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Abstract: Evidence presented by Fomby and Guilkey (1983) suggests that
Hatanaka's estimator of the coefficients in the lagged dependent variable­
serial correlation regression model performs poorly, not because of poor
selection of the estimate of the autocorrelation coefficient, but because of
the lack of a first observation correction. This study conducts a Monte Carlo
investigation of the small sample efficiency gains obtainable from a first
observation correction suggested by Harvey (1981). Results presented here
indicate that substantial gains result from the first observation correction.
However, in comparing Hatanaka's procedure with first observation correction
to maximum likelihood search, it appears that ignoring the determinantal term
of the full likelihood function causes some loss of small sample efficiency.
Thus, when computer costs and programming constraints are not binding, maximum
likelihood search is to be recommended. In contrast~ users who have access
to only rudimentary least squares programs would be well served when using
Hatanaka's two-step procedure with first observation correction because of
the ease of calculating consistent standard errors of the estimates.

* This research was supported by the Federal Reserve Bank of Dallas.
Mr. Frank Berger of the Research Department wrote the computer program for
this Monte Carlo study. Frank Berger, Andrew Harvey and Jim Pearce provided
useful comments on the initial draft of this paper. Any opinions expressed
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of Dallas of of the Federal Reserve System. Any errors that may exist are,
of course, my responsibility.



SMALL SAMPLE EFFICIENCY GAINS FROM A

FIRST OBSERVATION CORRECTION FOR HATANAKA'S ESTIMATOR

1. Introduction

Hatanaka (1974) proposed a two-step estimator of the coefficients of a

regression model with lagged dependent variables and serially correlated

errors. Hatanaka's estimator, unlike a two-step feasible generalized least

squares estimator studied by Wallis (1972), is asymptotically efficient.

This follows since Hatanaka's estimator is the two-step Gauss-Newton estimator

where the first observation is omitted (Harvey, 1981). Though asymptotically

efficient, the small sample performance of Hatanaka's estimator leaves much

to be desired relative to asymptotically inefficient two-step estimators

(Hatanaka, 1974). Evidence presented by Fomby and Guilkey (1983) suggests

that Hatanaka's estimator performs poorly, not because of poor selection of

the estimate of the autocorrelation coefficient in the first step, but because

of the lack of a first observation correction. This study conducts a Monte

Carlo investigation of the small sample efficiency gains obtainable from a

first observation correction for the Hatanaka procedure suggested by Harvey

(1981). The competing estimators examined are maximum likelihood search,

Hatanaka's estimator, first with and then without a first observation correction ,

and the asymptotically inefficient two-step estimator investigated by Wallis

(1967, 72) and Madda1a (1971).

The outline of this paper is as follows. The details of the competing

estimators are presented in the next section while the design of the Monte

Carlo experiment is described in Section 3. The results of the experiment

are summarized in Section 4. Conclusions are developed in the final section.
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Z. Description of Competing Estimators

For expository convenience the model under consideration is chosen to be

(1)

T, (Z)

where xt is nonstochastic, \al<l, 10\<1, and the u
t

are independent and

identically distributed normal random errors having zero mean and finite

variance o~, the initial value of ut being realized in the infinite past.

The estimators to be discussed are easily derivable for more general models

involving additional lagged dependent and exogenous variables.

Method 1 (Maximum Likelihood Search)

The log likelihood function of model (l)-(Z) is

L(S, a, p, oZ
·u

(T-l)
~, X)=--Z-ln(Z7f)

(T-l) 1 Z
Z n au

1 Z+ "2 In(l - 0 )
1

- -- (y* - X*~)'(~* - X*§)
ZoZ 4

u

where ~' .. (yZ' Y3' "', yT), §' = (S, a),

x,t x •••

~-J
3

Yl Y2- ••

l* - P~, X* = PX, and P is the Prais-Winsten (1954) matrix

(3)

(l_OZ)-!i 0 0

-0 1 0 0

0 -p 1 0 0
P = (4)

o o -0 1
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of dimension (T-l) x (T-l). Maximizing (3) partially with respect to g

2
and a produces the conditional estimators

u

(5)

(6)

, ,2
where the notation §(p) and 0u(p) emphasizes that they are functions of the

parameter p.

Substituting (5) and (6) into (3) produces the concentrated log likelihood

function

t 2 Ja (p)
L*(pl¥, X) ~ _ (T;l) [In(2n) + 1] _ (T;l) 1n u .

2 1/ (T-l)
(l-p )

2Thus, the maximum likelihood estimates of ~, au, and p are obtained as follows.

and choose the estimatoreach

Grid the admissable range of p, (-1,1), by points Pi' i~l, 2, ••• , n. For

2 2 1/(T-1)
Pi evaluate the function 0u(p)/(l-p )

of p, say p, which provides the global minimum. The maximum likelihood

estimates of Band 02 are then obtained by evaluating (5) and (6) at p ~ p.
u

2 ' , '2 '
That is, maximum likelihood estimates of g-and au are §(p) and 0u(p),

respectively.

Since

minimizing

2 1/(T-1) 2
lim(l-p ) ~ 1, the estimates of p, ~, and a obtained by
T- u

the transformed sum of squared errors.

+

2 ~ , 2 ~ , 2 ~ 2
S(~, ~, p) ~ ((l-p ) Y2 - ~(p)(l-p ) x2 - ~(p)(l-p ) Yl)

T

1: [(Yt-PYt - l )
t~3

(8)

where (S(p), a(p»' ~ B(p) in equation (5), have the same asymptotic distribution

as the maximum likelihood estimates and, thus, are likewise asymptotically

efficient. In addition, ignoring the initial observation (Y2; x2' Yl)
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makes no difference, asymptotically, as its contribution to the sum of squared

errors see, a, p) is inconsequential in infinite samples. Choosing to minimize

the sum of squared errors function

s (13, 0., p) =
o

T
I [(y -py )­

t;3 t t-l
(9)

thus provides estimates of p, @and 0
2 which are also asymptotically efficient.
u

Method 2 (Hatanaka Estimator with First Observation Correction)

Before proceeding to the discussion of the Hatanaka estimator, a brief

discussion of the Gauss-Newton estimation scheme will prove useful. Suppose

2
that the minimization of the sum of squares function S(~) ; I u , where

t t

ut ; ut ('/:) is a "residual" which depends on the value taken by ~, provides

an estimator for the parameter vector '/:. The two-step Gauss-Newton estimator

of '/:, say ,/:*, is obtained by computing

where ~ is an initial consistent estimate of ~ and the gradient vector

(aut/a'!:) and ut are evaluated at,/:;~. Should the minimization of S(~)

with respect to '!: provide asymptotically efficient estimates of ~, the

Gauss-Newton estimator, ,!:*, will likewise be asymptotically efficient.

With respect to the lagged dependent variable-serial correlation model

(1)-(2), let

(10)

2 ~ 2 ~ Z ~ (11)u2
; (l-p ) Y2 e(l-p ) Xz a(l-p ) Yl

and
ut

; (Y t - PYt - l ) e(xt - px
t
_

l
) - a(Yt_l - PY t - 2) (12)

t ; 3, 4, ••• , T.
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Harvey (1981, pp. 269-270) has shown that the application of the two-step

Gauss-Newton method to the sum of squares function

S (IU) =
o '

T 2
Z u

tt=3
(13)

where W' = (8, ~, p), is numerically equivalent to Hatanaka's estimator

(1974). Note the first observation is not treated here. In light of this

correspondence, Harvey (1981, pp. 270-271) suggested a treatment of the first

observation by applying the two-step Gauss-Newton method to the sum of squares

function

T 2
Z u

tt= 2
(14)

This treatment is described in the following steps.

The Hatanaka estimator of (8, ~) using a first observation correction

in the model (1)-(2) is obtained in the following manner:

1. Form the instrumental variable matrix

,. t :: ::: :J
where Xt~l serves as an instrument for Yt-l'

Compute the instrumenual'variab1eestimator of (6; ~)'

-1b = (Z'X) Z'y = (b b2)'
'. l'

This estimator is consistent.

(15)

2. Compute the residuals ~' = (e
2

, e
3

, , •• eT) = (I - ~)' and construct

a consistent estimator of Pt

T.
p = ( Z

t=3
(16)
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3, Form the regressand vector

v* (17)

and the matrix of regressors

-2 ~
(l-p ) x

2
x 3- px2 xT-P"T-l

X' -2 ~
(l-p ) Yl Y2-PYI

.
YT-f-:PYT-2e

_. / ( - 2) ~ A .
pe 2 l-p e 2

. e
T

_
l

4. The Hatanaka estimates of S and a, say a·and a, using ~ first

observation correction, are obtained by computing the least squares

estimates

(18)

(19)

•The Hatanaka estimate of p, say p, using ~ first observation correction
:r.: _ _

is p = 1" + p.

Method 3 (Hatanaka Estimator Without First Observation Correction)

The Hatanaka estimator derived without a first observation correction is

obtained by duplicating the steps for method 2 except deleting the first
.

observation in the matrices y* and X
e

, This is the original form of the

estimator suggested by Hatanaka (1974),

Method 4 (Two-Step Feasible Generalized

Least Squares Estimator Investigated by Wallis (1972»

Wallis (1967) first presented the following consistent estimator of (p,a),

Maddala (1971) provided a general proof of its asymptotic inefficiency while

Wallis (1972), using the specific assumption that the xt's follow a stationary

autoregressive process, determined quantitatively the extent of the estimator's
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inefficiency. The estimator's asymptotic inefficiency results because of the lack

of independence in the estimation of a and p as reflected by the nondiagonality of

the information matrix of the model (1)-(2). That is, only efficient estimates

of p will provide, via feasible generalized least squares, asymptotically

efficient estimates of (S,a). Not just any consistent estimate of p will suffice.

1. Using the first two steps of Method 2, obtain the instrumental

variable estimate of p, p, of equation (16).

2. Form the regressand vector ~* of step 3 of Method 2.

3. Form the matrix of regressors

•

[-" '~-J
' (l-p ) X z x - pX2 x -

3 T

X*'=
-2 lj

(l-p ) Y Y2 - PYI • y - PYT-Z1 T-l

4. Calculate the estimates of S and a using

The estimates S+ and a+, though consistent, have been shown by Wallis

(1972) to be asymptotically inefficient. However, in previous Monte Carlo

studies (Hatanaka (1974) and Fomby and Guilkey (1983), these estimates have

performed quite well relative to the Hatanaka estimates derived without a

first observation correction for sample sizes as large as T = 200.

In the next section, the design of a Monte Carlo experiment used to

examine the relative efficiencies of these estimators and the contribution

of a first observation correction for the Hatanaka procedure is discussed .

3. Design of Monte Carlo Experiment

(20)

(21)

The experimental design of the present Monte Carlo experiment consists of

the following model:
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(22)

(23)

where lal<l, Ipl<l, IAI<I, the ut's are independent and identically distri­

buted normal random errors with zero mean and variance o~, the vt's are

2similarly defined with variance 0v and ut and Vs are assumed to be mutually

independent for all sand t. The autoregressive process on the xt's has been

introduced to allow the analysis of the effects of collinearity on estimator

efficiency.

The design points were chosen to be:

s ~ 1. 0, C< ~ {0.2, 0.4, 0.6, O.S}

p ~ {a .2, 0.4, 0.6, O. S}, A ~ {O.O, 0.4, O.S}

R2 {0.50, 0.75, 0.90. 0.99}

T ~ {IS, 30, 50, 10O}

2 02/ (l-A2) ~ 1.0°
~

x v

For given values of a, A, and R2 the value of 2 chosen so thatp, ° was,
u

2
°u

2(1 + Ac<)(l-pc<)(l-p )

(l-Aa) (1+pc<)

To maintain the spirit of "an infinite past starting point," the following

sampling procedure was used to generate observations on Yt' x t ' and Yt-l'

Two independent random realizations of

number generator such that u
t

- niid(O,

t = -49, -48, ... , 0, 1, 2, ... , T.

u 's and v 's were generated by a random
t t

0:) and vt - niid(O, O~) with
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With initial starting values of x_
50

~ e_50~ Y-50 = 0, realizations of x_ 49 ,

xT' e_49 ,'" e T, and Y-49 , YT were generated using the ut's and vt's

and assumed values of A, p, S, and~. The first 50 observations on CYt , x t ' Yt - l )

were then discarded and the observations associated with t ~ 2, 3, "', T

were retained. The sample size is thus equal to T with CT-l) observations on

the dependent and independent variables being available for the purpose of

estimation.

Once the random sample was generated, the above four estimators were

calculated Cthe grid width of the maximum likelihood search was chosen to

be 0.01) and the following squared errors were computed: CSCi)_S)2,

C~Ci)_a)2, and C8Ci)_S)C~Ci)_a) where SCi) and ~Ci) represent the i-th

method's estimates of S and a, i=l, 2, 3, 4. The completion of this task

represents one iteration given a specific setting of the parameter values,

S, a., p, 2A, and R •

For methods 2, 3, and 4, nine hundred and ninety-nine additional random

samples were drawn using the same parameter settings Ca total of 1000

iterations), resulting in the accumulated values

1000·C") 2
ECs 1 -S) /1000
1

1000CSCi)_S)C~Ci)_a)

f 1000

i 2, 3, 4.

The value d Ci) represents the empirical generalized mean square error of the

i-th method given a specific setting of the parameter values. Because of

computational cost, the maximum likelihood estimates were calculated only

over the first 100 iterations. The measures a Cl), b (1), and c (1 ) were thus

averaged over the first 100 iterations.
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Finally, for a specific parameter setting, the relative efficiencies

of the second, third, and fourth estimators relative to maximum likelihood

search were calculated as

RE
3

A RE value greater than one represents inefficiency relative to maximum

likelihood search whereas a value less than one represents relative efficiency.

The direct simulation method was used rather than some of the recently

proposed efficient Monte Carlo methods [e.g. Makhail (1972, 1975) and Hendry

and Harrison (1974)] for the reasons cited in Fomby and Guilkey (1983, p. 298).

4. Results of Monte Carlo Experiment

The results of the Monte Carlo experiment are summarized in Tables 1

and 2 below. These tables are aggregative in nature. More detailed tables

are available from the author upon request.

Table 1 contains the relative efficiencies of the estimators averaged

over all possible settings for A, R2, and T for given values of p and ~.

In each cell of this table, the three entries are (from top to bottom), RE2 ,

RE 3, and RE4 , the efficiencies of methods 2, 3, and 4, respectively, relative

to maximum likelihood estimation. Several points are noteworthy.

1. Overall, the maximum likelihood search procedure performed best.

There were several instances, however, when maximum likelihood estimation

was not necessarily the best method, particularly in the regions of simultaneously

low or high values of p and ~ The small sample inefficiency incurred by

maximum likelihood estimation was, nevertheless, generally quite small and,

when efficient~ gains more than compensated for losses elsewhere.
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2. The first observation correction for Hatanaka's procedure improved

its performance substantially. On average over all design points, the first

observation correction yielded a 10.7% improvement in generalized mean square

error.

3. The Hatanaka estimator without first observation correction exhibited

uniformly poor performance. Only in rare instances did it minimally dominate

maximum likelihood estimation for parameter settings not shown here (e.g.

2A = 0.0, R = 0.75, T = IS, a = 0.2, and p = 0.6). For almost every possible

configuration, it was dominated by the Hatanaka estimator with first observation

correction and method 4.

4. The estimator investigated by Wallis (1967, 72), method 4, performed

surprisingly well overall despite the fact that it is asymptotically ineffi-

cient. There were particular parameter settings where the Hatanaka estimator

with first observation correction was superior to it but these instances

were rare.

Table 2 contains the relative efficiencies of the estimators averaged

over all values of p and a for given values of T, R2 and A. The entries

in each cell of this table have the same interpretations as in Table 1.

Points of interest are:

1. Increased sample size does not provide a quick matching of the

performance of the Gauss-Newton methods (2 and 3) with maximum likelihood

estimation.

2. As expected, the contribution of a first observation correction

for Hatanaka's estimation procedure diminished with sample size though the

benefit of the correction remained substantial even when T = 100 •

3. The asymptotically inefficient method 4 performed very well for

T = 15. In addition, the inefficiency in method 4 developed only slowly

with increased sample size and was not great even when T = 100.
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4. Consider aggregation over all T and A. Increased R2 tended to

improve the performance of maximum likelihood estimation relative to the

other methods.

5. Aggregating over T and R2, increased collinearity (A+l.O) seemed to

improve the performance of the Hatanaka estimator with first observation

correction and method 4 relative to maximum likelihood search. Also, increased

collinearity tended to accentuate the gain offered by a first observation

correction for Hatanaka's procedure.

5. Conclusions of Study

When estimating the coefficients of the lagged dependent variable -

serial correlation model, there is no loss of asymptotic efficiency in ignoring

the determinantal term
2 l/(T-l)

l/(l-p ) in the concentrated log likelihood

function and proceeding to apply the Gauss-Newton method to the transformed

sum of squared errors. Recognition of Hatanaka's procedure as a Gauss-Newton

method allows the development of a first observation correction. As in the

previous autocorrelation literature (e.g. Beach and MacKinnon (1978) and

Maeshiro (1979)), the results here indicate the importance of utilizing the

first observation even in moderate to large sample sizes (T = 50 and 100).

However, the first observation correction for Hatanaka's procedure is not a

panacea. In the Monte Carlo results presented ,here, it appears that some loss

of small sample efficiency arises when ignoring the determinantal term of

the full likelihood function. Interestingly, these results parallel the

conclusions obtained in the nonstochastic regressor model with autocorrelated

errors (see Beach and MacKinnon (1978)). •
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Thus, in the absence of considerations of computational expense, the

lagge4 dependent variable-serial correlation model should probably be estimated

by the maximum likelihood method. However, maximum likelihood estimation

can, when using a global search with grid width of 0.01, be almost 200 times

as expensive as two-step methods. In addition, care should be used in cal­

culating the asymptotic standard errors of the maximum likelihood coefficient

estimates since the information matrix is not diagonal and the usual generalized

least squares formula for the variance-covariance matrix overstates the signi­

ficance of the estimates. See Dhrymes (197l,pp. 199-201) for a derivation of

the correct variance-covariance matrix expression.

~~en relegated to a computer program with only least squares capabilities

the problem becomes one of selecting among the three two-step methods presented

here. Given the poor performance of Hatanaka's procedure without first observation

correction, the choice narrows to Hatanaka's procedure with first observation

correction and method 4, the asymptotically inefficient two-step feasible

generalized least squares method. Though their performances are quite similar,

with method 4 possibly having a slight edge, secondary considerations probably

dictate the choice of Hatanaka's procedure with first observation correction.

As with maximum likelihood estimation, the usual generalized least squares

formula for the variance-covariance matrix of the coefficient estimates of

method 4 are inappropriate and overstate the actual significance of the

estimates. Thus, the ~ariance-covariancematrix available with naive computer

printouts is incorrect and instead the correct matrix formula that should be used

is displayed in Dhrymes (1971, pp. 205-206). In contrast, the Hatanaka procedure,

implemented by using ordinary least squares on the appropriate residual adjusted,

transformed data, provides, automatically, consistent standard errors through

the conventional ordinary least squares formula •
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TABLE 1

Relative Efficiencies of ·Estimation

Averaged Over All Values of A, 2Rand T

For Given p and a

~ 0.2 0.4 0.6 0.8 Row Average

0.9508 0.9897 1.0811 1.0714 1.0233
0.2 1.0364 1.0903 1.2252 1. 2464 1.1496

0.9262 0.9565 1.0327 1.0271 0.9856

f).9547 1.0279 1. 0353 1.0905 1.0271
0.4 1.0491 1.1279 1.1714 1.2751 I . 1.1559

0.9365 0.9983 f).9897 1. 0243 0.9872

1. 0613 1. 0317 1.0680 1.0228 1.0460
0.6 1.1574 1.1309 1.2058 1.2048 1.1747

1. 0561 1. 0179 1. 0297 0.9661 1.0175

1.0664 1.0890 1.0326 0.9974 1.0464
0,8 1.1329 1.1851 1.1425 1.1762 1.1590

1.0838 1.1044 1.0339 0.9673 1. 0474

Column Average
1.0083
1.0940
1.0007

1.0346
1.1336
1.0193

1. 0543
1.1862
1.0215

1.0455
1.2256
0.9962

1.0357
1.1598
1.0094

Note: Entries from top to bottom are the relative efficiencies of: Hatanaka with
first observation correction. Hatanaka without first observation correction
and the two-step estimator analyzed by Wallis (1972).
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J,vcr3ged Uver All Valuas o( 0 and u. tor ~1vf!n ~, It! .a"d T

• O. j(j 0.75 0.90 0.99 Row Avera~e

0.90!H 1.1029 1.0806 1,0769 1.0421
0.0 1.0:J62 ),3178 1.2837 1. Z8U 1.2447

0.8449 1.031J2 l.01l1 1.046J 0.9')04

0.99nll 0.91053 0.9229 1.0340 0.9748
0.' 1. 2547 1,1773 1.1670 1.3155 i 1.2286

0.89B4 0.B881 0.8813 0.9905 0.9147

1. 0946 0.9663 1. 0073 1.0037 1.0180
O. , .1.5993- 1. 3995- 1.432<:1 1. 3766 1.4521

1l.9417 0.8728 0.91!oO 0.9591 0.9219

1.0000 1.00':'8 1.00)0 I.O)8:! 1.011 7
Colum'" AveraJl,e 1. 311';7 ;,L~ 2'982 3.2945 1. 3244 1.30R5

O.69S'"l 4:.9336 ll.9421 0.9986 a. :1423
t-30 T-iO

':Z 0.50 0.7:i 0.90 0.99 Row Average ~ 0.50 0.75 0.90 0.99 Row Averag.

1.0393 l.Ci763 1.1512 1.0812 1.0870 I.USS 1.0031 1.0B95 1.0251 1.OSEIS
0.0 1.1233 1. 1527 1. 2474 1.1753 1.1147 0.0 1.1506 1.0441 1.1457 1.0693 1.1024

1.0100 Lv51~ 1.1353 1.0742 1.0679 1.1000 0.9999 1.0833 1.0265 1.0524

I.e725 1.0S£5 0.9589 1.0838 1.0429 1. 0431 0.99~O 1.1)205 ] .0555 L029S
0.' 1.1 hi) 1.1638 1.051,4 1.1853 1.1455 0.' 1.0891 1.0465 1.0741 1.1143 LOSIO

1.0301 1.0271 0.9407 1.0744 1.0181 1.0254 0.9869 1.CIS7 1.0575 l.0214
•

1.01.60 0.8848 ':0570 1.1065 1.0161 1.0710 1.0710 0.9975 1.0496 LOl,tH3
o.s 1.1I')lll 1. 0325 1.2027 1.2:385 1.1587 O.S I.HI0 1.16'33 1. 0782 1.1287 1.1303

0.965(, 0.8523 1.0267 1.0965 0.9853 1.0406 1. 06.10 0.9892 1.0628 1.0384

1.0426 1.0059 1.0S57 1.0905 1.0487
C"!WIlD. Average 1.1542 1.1163 1.1682 1.1997 1.1596 1.0766 1.0266 1,0358 1.04:u. 1.0456

1.0019 0.9771 L034~ 1.0817 1.0238 Co1UDl1'l Average 1.1302 1.0846 1.0993 1.1041 1.1046
1.055'3 1.0159 1.0294 1.041:19 1.0:374

t-100 T-ALL

.'
~I0.:0 o.n 1).90 o. ')9 Row Avprsp;lI 0.50 0.75 0.90 0.99 Row Average

1.0493 1.0821 0.9945 1.0871 1.0533 1.0283 1.0663 1.0790 1.0676 1.0603
0.0 1.0684 1.1054 1,0101 1.1081 1.0730 0.0 1.1096 1.1550 1.1117 1.15$5 1.1487

LO.353 1.0~'36 O. 99~fi 1.0894 1.0560 1.0026 1.0437 1.01)13 1.0591 1.0417

I
1.059& 1.0778 1.0844 1.0251 1.0617

I
1,0430 1.01'::7 0.9967 1.049~ 1.0i13

0.' 1.0830 1.1081 1.1096 1.0547 1.0889 0.' ],1511 1.123!) 1.1013 1.1675 1.1:360
1.046, 1.076:3 1.ne~l 1.0246 1.0581 1.0000 0.9948 0.9807 1.036& 1.0031,

~
0.8915 0.'nr.9 3.1393 C.979R 0.':1954 1.0181 0.9748 1.0503 1. 0349- 1.0196

0.8 0.9451 1.0067 1.1800 1.0142 1.0365 1. 2141 l.1505 1.22iS 1.1a9S 1.1944
a.R7;':' 1).96<'<8 1. t.311, 0.9fllli a.9MB 0.9S63 O.~377 1.0l53 1.0250 0.9836

•
.

1.0001 1.0436 L0727 1.0307 1.0368 1.02~'~ 1.0t03 1.0420 1.0507 1.0.1.57
Column Average 1.0322 1.073" 1.0999 1.0590 1.0661 Column Aveng. 1.1581 L14:n 1. lb.,)5 1.111~ 1.1598

0.9930 1.0416 1.0707 1.0319 1.0143 0.9863 0.'1921 1.0l91 1.a..03 1.0094.

Note: FCor 111r.~rrl"'£';t'Zt:''''1 of c"t~1~~ ••• not£'; of Table 1;



•

•

•

•

r
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