) 3.21 3.58 3.98
BDS{e=0.5) 2.79 2.5%4 3,73

Maximum likelihood estimates of GARCH Madel for Basic ARI Model

Afp, = 0.009 + 0.561 Alp,, - 0.264 Aip,., + O0.168 Aip,., - 0.316 Aip,_,
(0.002)  (0.087) (0.065) (0.065) (0.068)

o2, = 0.00024 + 0.316 €2,
(0.00004)  (0.126)

Kurtosis and skewness in the standardized residuals:
kurtosis = 4,256, skewness = -0.384

Examination of nonlinearity in the standardized residuals: BDS statistics

Embedding dimension 2 3 4
BDS(e=1.0) -0.61 -0.22 -0.46
BDS(e=0.5) -0.81 -0.21 1.15
Qutlier/Intervention Model
Aip, = 0.008 + 0.590 Aip,, - 0.264 Aip.., + 0.257 Aip,.; - 0.372 Aip.,
{0.002) (0.068) (0.081) {0.082) (0.069)
- 0.059 101959Q3, + 0.046 A01960Ql, - 0.079 I01975Ql,
(0.017) (0.014) (0.017)

SEE = 0.0167, kurtosis = 3.744, skewness = 0.140

First ten autocorrelations of squared residuals:
0.05 0.06 0.16 0.09 0.11 -0.02 0.04 0.22 -0.01 -0.05

Ljung-Box Q for squared residuals: Q(12) = 22.288 (p = 0.0344)
IM Test for GARCH(0,3) = 4.964 (p = 0.1744)




Table A4 (continued)
Industrial Production

BDS statistics for nonlinearity in the residuals

Embedding dimension- 2 3 4
BDS{e=1.0) 0.88 0.76 0.30
BDS(e=0.5) 0.45 0.73 0.11

Notes: Data are in logarithms. Sample period is 1948Q2-1990Q2.

I0date, = 1 if t = date
0 otherwise

ADdate, = (1 - .590L + 0.26412 - 0,257L% + 0.372L%) IOdate




Table A5
ARI and Intervention Models for Labor Productivity
(Output per hour - Manufacturing)

Basic ARI Model

Aprod, = 0.007 + 0.300 Aprod,.; - 0.233 Aprod,., + 0.167 Aprod,.s
(0.001)  (0.076) (0.079) (0.079)

- 0,208 Aprod,_,
(0.076)

SEE = 0.0104, kurtosis = 4.144, skewness =~ -0.546

First ten autocorrelations of squared residuals:
0.09 0.04 0.09 0.13 0.07 0.03 0.26 -0.06 -0.00 0.01

Ljung-Box Q for squared residuals: Q(12) = 19.680 (p = 0.0734)
LR Test for GARCH(1,1) = 9.353 (p = 0.0093)

BDS statistics for nonlinearity in the residuals

Embedding dimension 2 3 4
BDS (e=1.0) 1.12 2,32 2.86
BDS(e=0.5) 2.22 3.10 3.15

Maximum likelihood estimates of GARCH Model for Basic ARI Model

Aprod, = 0.006 + 0,291 Aprod,.;, - 0.151 Aprod,., + 0.144 Aprod,_,
(0.001) (0.100) (0.098) (0.095)
- 0.177 Aprod,_, + €,
(0.077)
o? = 0.000011 + 0.749 a2, + 0.145 €2,
(0.000009) (0.126) (0.084)

Kurtosis and skewness in the standardized residuals:
kurtosis = 4,066, skewness = -0.511

Examination of nonlinearity in the standardized residuals: BDS statistics

Embedding dimension 2 3 4
BDS(e=1.0) -1.27 -1.02 -1.14
BDS(e=0.3) -0.81 -0.21 1.15
Qutlier/Intervention Model
Aprod, = 0.007 + 0.312 Aprod,, - 0.240 Aprod,., + 0.187 Aprod,_,
(0.001) (0.072) (0.073) (0.073)
- 0.167 Aprod,., - 0.033 1I01957Q4, - 0.040 I01959Q2,
(0.072) (0.009) (0.010)

- 0.032 A01974Q1,
(0.009)




Table 5 (continued)
Labor Productivity
SEE = 0.,0094, kurtosis = 3.155, skewness = -0.052

First ten autocorrelations of squared residuals:
-0.01 0.15 -0.04 0.04 -0.06 0.00 0.00 0.03 0.06 0.00

Ljung-Box Q@ for squared residuals: Q(12) = 7.972 (p = 0.7873)
IM Test for GARCH(0,2) = 3.668 (p = 0.1598)

BDS statistics for nonlinearity in the residuals

Embedding dimension- 2 3 4
BDS(e=1.0) 0.88 0.76 0.30
BDS(e=0.5) 0.45 0.73 0.11

Notes: Data are in logarithms. Sample period is 1948Q2-1990Q2.
I0date, = 1 if t = date
0 otherwise
AOdate, = (1 - 0.312L + 0.240L2 - 0.187L® + 0.167L%) IOdate,




Table A6 _
ARI and Intervention Models for Unemployment Rate

Basic ARI Model

Aun, = 0.040 + 0.788 Aun,; - 0.247 Aun,_,
(0.026) (0.076) (0.076)

SEE = 0.3330, kurtosis = 3.708, skewness = 0,440

First ten autocorrelations of squared residuals:
6.23 0.11 0.20 0.15 0.08 (0.09 0.02 0.07 -0.03 -0.10

Ljung-Box Q for squared residuals: Q(12) = 27.479 (p = 0.0066)
IR Test for GARCH(1,3) =~ 36.053 (p = 0.0000)

BDS statistics for nonlinearity in the residuals

Embedding dimension 2 3 4

BDS(e=1.0) 3.77 5.80 7.96

BDS(e=0.5) 4,94 7.78 12,00
Maximum likelihood estimates of GARCH Model for Basic ARI Model
Aun, = -0.017 + 0.757 Aun,, - 0.166 Aun,, + ¢,

(0.024) (0.096) (0,092)
o, = 0.013 + 0.434 g%, + 0.290 €2,; - 0.074 €2,_, + 0.250 €3,
(0.007) (0.251) (0.127) (0.143) (0.193)

Kurtosis and skewness in the standardized residuals:
kurtosis = 4,033, skewness = 0.763

Examination of nonlinearity in the standardized residuals; BDS statistics

Embedding dimension 2 3 4
BDS(e=1.0) 1.31 1.85 2.25
BDS (e=0.5) 0.37 2,07 5.00
Outlier/Intervention Model
fun, = -0.020 + 0.751 Aun,., - 0.238 Aun,, + 1.045 I01975Q1,
(0.025) (0.075) (0.074) (0.330)

SEE = 0.324, kurtosis = 3,680, skewness = 0.403

First ten autocorrelations of squared residuals:
0.18 0.06 0.25 0.13 0.12 0.13 0.05 0.10 -0.00 -0.07

Ljung-Box Q for squared residuals: Q(12) = 28.250 (p = 0.0051)
1M Test for GARCH(O0,4) = 15.626 (p = 0,0036)




Table A6 (continued)
Unemployment

BDS statistics for nonlinearity in the residuals

Embedding dimension- 2 3 4
BDS(e=1.,0) 2.72 4.77 7.01
BDS (e=0.5) 4.03 7.30 11.65

Notes: Data are in levels, Sample period is 1948Q3-1990Q2.

IDdate, = 1 if t = date
0 otherwise

AOdate, = (1 - 0.751L + 0.2381L%) IOdate,




Table A7
ARI and Intervention Models for Employment

Basic ART Model

Aem, = 0.002 + 0.498 Aem,,
(0.0005) (0.067)

SEE = 0.0050, kurtosis = 5.071, skewness = -0.437

First ten autocorrelations of squared residuals:
0.18 0.10 -0.04 0.08 -0.01 -0.05 -0.07 -0.01 0.04 0.086

Ljung-Box Q for squared residuals: Q(12) = 18.962 (p = 0.0894)
LR Test for GARCH(0,l) = 16.464 (p = 0,0000)

BDS statistics for nonlinearity in the residuals

Embedding dimension 2 3 4
BDS(e=1.0) 2,07 3.09 3.35
BDS(e=0.5) 0.56 2.10 1.36

Maximum likelihood estimates of GARCH Model for Basic ARI Medel

Aem, = 0.002 + 0.624 Aem,, + e,
(0.0005) (0.072)

o, = 0.000055 + 0.431 €2,
(0.000002) (0.135)

Kurtosis and skewness in the standardized residuals:
kurtosis = 3.421, skewness = -0.147

Examination of nonlinearity in the standardized residuals: BDS statisties
Embedding dimenzion 2 3 4
BDS(e=1.0) 0.15 1.27 1.40
BDS(e=0.5) 0.94 2.94 3.53

Outlier/Intervention Model

bem, = 0.0019 + 0.536 Aem., + 0.016 101950Q2,

(0.0004)  (0.062) (0.004)
- 0.019 A01953Ql, - 0.014 101958Qt, - 0.013 A01975QL,
(0.004) (0.004) (0.004)

SEE = 0.0044, kurtosis = 3.250, skewness = -0,232

First ten autocorrelations of squared residuals:
0.03 0.11 -06.04 0.10 0.03 -0.03 0.02 -0.04 -0.03 0.01

Ljung-Box Q for squared residuals: Q(12) = 18.962 (p = 0.0894)
IM Test for GARCH(0,2) = 2,150 (p = 0.3414)




Table A7 (continued)

Employment
BDS statistics for nonlinearity in the residuals
Embedding dimension 2 3 4
BDS(e=1.0) 2.07 3.09 3,35
BDS{e=0.5) 0.56 2.10 1.36

Notes: Data are in logarithms. Sample period is 1947Q3-1990Q2.

I0date, = 1 if t = date
0 otherwise

A0date, = (1 - 0.536L) IOdate,




Table A8
ARI and Intervention Models for GNP Deflator

Bagsic ART Model

Ap, = 0.003 + 0.453 Ap,; + 0.298 Ap..,
(0.001) (0.074) (0.074)

SEE = 0.0056, kurtosis = 5,224, skewness = (.078

First ten autocorrelations of squared residuals:
0.19 0.07 0.16 0.23 0.09 0.12 0.17 0.01 0.15 0.29

Ljung-Box Q for squared residuals: Q(12) = 76.165 (p = 0.0000)
IR Test for GARCH{0,4) = 23.168 (p = 0.0005)

BDS statistics for nonlinearity in the residuals

Embedding dimension 2 3 4
BDS(e=1.0) 3.32 4.62 5.18
BDS (e=0.5) 3.29 3.76 4.70

Maximum likelihood estimates of GARCH Model for Basic ARI Model

Ap, = 0.00088 + 0,522 Ap,., + 0.375 Ap,., + €
(0.00058)  (0.077) (0.082)

a2, = 0.000010 + 0.077 €2,., + 0.199 ¢, + 0.150 e2,., + 0.265 €2,
(0.000003)  (0.083) (0.131) (0.103) (0.106)

Kurtosis and skewness in the standardized residuals:
kurtosis = 4.292, skewness = 0.273

Examination of nonlinearity in the standardized residuals: BDS statistics
Embedding dimension 2 3 4

BDS{e=1.0) 0.22 0.25 0.33
BDS(e=0.5) -1.08 -0.74 -0.68

Qutlier/Intervention Model

Ap, = 0.011 + 0,284 Ap,, + 0.195 Ap.., + 0.015 A01947Q4,

(0.002) (0.072) (0.073) (0.004)

- 0.017 Ls1948Q4, + 0.021 101950Q3, + 0.017 A01951Q1,
(0.003) (0.004) (0.004)

+ 0.012 A01952Q4, + 0.014 A01954Ql, + ©0.009 LS1967Q4,
(0.004) (0.004) (0.002)

+ 0.006 LS1973Q2, + 0.015 I01974Q3, =~ 0.010 LS1982Q4,
(0.002) (0.004) (0.002)

SEE = 0.0038, kurtosis = 2.855, skewness = -0.282




Table A8 (continued)
GNP Deflator

First ten autocorrelations of squared residuals:
0.04 -0.03 0.03 -0.092 -0.01 -0.09 -0.07 0.02 0.23 0.10

Ljung-Box Q for squared residuals: Q(12) = 16.744 (p =~ 0.1595)
LM Test for GARCH(O0,4) = 2.129 (p = 0.7120)

BDS statistics for nonlinearity in the residuals

Embedding dimension 2 3 4
BDS(e=1.0) 0.51 -0.05 0.21
BDS(e=0.5) -0.20 0.05 -0.34

Notes: Data are in logarithms. Sample period is 1947Q4-1990Q2

I0date, = 1 if t = date
0 otherwise

AOdate, = (1 - .284L - 0.1951%) IOdate,

LSdate, = (1 - .284L - 0.1951%) LSDUM,, LSDUM, = 1 t = date
0 otherwise




Table A9
ARI and Intervention Models for Consumer Price Index (CPI)

Basis ARI Model

Acpi, = 0.0019 + 0.728Acpi,., - 0.053acpi, , + 0.423Acpi,.; - 0.292Acpi,.,
(0.0006) (0.075) (0.089) (0.089) (0.075)

SEE = 0.0052, kurtosis = 8,777, skewness = -0.830

First ten autocorrelations of squared residuals:
0.35 0.06 0.07 0.06 0.01 0.02 0.01 -0.03 0.20 0.33

Ljung-Box Q for squared residuals: Q(12) = 50.380 (p = 0.0000)
LR Test for GARCH(0,1) = 31.230 (p = 0.0000)
LR Test for GARCH(1l,1) = 42.232 {(p = 0.0000)

BDS statistics for monlinearity in the residuals

Embedding dimension 2 3 4
BDS (e=1.0) 4.82 5.78 6.28
BDS(e=0.5) 5.95 7.67 8.52

Maximum likelihood estimates of GARCH Model for Basic ARI Model

Aepi, = 0.011 + 0.66lAcpi,, + 0.118Acpi,., + 0.380Acpi,., - 0.276Acpi,
(0.005) (0.093) (0.084) (0.098) (0.076)

o?, = 0.0000027 + 0.529 o2, + 0.429 €%,
(0.0000015) (0.119) (0.131)

Kurtosis and skewness in the standardized residuals:
kurtosis = 5,483, skewness = -0.641

Examination of nonlinearity in the standardized residuals: BDS statistics

Embedding dimension 2 3 4
BDS(e=1.0) 0.54 0.52 0.37
BDS(e=0.5) 1.77 1.49 0.20

Qutlier/Intervention Model

Aepi, = 0.002 + 0,.658Acpi,.; - 0.092Acpi,., + 0.368Acpi,.; - 0.311Acpi.,

(0.001) (0.070) (0.081) (0.082) (0.069)
- 0.020 101948Q4, + 0.023 AC1951Ql, ~- 0.012 A01951Q3,
(0.004) (0.003) (0.003)
+ 0.007 LS1967Q3, + 0.009 L$1973Ql, - 0.011 LS1982Q4,
(0.002) (0.002) (0.002)

- 0.011 A01986Q2,
(0.002)

SEE = 0.0038, kurtosis = 3.310, skewness = 0.110




Table A9 (continued)
Consumer Price Index

First ten autocorrelations of squared residuals:
0.28 0.15 0.04 0.09 0.18 0.06 0.02 -0.09 -0.02 0.08

Ljung-Box Q for squared residuals: Q(12) = 28.459 (p =~ 0.0047)
LM Test for GARCH(O0,l) = 13.531 (p = 0.0002)

BDS statistics for nonlinearity in the residuals

Embedding dimension 2 3 4
BDS(e=1.0) 3.78 4.87 4.68
BDS(e=0.5) 3.32 5.57 4.26

Noteg: Data are in logarithms. Sample period is 1948Q2-19920Q2.

I0date, = 1 if t = date
0 otherwise

AOdate, = (1 - 0.658L + 0.092L% - 0.368L°> + 0.311L*) IOdate,

LSdate, = (1 ~ 0.658L + 0.0921L2 - 0.368L3

+

0.311L%) LSDum,, LSDUM, = 1 if t > date
0 otherwise




Table Al0Q
ARI and Intervention Models for Compensation per Hour (Manufacturing)

Basic ARI Model

Acomp, = 0.004 + 0.377 Acomp,.; + 0.147 Acomp,., + 0.201 Acomp,.s
(0.001) (0.075) (0.079) (0.074)

SEE = 0,0069, kurtosis = 5,863, skewness = 1.055

First ten autocorrelations of squared residuals:
0.05 0.02 0.25 0.11 0.10 0.02 0.08 0.24 -0,05 -0.02

Ljung-~Box Q for squared residuals: Q(12) = 49.573 (p = 0.0000)
LR Test for GARCH(0,3) = 22.274 (p = 0.0001)

BDS statistics for nonlinearity in the residuals

Embedding dimension 2 3 4
BDS(e=1.0) 1.95 1.89 2.15
BDS(e=0.5) 1.65 2.14 1.91

Maximum likelihood estimates of GARCH Model for Basic ARI Model

Acomp, = 0.0036 + 0.454 Acomp,.; + 0.206 Acomp,., + 0.088 Acomp,_;

(0.0011)  (0.090) (0.087) (0.079)
0%, = 0.000022 + 0.312 €%, - 0.012 e%,_, + 0.184 e?,_,
(0.000005)  (0.137) (0.080) (0.075)

Kurtesis and skewness in the standardized residuals:
kurtosis = 3.184 skewness = 0.470

Examination of nonlinearity in the standardized residuals: BDS statistics

Embedding dimension 2 3 4
BDS (e=1.0) -0.76 =0.74 -0.93
BDS(e=0.53) -1.37 -0.55 0.72

Qutlier/Intervention Model

Acomp, = 0.006 + 0.350 Acomp,, + 0.031 Acomp,., + 0.094 Acomp,_,

(0.001) (0.070) (0.071) (0.068)
+ 0.025 A01948Ql, - 0,020 A01949Q4, + 0.034 I01950Q4,
(0.005) (0.005) (0.005)

+ 0.016 A01952Q4, + 0.017 101956Q2, + 0.011 LS1973Ql,
(0.005) (0.003) (0.002)

- 0.014 Ls1982Q4,
(0.002)

SEE = 0.0052, kurtosis = 3.125, skewness = 0,280




Table Al10 {(continued)
Compensation per Hour

First ten autocorrelations of squared resziduals:
-0.08 0.07 0.05 -0.03 0.07 -0.09 -0.02 -0.01 -0.06 -0.08

Ljung~-Box Q for squared residuals: Q(12) = 7.193 (p = 0.8446)
IM Test for GARCH(0,1) = 0.974 (p = 0.3238)

BDS statistics for nonlinearity in the residuals

Embedding dimension 2 3 4
BDS(e=1.0) ~0.73 -0.79 -0.20
BDS(e=0.5) -1.26 -0.70 0.92

Notes: Data are in logarithms. Sample period is 1948Q1-1990Q2.

I0date, = 1 if t = date
0 otherwise

AOdate, = (1 - 0.350L - 0.031L? - 0.094L®) IOdate,
LSdate, = (1 - 0.350L - 0.031L? - 0.094L®) LSDUM,,

LSDUM, = 1 if t = date
0 otherwise




Table All
ART and Intervention Models for Yields on AAA Bonds

Basic ARI Model

Araaa, = 0.0075 + 0.334 Araaa,., - 0.095 Araaa
(0.0039) {0.077) (0.077)

SEE = 0.0394, kurtosis = 4,238, skewness = -0.137

First ten autocorrelations of squared residuals:
0.24 0.27 0.14 0.05 0.03 0,06 0.02 0.11 0.00 0.21

Ljung-Box Q for squared residuals: Q(12) = 46,302 (p = 0,0000)
LR Test for GARCH(0,2) = 18.470 (p = 0.0001)

BDS statisties for nonlinearity in the residuals

Embedding dimension 2 3 4
BDS{e=1.0) 3.79 5.13 7.15
BDS(e=0.5) 5,09 7.61 13.32

Maximum likelihood estimates of GARCH Model for Basic ARI Model

Araaa, = 0.0077 + 0,384 Araaa,.; - 0.084 Araaa,.,
(0.0029) (0.090) (0.082)
g%, = 0.00079 + 0.338 ¢2,;, + O0.186 €2,,
(0.00013) (0.198) (0.143)

Kurtosis and skewness in the standardized residuals:
kurtosis = 4.626 skewness = 0,304

Examination of nonlinearity in the standardized residuals: BDS statistics

Embedding dimension 2 3 4
BDS{e=1.0) -0.34 -0.11 1.59
BDS{e=0.5) 1.13 0.95 3.59
Qutlier/Intervention Model
Araaa, = 0.0053 + 0.353 Araaa,, - 0.143 Araaa_,
(0.0028) (0.077) (0.076)
+ 0.127 101979%Q4, + 0.124 A01980Q1, - 0.138 A01982Q4,
(0.036) (0.034) (0.033)

SEE = 0.0353, kurtosis = 3,088, skewness = 0.025

First ten autocorrelations of squared residuals:
0.13 0.12 0.18 0.05 0.18 -0.04 0.09 0.10 -0.01 -0.02

Ljung-Box Q for squared residuals: Q(12) = 21.457 (p = 0.0440)
IM Test for GARCH(0,3) = 9.214 (p = 0,0266)
IM Test for GARCH(0,5) = 13.706 (p = 0.0176)




Table All (continued)
AAA Bond Yields

BDS statistics for nonlinearity in the residuals

Embedding dimension 2 3 4
BDS{e=1.0) 3.47 4.68 6.72
BDS{e=0.5) 4.67 7.06 11.86

Notes: Data are in logarithms., Sample period is 1947Q4-1930Q2.

I0date, = 1 if t = date
0 otherwise

A0date, = (1 - 0.353L + 0.143L%) IOdate,




Table Al2
ART and Intervention Meodels for Nominal Stock Prices

Basic ARI Model

Asp, = 0.013 + 0.29%4 Asp,,
(0.005) (0.073)

SEE = 0.0360, kurtosis = 5.%11, skewness = -0.503

First ten autocorrelations of sgquared residuals:
-0.02 0.03 0.09 -0.04 -0.01 -0.05 0.00 -0.09 -0.01 -0.06

Ljung-Box Q for squared residuals: Q(12) = 5.312 (p = 0.9467)
IR Test for GARCH(O0,1) = 0.1216 (p = 0.9687)

BDS statistics for nonlinearity in the residuals

Embedding dimension 2 3 4
BDS{e=1.0) -0.37 0.65 1.34
BDS(e=0.5) -0.86 1.19 0.97

Qutliexr/Intervention Model

Asp, = 0.014 + 0.344 Asp,, - 0.138 A0O1957Q4,
(0.004)  (0.067) (0.045)
- 0.176 I01974Q3, + 0.170 101982Q4, - 0.261 A01987Q4,
(0.048) (0.048) (0.045)

SEE = 0.0476, kurtosis = 3.244, skewness = 0.288

First ten autocorrelations of squared residuals:
-0.05 0.07 0.00 0.07 0.06 -0.13 0.01 ~0.05 -0.06 -0.03

Ljung-Box Q for squared residuals: Q({12) = 7.541 (p = 0.8199)
IM Test for GARCH(0,1) = 0.396 (p = 0.5294)

BDS statistics for nonlinearity in the residuals

Embedding dimension- 2 3 4
BDS{e=1.0) -0.85 0.70 1.17
BDS{e=0.5) -0.00 2.21 1.61

Notes: Data are in logarithms. Sample period is 1947Q3-1990Q2.

I0date, = 1 if t = date
0 otherwise

AQdate, = (1 - 0.344L) IOdate,




Table Al3
ART and Intervention Models for Money Base

Basic ARI Model

Amb, = 0.0005 + 0.000037 t + 0.468 Amb..; - 0.059 Amb,_, + 0.294 Amb_,
(0.0007) (0.000013) (0.075) (0.083) (0.,076)

SEE = 0,0048, kurtosis = 2,972, skewness = -0.250

First ten autocorrelations of squared residuals:
-0.04 0.18 0.00 -0.00 -0.05 0.13 0.09 0.04 -0.07 0.05

Ljung-Box Q for squared residuals: Q(12) = 13.161 (p = 0.3574)
LR Test for GARCH(0,2) = 3.313 (p = 0.1908)

BDS statistics for nonlinearity in the residuals

Embedding dimension 2 3 4
BDS(e=1.0) 0.83 1.73 1.77
BDS (e=0.5) 0.07 0.18 1.15

Outlier/Intervention Model

Amb, = 0.0005 + 0.000025 t + 0.424 Amb,,; - 0.090 Amb,_,
(0.0008) (0.000012) (0.075) (0.082)

+ 0.266 Amb,_, + 0.008 LS1961Q4,
(0.077) (0.003)

SEE = 0.0047, kurtosis = 3,152, skewness = -0,165

First ten autocorrelations of squared residuals:
-0.03 0.17 0.01 -0.00 -0.07 0.12 0.08 0.02 0.00 0.05

Ljung-Box Q for squared residuals: Q(12) = 13,161 (p = 0.3574)
IM Test for GARCH(0,2) = 5.354 (p = 0.0688)

BDS statistics for nonlimearity in the residuals

Embedding dimension 2 3 4
BDS(e=1.0) 0.83 1.73 1.77
BDS (e=0.5) 0.07 0.18 1.15

Notes: Data are in logarithms. Sample period is 1948Q1-1990Q2.

I0date, = 1 if t = date
0 otherwise

AOdate, = (1 - 0,424L + 0.090L2 - 0.266L%) IOdate,
LSdate, = (1 - 0,424L + 0.090L2 - 0.266L%) LSDUM, ,

LSDUM, = 1 if t = date
0 otherwise




Table Al4
ARI and Intervention Models for Ml

Basic ARI Model

AM1, = 0.0014 + 0.000054 t + 0.466 AM1,_,
(0.,0012) (0.000014) (0.068)

SEE = 0,0078, kurtosis = 10,847, skewness = 0.846

First ten autocorrelations of squared residuals:
0.27 0.10 0.12 0.06 0.00 -0.02 0©.05 0.01 0.11 0.03

Ljung-Box Q for squared residuals: Q(12) = 20.557 (p = 0,0573)
IR Test for GARCH(O,1) = 31.333 (p = 0.0000)
IR Test for GARCH(1,1) = 53.041 (p = 0.0000)

BDS statistics for nonlinearity in the residuals

Embedding dimension 2 3 4
BDS(e=1.0) 1.51 2,01 2.71
BDS(e~0.5) 0.88 1.52 1.78

Maximum likelihood estimates of GARCH Model for Basic ARI Model

AM1, = 0.0004 + 0.000050 t + 0.601 aM1,, + ¢,

(0.0009)  (0.000012) (0.076)
0%, = 0.000006 + O0.616 02, + 0.298 €2,
(0.000003)  (0.128) (0.090)

Kurtosis and skewness in the standardized residuals:
kurtosis = 4.007 skewness = 0.068

Examination of nonlinearity in the standardized residuals: BDS statisties

Embedding dimension 2 3 4
BDS(e=1.0) -1.56 -1.59 -1.05
BDS (e=(.5) -2.23 -2,28 -2.25

Outlier/Intervention Model

AM1, = 0,0014 + 0.000048 t + 0.509 AMI,_,

(0.0008)  (0.000012) (0.056)

- 0.016 A01959Q1, - 0.016 I01959Q4, + 0.019 AG1979Q3,
(0.004) (0.005) (0.004)

- 0.029 101980Q2, - 0.048 I01980Q3, - 0.016 A01981Ql,
(0.005) (0.005) (0.005)

~ 0.014 A01982Q2, + 0.019 101982Q4, + 0.012 1851985Q1,
(0.004) (0.005) (0.003)

|
o

- 0.022 LS1987Q3, .015 A01989Q2,
(0.004) (0.005)




Table Al4 {continued)
M1
SEE = 0.0050, kurtosis = 3,424, skewness = 0.018

First ten autocorrelations of squared residuals:
-0.03 0.08 0.06 0.22 -0.05 0.05 0.18 0.06 -0.08 0.02

Ljung-Box Q for squared residuals: Q(12) = 19.496 (p = 0.0772)
IM Test for GARCH(O,4) = 10.704 (p = 0,0301)

BDS statisties for nonlinearity in the residuals

Embedding dimension 2 3 4
BDS(e=1.0) -0.37 0.14 1.00
BDS(e=0.5) 0.24 0,17 0.39

Notes: Data are in logarithms, Sample period is 1947Q3-1990Q2.

I0date, = 1 if t = date
0 otherwise

AOdate, = (1 - 0.509L) IOdate,

LSdate, = (1 - 0.509L) LSDUM,, LSDUM, = 1 > date
0 otherwise




Table AlS
ART and Intervention Models for M2

Basic ARI Model

AM2, = 0.0026 + 0.000026 t + 0.695 AM2, ,
(0.0010)  (0.000010) (0.057)

SEE = 0.0058, kurtosis = 6.124, skewness = 0,919

First ten autocorrelations of squared residuals:
0.15 -0.01 0.02 -0.06 -0.03 0.01 0.01 0.04 0.08 0.26

Ljung-Box Q for squared residuals: Q(12) = 20.198 (p = 0.0634)
IR Test for GARCH(0,1) = 3,630 (p = 0.0567)
. LR Test for GARCH(1,1) = 4.108 (p = 0.1282)

BDS statistics for nonlinearity in the residuals

Embedding dimension 2 3 4
BDS(e=1.0) 2.24 2.37 2.73
BDS(e=0.5) 2,78 4.31 5.41

Qutlier/Intervention Model

AM2, = 0.0015 + 0.00004 t + 0.701 AM2, ,

(0.0008) (0.00001) (0.053)

+ 0.014 101958Q2, + 0,017 101975Q2, + 0.017 A01980Q3,
(0.005) (0.005) (0.004)

+ 0.025 A01983Ql, - 0.014 LsS1985Q2,
(0.004) (0.003)

SEE = 0.0046, kurtosis = 2.935, skewness = 0.181

First ten autocorrelations of squared residuals:
-0.04 -0.00 0.21 0.06 0.11 -0.05 0.05 0.08 0.04 -0.06

Ljung-Box Q for squared residuals: Q(12) = 16.154 (p = 0.1843)
1M Test for GARCH(0,3) = 8.132 (p = 0.0434)

BDS statistics for nonlinearity in the residuals

Embedding dimension 2 3 4
BDS(e=1.0) 0.15 -0.14 0.43
BDS(e=0.5) -0.81 -0.79 0.52

Notes: Data are in logarithms. Sample period iz 1947Q3-1990Q2.
I0date, = 1 if t = date
0 otherwise
(1 - 0.701L) IOdate,
(1 - 0.701L) LSDUM,, LSDUM, = 1 if t = date
0 otherwise

AQdate,
LSdate,
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