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1 Introduction

The estimation of impulse-response functions (IRFs) has garnered growing interest in the recent

literature. In the specific case when the shock of interest is assumed to be observed, it is now widely

recognized that there exist numerous estimating equations within a time series framework that can

be employed for estimating the impulse response function, either directly or through iterative meth-

ods. These include (i) the local projection (LP) regressions popularized by Jordà (2005), (ii) the

distributed lag (DL) approach (e.g., Kimball et al. (2006), Kilian (2008a, 2009), Romer and Romer

(2010), and Baumeister and Kilian (2014)), and (iii) iterative approaches utilizing autoregressive

distributed lag (ARDL) regression specifications (e.g., Anzuini et al. (2013), Bachmeier and Cha

(2011), Coibion (2012), Kimball et al. (2006), Romer and Romer (2004, 2010), Kilian (2008a,

2008b), among others) or the multivariate VAR or VARX specifications. Choi and Chudik (2019)

investigated the relative merits of these approaches in finite samples of interest. However, extending

these specifications to panel data setting is not straightforward, in part due to time series bias (as

highlighted by Nickell (1981) in the context of dynamic panel data) and cross-sectional dependence.

Mei, Sheng, and Shi (2023) considers the extension of local projections to panel setting.

This paper considers large panels with possibly two cross-section dimensions (motivated by

our empirical illustrations), labeled as M and N , and a time dimension, T . It is assumed that

the shock of interest is observed, common, and the impulse-responses follow a random coeffi cient

specification. We allow for strong cross-section dependence and derive suffi cient conditions for

asymptotic normality of the Mean Group (MG) estimator based on augmented distributed lag

specifications (hereafter, MGDL), assuming (M,N, T )→∞ jointly such that N/T → κ1 and M/T

→ κ2 for some 0 ≤ κ1, κ2 < ∞. This includes panels with cross-section and time dimensions that

are large and of the same order, as well as panels with a time dimension that is large relative to the

cross section dimension(s). In the former case, the usual nonparametric MG variance estimator,

considered by Chudik and Pesaran (2019) for weakly correlated estimators, needs to be augmented

due to the strong correlation of unit-specific estimators. We also present results for conventional

panels with single cross-section dimension.

Monte Carlo experiments show satisfactory finite sample performance for the selected sample

sizes of interest, M = N ∈ {30, 40, 50, 100}, and T ≥ 50. We also investigate estimation of
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the cumulative sums of the impulse response function (also referred to as cumulative multipliers),

including the possibility of direct estimation based on regressions with cumulated variables, ξijt =

xijt + ξi,j,t−1. Our results indicate that cumulative multipliers are more accurately estimated

by cumulating estimated impulse response estimates rather than using regressions that involve

cumulated variables.

Three empirical illustrations showcase the usefulness of the MGDL approach. The first illus-

tration estimates the effects of crude oil price shocks, utilizing a quarterly retail price dataset

at the city and product levels, complied by the Council for Community and Economic Research

(C2ER, https://www.c2er.org/redt/). We find generic crude oil price increases are associated with

a significant increase in retail gasoline prices. The estimated pass-through is fast and complete, in

line with the existing crude oil pass-through literature. However, oil price shocks are generally not

associated with significant effects on other product categories (with a single exception of the “short-

ening”category). The second illustration employes the same retail price dataset, but considers the

effects of U.S. monetary policy shocks. Using five shock measures from the literature,1 we find no

significant effects of monetary policy shocks on city- and product-level retail prices. This surprising

finding may stem from the fact that monetary policy shocks probably only contribute minimally

to variations in retail prices. Additionally, these shocks are not accurately gauged, and the retail

price data we have (specific to location and product) is prone to noise. The last illustration utilizes

quarterly MSA-level house price dataset, where we find an unexpected but statistically significant

positive effect of monetary policy shocks on house prices.

The remainder of the paper is organized as follows. Section 2 introduces the model, proposes

the MGDL estimators, provides asymptotic results, and discusses potential extensions. Section 3

reports on evidence on the finite sample performance. Section 4 presents empirical illustrations.

Section 5 concludes the paper. The mathematical derivations and proofs, and additional estimation

results are provided in an appendix.

Throughout the paper, K and K0,K1, ... indicate finite generic positive constants that depend

neither on the sample size (M,N, T ) nor on the subscripts (i, j, t). These constants could take

different values at different instances in the paper. The symbols ‘→p’and ‘→d’respectively denote

1Bu, Rogers, and Wu (2021, BRW), Aruoba and Drechsel (2022, AD), Romer and Romer (2004, RR) updated by
Wieland (2021), Nakamura and Steinsson (2018, NS), and Gürkaynak, Sack, and Swanson (2005, GSS).
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the convergence in probability and distribution. ‘→j’denotes joint convergence. All vectors are

column vectors, represented by bold lower case letters. Matrices are bold upper case letters. ‖A‖ =√
% (A′A) is the spectral norm of matrix A,2 % (A) ≡ max

1≤i≤n
{|λi (A)|} is the spectral radius of A,

and |λ1(A)| ≥ |λ2(A)| ≥ ... ≥ |λn(A)| are the eigenvalues of A.

2 MGDL estimator

We consider a panel data with two cross-section dimensions (M,N) and a time dimension (T ).

Let xijt be a variable for the cross-section unit (i, j) in period t, observed for i = 1, 2, ...,M ,

j = 1, 2, ..., N , and t = 1, 2, ..., T . In the first two empirical illustrations developed in Section 4,

the index i refers to individual price categories and the index j refers to geographic locations. We

define the M × 1 vectors xi◦t = (xi1t, xi2t, ..., xiMt)
′ and the NM × 1 vector collecting all units as

xt = (x′1◦t,x
′
2◦t, ...,x

′
N◦t)

′. A special case of the single cross-section dimension, namely M = 1, is

considered in Subsection 2.1.

Let vt be a common shock observed for t = 1, 2...., T . We assume xijt can be decomposed as

xijt = aij +

∞∑
`=0

bij`vt−` + zijt, (1)

where bij` are the impulse-response coeffi cients of interest, vt is uncorrrelated with zijt′ , and the

component zijt can be serially and cross-sectionally correlated. Decomposition (1) is quite general,

and it would be implied, for instance, by a high-dimensional VAR data generating process for the

NM × 1 vector xt.

Let h be the chosen maximum horizon of interest that does not depend on the sample size

(N,M, T ). We collect bij` for ` = 0, 1, ..., h into an (h+ 1) × 1 vector bij = (bij0, bij1, ..., bijh)′.

The dependence of the dimension of bij on h is suppressed to simplify the notations. In addition,

for chosen h, we assume that there possibly exists a kg × 1 vector ghijt which is uncorrelated with

{vt, vt−1, ..., vt−h}, but can explain some of the variation in
∑∞

`=h+1 bij`vt−` + zijt. To this end, we

2Note that if x is a vector, then ‖x‖ =
√
% (x′x) =

√
x′x corresponds to the Euclidean length of vector x.

3



assume (1) can be written as

xijt = aij +
h∑
`=0

bij`vt−` +ϕ′hijghijt + ehijt, (2)

and postulate the following assumptions on the impulse-response coeffi cients bij , the shock vt, and

the high-level requirements on ghijt and ehijt.

ASSUMPTION 1 (Random coeffi cient assumption) bij = bi+cj+ωij, where bi and cj are non-

random and ωij ∼ IID (0,Ωij). Furthermore,
∑N

j=1 cj = 0, and there exist constants K,K0,K1

and 0 ≤ ρ < 1 such that ‖bi‖ < K, ‖cj‖ < K, and K0 < ‖Ωij‖ < K1.

ASSUMPTION 2 (Shock vt) vt is independent of vt′ for any t 6= t′. In addition, E
(
v2t
)

= σ2v

and there exist constants K0,K1 such that K0 < E
(
v4t
)
< K1.

ASSUMPTION 3 (High-level conditions on ghijt and ehijt). Let ēhi◦t = N−1
∑N

j=1 ehijt, ēh◦jt =

M−1
∑M

i=1 ehijt, ēh◦◦t = M−1N−1
∑M

i=1

∑N
j=1 ehijt, and Mhij = IT−h − G̃hij

(
G̃′hijG̃hij

)−1
G̃′hij,

where G̃hij = (τT−h,Ghij), τT−h is a T−h×1 vector of ones andGhij = (ghij,h+1,ghij,h+2, ...,ghij,T )′.

When M,N, T →j ∞ such that M/T → κ1 and N/T → κ2, for some 0 ≤ κ1, κ2 <∞, we have

i) V′MhijV
T−h →p σ

2
vIh+1,

ii) V′Mhijehi◦√
T−h →d N

(
0, σ2vκhiIh+1

)
, for some κhi <∞, and

iii)
V′Mhij(ēh◦j−ēh◦◦)√

T−h →d N
(
0, σ2vπhjIh+1

)
, for some πhj <∞.

The object of interest is the estimation of parameter vectors bi and cj in Assumption 1. Assump-

tions 1-3 are not much restrictive. As mentioned earlier, xt could be given by a high-dimensional

VAR model. Alternatively, xt can be represented by a high-dimensional MA(∞) process that falls

outside VAR representations. In addition, unobserved common shocks (other than vt) or unob-

served factors are accommodated by Assumption 3.ii and iii. Our high-level assumptions are also

compatible with heteroskedasticity of the unobserved component ehijt in all dimensions.

This paper considers a mean group approach built on the unit-specific augmented DL regressions

given by (2). One possible choice for variables in ghijt is the appropriately lagged dependent
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variable, namely xij,t−h−s for s > 0. Deterministic variables (such as seasonal dummies) or any

other variables assumed to be uncorrelated with {vt, vt−1, ..., vt−h} could be included as well. It is

not necessary to include variables in ghijt for consistent estimation, namely ghijt could be an empty

vector.

One maintained assumption of this setup is that vt is observed, which may restricts the applica-

bility of this approach.

Let b̂ij` denote the corresponding LS estimates of bij` using (2), which we collect in an (h+ 1)×1

vector b̂ij =
(
b̂ij0, b̂ij1, ..., b̂ijh

)′
. The Mean Group Distributed Lag (MGDL) estimators of bi and

cj , respectively, are given by

b̂i = N−1
N∑
j=1

b̂ij , for i = 1, 2, ...,M , (3)

and

ĉj = M−1
M∑
i=1

(
b̂ij − b̂i

)
, for j = 1, 2, ..., N. (4)

The following theorem establishes suffi cient conditions for asymptotic normality of the MGDL

estimators.

Theorem 1 (Consistency) Let xijt be given by (2) and Assumptions 1-3 hold. Consider b̂i and ĉj

given by (3) and (4), respectively. Let h ≥ 0 be a fixed integer that does not depend on the sample

size (M,N, T ), and suppose M,N, T →j ∞ such that M/T → 0 and N/T → 0, then we have

√
N
(
b̂i − bi

)
→d N

(
0, Ω̄i◦

)
, and

√
M (ĉj − cj)→d N

(
0, Ω̄◦j

)
, (5)

where Ω̄i◦ = N−1
∑N

j=1Ωij, and Ω̄◦j = M−1
∑M

i=1Ωij.

If M,N, T →j ∞ such that M/T → κ1 and N/T → κ2, for some 0 < κ1, κ2 <∞, then

√
N
(
b̂i − bi

)
→d N (0,Ψ1,i) , and

√
M (ĉj − cj)→d N (0,Ψ2,j) , (6)

where Ψ1,i = Ω̄i◦ + κ1Υ1,i, Ψ2,j = Ω̄◦j + κ2Υ2,j, and Υ1,i,Υ2,j are defined in (A.3) and (A.4) in

the Appendix.
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Proofs are presented in the Appendix.

For asymptotic distribution to depend only on Ωij , we require N/T → 0 (for b̂i) and M/T → 0

(for ĉj). When M/T → κ1 > 0 and N/T → κ2 > 0 as M,N, T →j ∞, then the asymptotic

variance in general depends on additional terms, arising from the strong cross section dependence

of ehijt, which can arise when bij` are nonzero for ` > h, and/or from the presence of additional

common shocks and/or unobserved common factors.

To conduct inference, Ω̄i◦ and Ω̄◦j can be estimated using

Ω̂i◦ =
1

N (N − 1)

N∑
j=1

ω̂ijω̂
′
ij , (7)

and

Ω̂◦j =
1

M (M − 1)

M∑
i=1

ω̂ijω̂
′
ij , (8)

where ω̂ij = b̂ij− b̂i− ĉj . Hence, the standard non-parametric variance estimators for mean group

estimation are valid when N/T → 0 (for b̂i) and M/T → 0 (for ĉj). However, in the case when

the cross-section and time dimensions are of the same order, then the usual nonparametric mean

group estimators would no longer suffi ce due to the additional terms in Ψ1,i and Ψ2,j , see (6). Ψ1,i

and Ψ2,j can be estimated as

Ψ̂1,i = Ω̂i◦ +
M

T
Υ̂1,i (9)

and

Ψ̂2,j = Ω̂◦j +
N

T
Υ̂2,j , (10)

respectively, where Υ̂1,i = σ̂−2v κ̂hiIh+1, Υ̂2,j = σ−2v ω̂hjIh+1, σ̂2v = (T − h)−1
∑T

t=h+1 v
2
t , κ̂hi =

(T − h)
∑T

t=h+1
̂̄e2hi◦t, ω̂hj = (T − h)−1

∑T
t=h+1

(̂̄eh◦jt − ̂̄eh◦◦t)2, and {̂̄e2hi◦t, ̂̄eh◦jt, ̂̄eh◦◦t} are com-
puted using the residuals from (2), denoted as êhijt.
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2.1 MGDL estimator in large panels with a single cross section dimension

Suppose M = 1. Hence, we have data (dropping subscript i = 1) on xjt, generated according to

xjt = aj +

h∑
`=0

bj`vt−` +ϕ′hjghjt + ehit. (11)

In this setting, we replace the random coeffi cient Assumption 1 with the following assumption on

the elements of bj = (bj0, bj1, ..., bjh)′.

ASSUMPTION 4 (Random coeffi cient assumption for a single cross-section dimension) bj =

b +ωj, where ωj ∼ IID (0,Ω). Furthermore, there exist constants K0 and K1such that ‖b‖ < K,

and K0 < ‖Ω‖ < K1.

The following assumption replaces Assumptions 3 for the case of a single-cross-section dimen-

sion.

ASSUMPTION 5 Let ēh◦t = N−1
∑N

j=1 ehjt and Mhj = IT−h − G̃hj

(
G̃′hjG̃hj

)−1
G̃′hj, where

G̃hj = (τT−h,Ghj), τT−h is T − h × 1 vector of ones and Ghj = (ghj,h+1,ghj,h+2, ...,ghj,T )′. If

N,T →j ∞ such that N/T → κ, for some 0 ≤ κ <∞, then:

i) V′MhjV
T−h →p σ

2
vIh+1, and

ii) V′Mhjeh◦√
T−h →d N

(
0, σ2vκhIh+1

)
, for some κh <∞.

The following proposition establishes asymptotic normality of the MGDL estimator. The as-

ymptotic analysis is similar in the case of single-cross-section panels.

Proposition 1 Let M = 1, and (dropping the subscript i = 1) suppose xjt is generated by (11),

let Assumptions 2 and 4-5 hold, and let h ≥ 0 be a fixed integer that does not depend on the sample

size (N,T ). Consider the MGDL estimator

b̂ = N−1
N∑
j=1

b̂j, (12)

where b̂j is the unit-specific LS estimator of bj using the regression (11).
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(i) Suppose N,T →j ∞ such that N/T → 0, then,

√
N
(
b̂− b

)
→d N (0,Ω) . (13)

(ii) Suppose N,T →j ∞ such that N/T → κ, for some 0 < κ <∞. Then

√
N
(
b̂− b

)
→d N (0,Ω + κΥ) , (14)

where Υ is given by (A.18) in the Appendix.

2.2 Extensions

We have considered mean group estimation based on the (augmented) DL regressions (2). Other

unit-specific estimation approaches could also be utilized in place of the DL regression specification.

These include the LP approach popularized by Jordà (2005), or the iterative ARDL, VARDL, or

VARX∗ approaches. See Choi and Chudik (2019) for a further discussion of the strengths and

weaknesses of these approaches.

Another important consideration is the object of interest. In some empirical applications, the

primary focus can be on the mean cumulative response,

δi,h =
h∑
`=0

bi`,

where δi,h is also commonly referred to as the (mean) cumulative multiplier. These multipliers can

be estimated by cumulating estimates of bi`, namely

δ̂i,h =
h∑
`=0

b̂i`.

Alternatively, these multipliers can be estimated directly using the augmented DL regressions ap-

plied to the variables generated by cumulating xijt,

ξijt = xijt + ξi,j,t−1,
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with the initial value ξij0 set to zero, without any loss of generality. Direct MGDL estimator of

δ̂i,h can, for instance, be obtained using the following specification.

ξijt = aij +
h∑
`=0

δij`vt−` + ϕhijξi,j,t−h−1 + θhij∆ξi,j,t−h−1 + ehit. (15)

We have effectively included two lags of the dependent variable in (15) to facilitate the exposition

in the MC section below, where we compare the direct and indirect MGDL estimators of δi,h,

assuming the random coeffi cient specification δij` = δi,h + cδj,h + ωδij` implied by Assumption 1.

3 Monte Carlo Evidence

This section investigates the small sample performance of the MGDL estimators of mean impulse-

response coeffi cients bi = (bi0, bi1, ..., bih)′ and the mean cumulative multipliers δi,h =
∑h

`=0 bi`.

We set the horizon h = 4 matching the horizon selected in the empirical illustrations below.

Subsections 3.1-3.3 respectively provide the Monte Carlo simulation design, the description of

adopted estimators, and statistics of interest. The last subsection presents a summary of the

Monte Carlo simulation results.

3.1 Simulation Design

We generate xijt based on (1), namely

xijt = aij +

∞∑
`=0

bij`vt−` + zijt, for i = 1, 2, ...,M, j = 1, 2, ..., N, and t = 1, 2, ..., T, (16)

where the shock vt is generated as vt ∼ N (0, 1) and the fixed effects are generated as aij ∼ N (1, 1).

zijt is generated to be persistent as

zijt = ρijzij,t−1 +
√

1− ρ2ijeijt,

for t = −B + 1,−B + 2, ..., 0, 1, 2, ..., T , in which B = 100, and there are two choices forρij : (i) ρij

∼ U [0.3, 0.5] (denoted as ρmax = 0.5) and (ii) ρij ∼ U [0.6, 0.95] (denoted as ρmax = 0.95). We
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generate eijt according to

eijt = γijft + εijt,

where ft ∼ N (0, 1), γij = U [0, 0.2], and εijt ∼ N (0, 1).

The IRF coeffi cients, bij`, are generated based on the following random coeffi cient specification,

bij` = bi` + cj` + ωij`,

for ` = 1, 2, ..., B, where B = 100,

bi` = H1λ
`
1 +H2λ

`
2,

λ1 = 0.6, λ2 = 0.4, H1 = 2 and H2 = −1.9. This parameterization resembles a hump-shaped IRF

that is common in many applications (see Figure 1 for plots of bi` and δi,h =
∑h

`=0 bi`).

Figure 1: Plots of bi` and the cumulative multipliers (δi,h =
∑h

`=0 bi`)

(a) Plot of bi`, ` = 0, 1, ..., 8 (b) Plot of δi,h =
∑h

`=0 bi`, h = 0, 1, ..., 8

We generate cj` = 0.1κ`αj , κ` = 0.8`, and αj = 1−2 (j − 1) / (N − 1) which ensures
∑N

j=1 cj` =

0, as required for identification. ωij` is generated as ωij` = κ`×∆ij , where ∆ij ∼ U [−0.2, 0.2]. We

set bij` = 0 for ` > B (and B = 100). Note that due to exponential decay, bij` are all negligible for

a larger value of `.

We consider M = N ∈ {30, 40, 50, 100}, and T = {50, 100, 150, 200} and compute R = 2000

Monte Carlo replications.
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3.2 Estimators

For the estimation of bi`, we consider the MGDL estimator given by (3) based on the augmented

DL regressions (2) with ghijt given by xi,j,t−h−1, namely the estimating regression is

xijt = aij +
h∑
`=0

bij`vt−` + ϕhijxi,j,t−h−1 + ehit. (17)

For the estimation of the cumulative multiplier (δi,h), we consider cumulating the MGDL esti-

mates, namely δ̂i,h =
∑h

`=0 b̂i`. Furthermore, we investigate three direct options for the estimation

of δi,h discussed in Section 2.2, based on (15) with or without restrictions imposed on
(
ϕhij , θhij

)
.

The first specification imposes θhij = 0 and is given by

ξijt = aij +
h∑
`=0

δij`vt−` + ϕhijξi,j,t−h−1 + ehit, (18)

The second specification imposes ϕhij = 1 and θhij = 0, namely

ξijt = aij +

h∑
`=0

δij`vt−` + ξi,j,t−h−1 + ehit. (19)

The third specification imposes ϕhij = 1 only,

ξijt = aij +
h∑
`=0

δij`vt−` + ξi,j,t−h−1 + θhij∆ξi,j,t−h−1 + ehit. (20)

Confidence intervals are based on two options for the asymptotic variance estimators: (i) the

nonparametric estimator in (7) and (ii) the augmented estimator given by (9). We use Bonferroni

correction to control for the family-wise error rate, as proposed by Dunn (1961).

3.3 Objectives

Our focus here is twofold: (i) the estimation of bi`; and (ii) the estimation of the cumulative

multiplier δi,h =
∑h

`=0 bi`. Regarding the first objective, we report the overall estimation bias
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computed as

biasb =
1

(h+ 1)NR

R∑
r=1

N∑
i=1

h∑
`=0

(
b̂
(r)
i` − bi`

)
, (21)

the overall RMSE computed as

rmseb =

[
1

(h+ 1)NR

R∑
r=1

N∑
i=1

h∑
`=0

(
b̂
(r)
i` − bi`

)2]1/2
, (22)

and the 95% family-wise (across both ` = 0, 1, ..., h and i = 1, 2, ..., N) confidence intervals coverage

rate

FWCRb,0.95 =
1

R

R∑
r=1

I

{
N∑
i=1

h∑
`=0

I
[
b̂
(r)
i` ∈ CI

(
b̂
(r)
i`

)]
= N (h+ 1)

}
, (23)

where CI
(
b̂
(r)
i`

)
is the 95% family-wise confidence interval for b̂(r)i` .

In the case of estimation of the cumulative multiplier δi,h, we focus on h = 4, and report the

bias,

biasδ,h =
1

NR

R∑
r=1

N∑
i=1

(
δ̂
(r)

i,h − δi,h
)
, (24)

the RMSE

rmseδ,h =

[
1

NR

R∑
r=1

N∑
i=1

(
δ̂
(r)

i,h − δi,h
)2]1/2

, (25)

as well as the 95% family-wise (across i = 1, 2, ..., N) confidence intervals coverage rate.

FWCRδ,h,0.95 =
1

R

R∑
r=1

I

[
N∑
i=1

I
[
δ̂
(r)

i,h ∈ CI
(
δ̂
(r)

i,h

)]
= N

]
. (26)

3.4 Monte Carlo Simulation Results

Table 1 summarizes the simulation results for the bias (biasb×100), RMSE (rmseb×100), and the

family-wise coverage rates of the 95% confidence intervals (FWCRb,0.95 × 100) for the estimation

of non-cumulative IRF parameters bi. Coverage Rate 1 is based on (7), and it is therefore likely to

perform well only when M/T → 0 and N/T → 0, see (5). When M,N, T are of the same order, we

expect these confidence intervals to underestimate the true extent of estimation uncertainty due to

the strong cross-section dependence. Coverage Rate 2 is based on (9), and it is therefore applicable

when M,N, T are of the same order, see (6), and it is robust to strong cross-section dependence.
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Overall, the bias of the MGDL estimator is small and diminishes with T . Coverage Rate 1 show

inference based on the usual nonparametric formula (7) significantly underestimate the true extent

of uncertainty. This coverage rate improves for a fixed N,M , as T increases, but is overall very low

for the sample sizes considered. Coverage Rate 2 is close to the 95 percent, slightly overestimating

the uncertainty, as expected due to conservative Bonferroni correction by Dunn (1961). The choice

of persistence (ρmax = 0.5 or 0.95) turns out to be broadly inconsequential to the performance of

the MGDL estimator in the experiment designs considered here.

Tables 2 and 3 present the results for the estimation of the cumulative multiplier δi,h (for h = 4)

in experiments with ρmax = 0.5 and 0.95, respectively. Regardless of the choice of ρmax, the direct

estimators of δi,4 based on regressions (18)-(20) have consistently poorer performances in terms of

the bias, RMSE, and the coverage rates, compared to the indirect estimation based on (17). The

RMSE difference between the direct and indirect estimators is strikingly large, in the range of 46

and 290 percent for T = 50. Although the performance gap between the two approaches diminishes

with an increase in T , it still remains large even for T = 200. This outcome leads us to focus on the

indirect estimators of the cumulative multiplier in the empirical illustrations in the next section.

Overall, our Monte Carlo experiments show satisfactory performance of the MGDL estimators for

the IRF means bi and their cumulative sums.
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Table 1: MC results for the estimation of bi in experiments with low and high persistence

(ρmax = 0.5 and ρmax = 0.95)

Bias (×100) RMSE (×100) Coverage Rate 1 (%) Coverage Rate 2 (%)

T : 50 100 150 200 50 100 150 200 50 100 150 200 50 100 150 200

(a) Experiments with low persistence (ρmax = 0.5)

N =M MGDL

30 -0.49 -0.25 -0.18 -0.14 5.42 4.52 4.23 4.06 55.20 68.35 74.25 80.05 97.65 97.80 96.95 97.15

40 -0.55 -0.23 -0.15 -0.09 4.87 3.99 3.72 3.60 50.45 64.20 73.60 77.35 98.00 98.05 97.20 98.25

50 -0.64 -0.22 -0.16 -0.13 4.53 3.64 3.39 3.25 44.90 62.00 72.55 74.80 97.70 98.15 98.40 97.45

100 -0.60 -0.23 -0.13 -0.13 3.71 2.83 2.56 2.43 26.15 43.30 56.90 63.55 97.30 98.60 98.90 98.80

(b) Experiments with high persistence (ρmax = 0.95)

MGDL

30 -0.14 -0.05 -0.03 -0.02 5.28 4.45 4.20 4.04 60.35 71.10 77.00 81.75 97.95 97.45 96.75 96.90

40 -0.18 -0.03 -0.02 0.01 4.71 3.93 3.68 3.58 55.25 68.25 76.55 80.25 97.95 98.05 97.40 98.05

50 -0.27 -0.02 -0.03 -0.02 4.35 3.58 3.35 3.23 51.85 65.90 74.55 76.95 97.60 98.00 98.25 97.35

100 -0.24 -0.03 0.00 -0.04 3.52 2.75 2.53 2.41 32.00 48.40 59.75 67.80 97.75 98.70 98.85 98.75

Notes: This table reports the overall bias and RMSE (both ×100), as defined in (21) and (22), respectively, and the
family-wise coverage rate of Bonferroni-corrected 95 percent confidence intervals, as defined by (23) computed using

the usual nonparametric variance estimator (7) (Coverage Rate 1) and the augmented variance estimator (9)

(Coverage Rate 2). The MGDL estimator is based on augmented DL regressions (17). Reported results are based

on R = 2000 Monte Carlo replications.
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Table 2: MC results for the estimation of the cumulative multiplier δi,h (h = 4) in experiments

with low persistence (ρmax = 0.5)

Bias (×100) RMSE (×100) Coverage Rate 1 (%) Coverage Rate 2 (%)

T : 50 100 150 200 50 100 150 200 50 100 150 200 50 100 150 200

N =M (a) MGDL estimation based on (17), δ̂i,h =
∑h
`=0 b̂i`

30 -2.43 -1.27 -0.89 -0.68 21.71 19.42 18.74 18.26 75.95 80.50 81.80 85.10 84.70 86.40 85.75 87.70

40 -2.74 -1.14 -0.73 -0.43 19.38 16.99 16.36 16.11 74.65 82.25 83.95 85.30 84.55 88.15 87.45 88.60

50 -3.18 -1.11 -0.82 -0.66 17.91 15.32 14.78 14.43 74.05 82.90 84.80 85.70 84.25 88.80 89.30 89.35

100 -3.01 -1.17 -0.65 -0.67 14.28 11.48 10.80 10.49 64.55 77.70 83.20 86.45 81.80 87.55 90.20 91.20

(b) Direct MGDL estimation based on (18)

30 -34.59 -16.73 -10.23 -7.39 56.22 38.64 31.21 27.47 19.25 30.85 42.05 49.95 62.70 78.35 83.00 85.55

40 -36.77 -15.56 -9.97 -6.96 56.10 37.03 29.48 26.59 18.10 28.90 37.75 42.85 62.85 81.30 86.65 87.55

50 -37.21 -16.06 -10.51 -8.21 55.82 36.12 29.60 25.70 16.10 27.15 33.20 38.65 66.60 82.25 86.00 87.60

100 -37.03 -16.10 -10.44 -7.52 55.62 34.23 27.12 24.08 10.45 18.50 24.95 29.55 70.90 87.45 91.10 91.85

(c) Direct MGDL estimation based on (19)

30 -10.16 -5.65 -3.18 -2.41 39.41 30.36 26.01 23.70 34.45 45.15 54.05 62.25 82.80 87.15 89.55 89.90

40 -11.62 -4.57 -2.85 -1.96 37.97 28.64 24.04 22.40 29.85 40.55 50.10 53.95 83.55 88.75 90.60 91.65

50 -12.33 -5.41 -3.57 -3.03 37.64 27.07 23.64 21.26 28.20 39.00 46.65 50.10 83.65 89.40 90.20 91.20

100 -12.03 -4.92 -3.25 -2.45 36.66 25.26 20.52 19.05 20.65 29.70 34.90 39.20 88.80 93.15 94.95 94.30

(d) Direct MGDL estimation based on (20)

30 -7.04 -3.51 -2.06 -1.39 31.75 24.61 22.02 20.60 46.65 59.05 67.75 73.55 84.60 88.70 89.40 90.80

40 -7.96 -2.95 -1.66 -1.14 30.00 22.60 19.93 18.83 42.10 56.85 65.85 69.40 84.85 89.80 91.65 92.10

50 -8.51 -3.51 -2.22 -1.94 29.45 21.13 18.82 17.47 39.05 55.65 62.50 67.15 86.00 90.35 91.20 91.60

100 -8.19 -3.07 -1.94 -1.63 27.60 18.45 15.44 14.35 29.00 43.00 52.25 55.50 87.90 93.65 94.95 94.10

Notes: This table reports the bias and RMSE (both ×100), defined in (24) and (25), respectively, and the
Bonferroni-corrected family-wise coverage rate of 95 percent confidence intervals defined in (26) computed using the

usual nonparametric variance estimator (7) (Coverage Rate 1) and the augmented variance estimator (9) (Coverage

Rate 2). Reported results are based on R = 2000 Monte Carlo replications.
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Table 3: MC results for the estimation of the cumulative multiplier δi,h (h = 4) in experiments

with high persistence (ρmax = 0.95)

Bias (×100) RMSE (×100) Coverage Rate 1 (%) Coverage Rate 2 (%)

T : 50 100 150 200 50 100 150 200 50 100 150 200 50 100 150 200

N =M (a) MGDL estimation based on (17), δ̂i,h =
∑h
`=0 b̂i`

30 -0.72 -0.26 -0.14 -0.09 21.95 19.55 18.87 18.36 78.70 81.90 83.15 86.10 85.80 87.25 85.95 88.25

40 -0.91 -0.16 -0.10 0.07 19.45 17.07 16.41 16.19 77.00 83.55 86.10 86.15 85.90 88.75 89.00 89.10

50 -1.37 -0.09 -0.14 -0.10 17.74 15.40 14.81 14.51 77.80 85.30 86.35 86.10 86.55 89.70 90.15 89.20

100 -1.19 -0.15 0.00 -0.22 13.87 11.34 10.78 10.48 69.75 81.05 85.25 87.60 83.80 89.35 91.45 91.90

(b) Direct MGDL estimation based on (18) (ϕ is not restricted)

30 -34.42 -16.61 -10.10 -7.33 56.40 38.89 31.43 27.64 20.80 32.00 43.75 49.50 63.10 79.25 84.10 86.25

40 -36.55 -15.40 -9.96 -6.89 56.19 37.23 29.70 26.74 18.40 29.50 38.05 43.20 63.25 80.90 86.60 87.70

50 -36.94 -16.00 -10.43 -8.14 55.87 36.30 29.75 25.85 16.85 28.30 34.05 38.60 65.45 81.75 85.90 87.65

100 -36.76 -15.94 -10.32 -7.49 55.54 34.28 27.19 24.18 11.30 19.35 26.10 30.60 70.35 87.65 91.05 92.25

(c) Direct MGDL estimation based on (19) (ϕ is restricted to one)

30 -10.16 -5.64 -3.12 -2.39 39.79 30.66 26.25 23.85 35.50 45.55 55.05 61.00 82.50 87.40 89.85 90.50

40 -11.62 -4.54 -2.88 -1.93 38.29 28.92 24.26 22.55 31.35 41.10 51.10 54.35 83.35 89.05 91.05 91.90

50 -12.32 -5.45 -3.57 -3.01 37.93 27.31 23.82 21.42 30.15 40.05 47.00 50.15 82.95 89.05 90.40 90.95

100 -12.01 -4.87 -3.20 -2.47 36.84 25.40 20.63 19.16 20.85 29.70 35.45 39.65 87.90 92.95 94.85 94.20

(d) Direct MGDL estimation based on augmented regression (20)

30 -4.91 -2.18 -1.27 -0.75 30.21 23.83 21.60 20.36 50.25 62.15 70.20 75.55 86.85 91.30 90.45 92.20

40 -5.56 -1.80 -0.86 -0.55 28.21 21.74 19.56 18.51 46.95 60.05 67.95 71.05 87.15 91.50 92.85 93.50

50 -6.07 -2.33 -1.37 -1.29 27.29 20.30 18.29 17.09 43.55 56.60 65.00 69.75 88.75 92.75 92.40 92.60

100 -5.66 -1.82 -1.09 -1.06 25.27 17.37 14.88 13.83 32.10 45.35 54.70 59.50 89.95 94.85 95.70 95.10

Notes: See the notes in Table 2.

16



4 Empirical Illustrations

This section presents three brief empirical illustrations. The first two illustrations utilize quar-

terly retail price data provided by the Council for Community and Economic Research (C2ER,

https://www.c2er.org/redt/), formerly known as American Chamber of Commerce Researchers

Association. Originally created for comparing the cost of living for mid-level managers in various

metropolitan areas in the U.S., the C2ER dataset contains retail prices of a large number of indi-

vidual goods and services in dollars and cents (see Choi, Choi, and Chudik (2020)). This dataset

covers retail prices for 43 products (M = 43) in 41 metropolitan areas (N = 41), spanning from the

first quarter of 1990 to the fourth quarter of 2015 (T = 104). We consider the effects of crude oil

price shocks (Subsection 4.1) and the effects of U.S. monetary policy shocks (Subsection 4.2). Our

third empirical illustration explores the impacts of U.S. monetary policy shocks on house prices by

utilizing a panel dataset consisting of 404 metropolitan areas (N = 404) from the first quarter of

1975Q1 to the fourth quarter of 2023 (Subsection 4.3).

4.1 The Impact of Oil Price Shocks on Retail Prices

We investigate the impacts of crude oil price shocks, computed as the first difference of log of

crude oil prices sequentially sampled at the end of each quarter, on the city- and product-level

retail prices.3 To this end, we utilize the daily West Texas Intermediate (WTI) crude oil prices

obtained from FRED database (https://fred.stlouisfed.org, series DCOILWTICO). We focus on the

cumulative multipliers of the oil shock, measured at the horizon of h = 4 quarters.

Guided by the MC results in Section 3, we employ the MGDL approach based on (17) as

opposed to equations (18)-(20). In addition to the lagged dependent variable, xi,j,t−h−1, we also

augment (17) with seasonal dummies. Table 4 reports the estimates of cumulative multipliers,

δ̂i,h =
∑h

`=0 b̂i`, together with Bonferroni-corrected 95% family-wise confidence intervals. These

intervals are based on the augmented variance estimators given by (9)-(10) that are robust to

strong cross-section dependence. Significant entries are highlighted by asterisks. Not surprisingly,

in retail gasoline price (product #26) we note a large pass-through effect of oil price shocks at

3First-differenced logs of sequentially sampled crude oil prices do not contain any statistically significant serial
correlation.
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62.7%, meaning a 1% rise in WTI crude oil prices results in an approximate 0.6% increase in retail

gasoline prices across US cities, on average. Given that the long-run pass-through estimate of 62.7%

is approximately the cost share of crude oil of producing gasoline (Baumeister and Kilian (2014)),

our results indicate a full pass-through. Further inspection of the impulse response coeffi cients

b̂i` suggests that the full pass-through takes place within one quarter, in line with our economic

intuition. However, we find that crude oil price pass-through is not statistically significant in the

remaining products, with a single exception of the “shortening”. The estimates of location effects

(cj) are reported in Table A1 in the Appendix, which are economically very small and insignificant

in the vast majority of locations under study.

4.2 The Effects of Monetary Policy Shocks on Retail Prices

We investigate the effects of U.S. monetary policy shocks next using the same retail price panel.

For this exercise, we borrow five popular measures of U.S. monetary policy shocks by Bu, Rogers,

and Wu (2021, BRW), Aruoba and Drechsel (2022, AD), Romer and Romer (2004, RR) updated

by Wieland (2021), Nakamura and Steinsson (2018, NS), and the target monetary policy shock by

Gürkaynak, Sack, and Swanson (2005, GSS). These shocks are scaled to have a unit variance and

a positive correlation with the one-day change in the one-year Treasury yield around the FOMC

announcement, as in Acosta (2023). Not surprisingly, these measures are positively correlated with

the correlation, in the wide range of 20 to 72 percent (see Table 5).

MGDL estimates of the cumulative retail price effects of these shocks are presented in Table A2

in the Appendix. Surprisingly, we do not find any statistically significant effects, for any product

category and any of the five shocks. This could be due to the possibility that U.S. monetary policy

shocks explain only a small fraction of retail price fluctuations. Furthermore, the monetary policy

shocks are imperfectly measured, and the retail price data are noisy as well.
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Table 4: Estimates of oil price shocks cumulative multipliers (h = 4)

MGDL
Product category δ̂i,4 Conf. Interval♦

1 TBONESTEAK 0.056 [-0.055,0.167]
2 GROUNDBEEF 0.023 [-0.128,0.173]
3 FRYINGCHICKEN -0.012 [-0.118,0.094]
4 CANNED TUNA -0.086 [-0.231,0.059]
5 WHOLEMILK 0.101 [-0.041,0.244]
6 EGGS 0.095 [-0.246,0.436]
7 MARGARINE -0.034 [-0.163,0.094]
8 CHEESE 0.002 [-0.101,0.105]
9 POTATOES 0.002 [-0.359,0.363]
10 BANANAS 0.109 [-0.084,0.302]
11 LETTUCE 0.012 [-0.443,0.468]
12 BREAD 0.073 [-0.042,0.189]
13 COFFEE 0.108 [-0.106,0.322]
14 SUGAR 0.014 [-0.111,0.139]
15 CORNFLAKES -0.005 [-0.103,0.092]
16 CANNED PEAS -0.019 [-0.163,0.126]
17 CANNED PEACHES -0.015 [-0.094,0.063]
18 TISSUES 0.087 [-0.059,0.233]
19 DETERGENT -0.174 [-0.385,0.037]
20 SHORTENING 0.222* [0.080,0.364]
21 FROZEN CORN 0.066 [-0.096,0.228]
22 SOFT DRINK 0.013 [-0.077,0.103]
23 HOME PRICE 0.000 [-0.034,0.035]
24 PHONE 0.019 [-0.038,0.075]
25 AUTO MAINTENANCE -0.418 [-0.880,0.043]
26 GASOLINE 0.627* [0.356,0.897]
27 DOCTOR VISIT -0.005 [-0.067,0.058]
28 DENTIST VISIT -0.055 [-0.187,0.077]
29 MCDONALD’S HAMBURGER -0.001 [-0.056,0.054]
30 PIZZA -0.022 [-0.108,0.064]
31 FRIED CHICKEN 0.005 [-0.067,0.077]
32 HAIRCUT 0.003 [-0.045,0.051]
33 BEAUTY SALON 0.007 [-0.071,0.085]
34 TOOTHPASTE -0.002 [-0.113,0.108]
35 DRY CLEANING -0.008 [-0.057,0.042]
36 MAN’S SHIRT -0.077 [-0.246,0.091]
37 APPLIANCE REPAIR 0.017 [-0.052,0.087]
38 NEWSPAPER -0.016 [-0.089,0.056]
39 MOVIE 0.005 [-0.035,0.045]
40 BOWLING 0.006 [-0.070,0.081]
41 TENNIS BALLS -0.016 [-0.100,0.068]
42 BEER 0.119 [-0.035,0.272]
43 WINE 0.058 [-0.062,0.178]

Notes: (♦) 95 percent family-wise confidence intervals are reported.
(*) Statistically significant estimates are highlighted by asterisk.

This table reports the MGDL cumulative multiplier estimates δ̂i,h =
∑h
`=0 b̂i` at horizon h = 4 quarters for the

crude oil price shocks. MGDL estimates are based on augmented DL regressions (17), where xijt is log-difference of price for
product category i in city j in period t from C2ER dataset, which spans M = 43 reported categories over N = 41 cities, covering
T = 104 quarterly periods from 1990Q1 to 2015Q4.
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Table 5: Correlations among U.S. monetary policy shocks measures

BRW AD RR NS GSS

BRW 1.00 0.24 0.22 0.54 0.30

AD . 1.00 0.72 0.28 0.47

RR . . 1.00 0.20 0.36

NS . . . 1.00 0.62

GSS . . . . 1.00

Notes: This table presents correlation matrix of U.S. monetary policy shocks by Bu, Rogers, and Wu (2021, BRW),

Aruoba and Drechsel (2022, AD), Romer and Romer (2004, RR) updated by Wieland (2021), Nakamura and

Steinsson (2018, NS), and Gürkaynak, Sack, and Swanson (2005, GSS), aggregated to quarterly frequency.

Table 6: Estimates of US monetary policy cumulative multipliers (h = 4) on house prices

MP Shock δ̂i,4 Conf. Interval

BRW 0.644* [0.261,1.026]

AD 0.313 [-0.026,0.652]

RR 0.050 [-0.214,0.314]

NS 0.633* [0.241,1.025]

GSS 0.854* [0.454,1.255]

Notes: See notes to Table 5. MGDL estimates are obtained based on (17) augmented with seasonal dummies.

4.3 The Effects of U.S. Monetary Policy Shocks on House Prices

In light of the lack of statistically significant effects of monetary policy shocks on retail prices, we

investigate the effects on house prices in a quarterly panel featuring N = 404 metropolitan areas.

This dataset is less noisy and has a better time coverage (1975Q1 to 2023Q4). Table 6 presents

estimates of cumulative multipliers of monetary policy shocks. All five estimates are positive and

three are statistically significant (BRW, NS and GSS). The estimation results suggest that unit

(one standard deviation) contractionary monetary policy shock leads to 0.6-0.9 percent house price

appreciation one year after the shock. Monetary policy shocks affect both demand and supply

side of housing market and these estimates suggest that, perhaps due to the dominant supply side

effects, contractionary monetary policy effects could lead to house price appreciation.
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5 Conclusion

This paper developed the MGDL estimators of impulse-responses in a panel setting with one or two

cross-sections under assumptions that the shock is common, observed, and the impulse responses

follow a random coeffi cient specification. We obtained suffi cient conditions for asymptotic normal-

ity, and documented satisfactory small sample performance using Monte Carlo experiments. The

empirical relevance of the MGDL estimators is showcased by examining crude oil price pass-through

on U.S. retail prices, as well as the effects of U.S. monetary policy shocks on the retail prices and

on the house prices.

Several potential extensions remain for future research. Specifically, within the context of panel

data, alternative methodologies beyond the distributed lag specifications investigated in this paper

warrant further exploration. Some of these alternative approaches mentioned in Section 2.2 may

yield panel estimators with improved performance in small samples. Of theoretical interest is

also the case of homogenous IRFs, although such homogeneity assumption appears less plausible

for empirical applications. We abstracted from time aggregation issues, but there could be a

frequency mismatch between the shock variable and the target variable of interest. Contrasting

panel estimators with estimation based on the aggregated data is also of interest. In addition,

estimation of IRFs for unit-specific (as opposed to common) shocks could be considered, as in Mei,

Sheng, and Shi (2023). We leave exploration of these avenues to future studies.
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A Appendix

This appendix consists of two sections. Section A.1 presents lemmas and proofs. Section A.2

presents additional empirical results.

A.1 Lemmas and Proofs

Lemma A.1 Let εij = b̂ij −bij, and assume Assumptions 1-3 hold, where b̂ij is the LS estimator

of (h+ 1)× 1 vector bij = (bij0, bij1, ..., bijh)′ in the DL regression (2). Then

N−1/2
N∑
j=1

εij →d N (0, κ1Υ1,i) , (A.1)

and

M−1/2
M∑
i=1

(εij − ε̄i◦)→d N (0, κ2Υ2,j) (A.2)

as (M,N, T )→∞ jointly such that N/T → κ1 > 0 and M/T → κ2 > 0, where

Υ1,i =
κhi
σ2v

Ih+1, (A.3)

Υ2,j =
πhj
σ2v

Ih+1, (A.4)

σ2v = E
(
v2t
)
, and (κehi, πhj) are defined in Assumption 3.

Proof. Define xij = (xij,h+1, xij,h+2, ..., xijT )′, v` = (vh+1−`, vh+2−`, ..., vT−`)
′ for ` = 0, 1, 2, ..., h,

ehij = (eh,i,j,h+1, eh,i,j,h+2, ..., eh,i,j,T )′, and let τ be the T −h×1 vector of ones. Define also the T −

h×(h+ 1)matrixV = (v0,v1, ...,vh)′ and the T−h×kg matrixGhij = (ghij,h+1,ghij,h+2, ...,ghij,T )′.

Vectors xij , v`, ehij , and τ , and the matrices V and Ghij all depend on T , but the subscript T is

omitted to simplify the notations.

The DL regression (2) can be written

xij = τaij + Vbij + Ghijϕhij + ehij , (A.5)
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Let G̃hij =
(
τ ,Ghij

)
, Mhij = IT−h − G̃hij

(
G̃′hijG̃hij

)−1
G̃hij , x̃ij = Mhijxij , Ṽ = MhijV and

ẽhij = Mhijehij . Multiplying the above DL regression by Mhij we obtain

x̃ij = Ṽbij + ẽhij .

The LS estimator b̂ij is b̂ij =
(
Ṽ′Ṽ

)−1
Ṽ′x̃ij , and

εij = b̂ij − bij =
(
Ṽ′Ṽ

)−1
Ṽ′ẽhij .

Since Mhij is symmetric and idempotent, it follows M′
hijMhij= Mhij . Consider N−1/2

∑N
j=1 εij .

We have

N−1/2
N∑
j=1

εij = N−1/2
N∑
j=1

(
Ṽ′Ṽ

)−1
Ṽ′ẽhij

=

(
Ṽ′Ṽ

T − h

)−1(
N

T − h

)1/2 1

N

N∑
j=1

Ṽ′ẽhij√
T − h

=

(
V′MhijV

T − h

)−1( N

T − h

)1/2 V′Mhijehi◦√
T − h

, (A.6)

where ehi◦ = 1
N

∑N
j=1 ehij . Under Assumption 3,

V′MhijV

T − h →p σ
2
vIh+1, (A.7)

and
V′Mehi◦√
T − h

→d N
(
0, σ2vκhiIh+1

)
. (A.8)

Using (A.7) and (A.8) in (A.6), and noting that N/T → κ1, we obtain

N−1/2
N∑
j=1

εij →d N (0, κ1Υi◦) ,

where Υi◦ = Ih+1κhi/σ2v. This completes the proof of result (A.1).
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Consider M−1/2
∑M

i=1 (εij − ε̄i◦) next. We have

M−1/2
M∑
i=1

(εij − ε̄i◦) = M−1/2
M∑
i=1

(
Ṽ′Ṽ

)−1
Ṽ′ (ehij − ēhi◦)

=

(
V′MhijV

T − h

)−1( M

T − h

)1/2 V′Mhij (ēh◦j − ēh◦◦)√
T − h

, (A.9)

where by Assumption 3.iii

V′Mhij (ēh◦j − ēh◦◦)√
T − h

→d N
(
0, σ2vπhjIh+1

)
. (A.10)

Using (A.7), and (A.10) in (A.9), and noting that M/ (T − h)→ κ2, we obtain

M−1/2
M∑
i=1

(εij − ε̄i◦)→d N

[
0, κ2

πhj
σ2v

Ih+1

]
.

This completes the proof.

Lemma A.2 Let εij = b̂ij−bij, and assume Assumptions 1-3 hold, where b̂ij is the LS estimator of

(h+ 1)×1 vector bij = (bij0, bij1, ..., bijh)′ in the DL regression (2). In addition, let M,N, T →j ∞

such that M/T → κ1 and N/T → κ2, for some 0 ≤ κ1, κ2 <∞. Then,

N−1
N∑
j=1

εij = Op

(
T 1/2

)
, (A.11)

and

M−1
M∑
i=1

εij −N−1 N∑
j=1

εij

 = Op

(
T 1/2

)
. (A.12)

Proof. Multiplying (A.6) by N−1/2, we obtain

N−1
N∑
j=1

εij =

(
V′MhijV

T − h

)−1( 1

T − h

)1/2 V′Mhijehi◦√
T − h

,

where V′Mhijehi◦/
√
T − h = Op (1) by Assumption 3.ii, and [V′MV/ (T − h)]−1 = Op (1) is im-

plied by Assumption 3.i, since σ2vIh+1 is nonsingular. Noting that h is fixed, result (A.11) follows.
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Similarly, we obtain

M−1
M∑
i=1

εij −N−1 N∑
j=1

εij

 =

(
V′MhijV

T − h

)−1( 1

T − h

)1/2 V′M (ēh◦j − ēh◦◦)√
T − h

.

Using the conditions i and ii of Assumption 3, it follows that M−1
∑M

i=1

(
εij −N−1

∑N
j=1 εij

)
=

Op
(
T 1/2

)
, as required.

Proof of Theorem 1. We establish asymptotic distribution starting with the case where

(M,N, T ) → ∞ jointly such that N/T → 0 and M/T → 0, first. Let εij = b̂ij − bij . We

have

b̂i = N−1
N∑
j=1

b̂ij = N−1
N∑
j=1

bij +N−1
N∑
j=1

εij .

Substituting bij = bi + cj + ωij (Assumption 1), we obtain

b̂i = bi +N−1
N∑
j=1

(cj + ωij) +N−1
N∑
j=1

εij .

But N−1
∑N

j=1 cj = 0. Hence

√
N
(
b̂i − bi

)
= N−1/2

N∑
j=1

ωij +N−1/2
N∑
j=1

εij . (A.13)

Since ωij ∼ IID (0,Ωij), K0 < ‖Ωij‖ < K1, under Assumption 1, we have

N−1/2
N∑
j=1

ωij →d N
(
0, Ω̄i◦

)
, (A.14)

where Ω̄i◦ = N−1
∑N

j=1Ωij . In addition, result (A.11) of Lemma A.2 implies N−1/2
∑N

j=1 εij =

Op
(
N1/2T−1/2

)
. Hence for any i, we obtain

√
N
(
b̂i − bi

)
→d N

(
0, Ω̄i◦

)
.
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Consider the asymptotic distribution of ĉj next. We have

√
M (ĉj − cj) = M−1/2

M∑
i=1

ωij +M−1/2
M∑
i=1

εij −M−1/2N−1
M∑
i=1

N∑
j=1

ωij

−M−1/2N−1
M∑
i=1

N∑
j=1

εij . (A.15)

Using the same arguments as before, we have

M−1/2
M∑
i=1

ωij →d N
(
0, Ω̄◦j

)
, (A.16)

and

M−1/2N−1
M∑
i=1

N∑
j=1

ωij = Op

(
N−1/2

)
, (A.17)

where Ω̄◦j = M−1
∑M

i=1Ωij . Using result (A.12) of Lemma A.2, we obtain

M−1/2
M∑
i=1

εij = Op

(
M1/2T−1/2

)
,

and

M−1/2N−1
M∑
i=1

N∑
j=1

εij = Op

(
M1/2T−1/2

)
.

Hence, for any j,
√
M (ĉj − cj)→d N

(
0, Ω̄◦j

)
.

We establish asymptotic distribution when (M,N, T ) → ∞ jointly such that N/T → κ1 and

M/T → κ2, for some 0 < κ1, κ2 <∞, next. Lemma A.1 establishes

N−1/2
N∑
j=1

εij →d N (0, κ1Υi◦) .

Using this result in (A.13), together with (A.14), yields

√
N
(
b̂i − bi

)
→d N

(
0, Ω̄i◦ + κ1Υi◦

)
,
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as desired. Finally, we establish the distribution of ĉj . Consider the individual elements on the

right side of (A.15). Result (A.17) continues to hold regardless of T being large relative to M or

not. Hence,
√
M (ĉj − cj) ∼d M−1/2

M∑
i=1

ωij +M−1/2
M∑
i=1

(εij − ε̄i◦) .

Result (A.16) also continues to hold regardless of T being large relative to M or not. Using (A.16)

and result (A.2) of Lemma A.1, we have

√
M (ĉj − cj)→d N

(
0, Ω̄◦j + κ2Υ2,j

)
This completes the proof.

Proof of Proposition 1.. Proof of Proposition 1 follows the same lines of arguments as the

proof of Theorem 1. Similarly to Lemma A.2 we have b̂j = bj + εj = bj +Op
(
T−1/2

)
, and

b̂ = N−1
N∑
j=1

b̂j = N−1
N∑
j=1

bj +Op
(
T−1

)
= b +N−1

N∑
j=1

ωj +Op

(
T−1/2

)
,

where we substituted bj = b + ωj (Assumption 4). Hence

√
N
(
b̂− b

)
= N−1/2

N∑
j=1

ωj +Op

(
N1/2T−1/2

)
.

But since ωj ∼ IID (0,Ω), under Assumption 4, we have N−1/2
∑N

j=1ωj →d N (0,Ω). Therefore

as N,T →j ∞ such that N/T → 0, we obtain

√
N
(
b̂− b

)
→d N (0,Ω) .

Consider next the distribution under asymptotics N,T →j ∞ such that N/T → κ for some 0 <

κ <∞. We have
√
N
(
b̂− b

)
= N−1/2

N∑
j=1

ωij +N−1/2
N∑
j=1

εi,
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where (using similar arguments as in the proof of Lemma A.1)

N−1/2
N∑
j=1

εi →d N (0, κΥ) ,

in which

Υ =
κh
σ2v

Ih+1, (A.18)

σ2v = E
(
v2t
)
, and κh is given by Assumption 5.ii. This completes the proof.

A.2 Additional Empirical Results
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Table A1: Estimates of IRF location effects (cδj,h) for oil price shocks cumulative multipliers at

horizon h = 4

City or Metro Area, State ĉδj,4 Conf. Interval♦

1 Amarillo, TX -0.003 [-0.040,0.034]
2 Atlanta, GA 0.000 [-0.036,0.036]
3 Cedar Rapids, IA -0.027 [-0.062,0.008]
4 Charlotte-Gastonia-Rock Hill, NC-SC 0.020 [-0.020,0.060]
5 Chattanooga, TN-GA -0.013 [-0.044,0.018]
6 Cleveland-Akron, OH -0.034 [-0.072,0.003]
7 Colorado Springs, CO 0.009 [-0.029,0.046]
8 Columbia, MO 0.012 [-0.022,0.046]
9 Columbia, SC 0.004 [-0.035,0.043]
10 Dallas-Fort Worth, TX -0.013 [-0.051,0.024]
11 Denver-Boulder-Greeley, CO -0.011 [-0.045,0.023]
12 Dover, DE 0.026 [-0.017,0.068]
13 Houston-Galveston-Brazoria, TX 0.009 [-0.023,0.041]
14 Huntsville, AL 0.033 [-0.001,0.066]
15 Jonesboro, AR -0.016 [-0.050,0.018]
16 Joplin, MO 0.001 [-0.037,0.039]
17 Knoxville, TN 0.008 [-0.027,0.044]
18 Lexington, KY 0.014 [-0.025,0.054]
19 Los Angeles-Riverside-Orange County, CA 0.009 [-0.027,0.046]
20 Louisville, KY-IN 0.015 [-0.023,0.052]
21 Lubbock, TX -0.003 [-0.038,0.031]
22 Memphis, TN-AR-MS 0.008 [-0.044,0.061]
23 Montgomery, AL -0.016 [-0.052,0.021]
24 Odessa-Midland, TX 0.000 [-0.029,0.029]
25 Oklahoma City, OK 0.032 [-0.012,0.077]
26 Omaha, NE-IA -0.018 [-0.044,0.009]
27 Philadelphia-Wilmington-Atlantic City, PA-NJ-DE-MD 0.010 [-0.027,0.048]
28 Phoenix-Mesa, AZ 0.019 [-0.020,0.058]
29 Portland-Salem, OR-WA -0.069* [-0.117,-0.020]
30 Raleigh-Durham-Chapel Hill, NC -0.014 [-0.051,0.024]
31 Reno, NV 0.021 [-0.027,0.069]
32 Salt Lake City-Ogden, UT 0.000 [-0.044,0.044]
33 San Antonio, TX 0.014 [-0.030,0.059]
34 South Bend, IN -0.028 [-0.065,0.009]
35 Springfield, IL -0.004 [-0.050,0.042]
36 St. Cloud, MN 0.021 [-0.013,0.055]
37 St. Louis, MO-IL -0.035 [-0.082,0.013]
38 Tacoma, WA -0.010 [-0.057,0.036]
39 Tucson, AZ 0.011 [-0.030,0.053]
40 Waco, TX 0.010 [-0.033,0.053]
41 York, PA 0.007 [-0.023,0.036]

Notes: (♦) 95 percent family-wise confidence intervals are reported.
(*) Statistically significant estimates are highlighted by asterisk.

Cumulative location effects are defined as cδj,h =
∑h
`=0 cjh, where cjh are the location effects defined in Assump-

tion 1. This table reports the MGDL cumulative location effects estimates ĉδi,h =
∑h
`=0 ĉih at horizon h = 4 quarters for the

crude oil price shocks. The MGDL estimates are based on regressions (17) augmented with seasonal dummies, where xijt is
log-difference of price for product category i in city j in period t from C2ER dataset, which spans M = 43 reported categories
over N = 41 cities, covering T = 104 quarterly periods from 1990Q1 to 2015Q4.
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Table A2: Retail price effects of U.S. monetary policy Shocks: MGDL estimates of cumulative multipliers at horizon h = 4

U.S. MP shock: BRW AD RR NS GSS
Product category δ̂i,4 Conf. Int.♦ δ̂i,4 Conf. Int.♦ δ̂i,4 Conf. Int.♦ δ̂i,4 Conf. Int.♦ δ̂i,4 Conf. Int.♦

1 TBONESTEAK 0.033 [-0.336,0.401] -0.058 [-0.326,0.210] -0.016 [-0.077,0.045] 0.203 [-0.272,0.678] 0.359 [-0.038,0.756]
2 GROUNDBEEF 0.227 [-0.238,0.691] -0.136 [-0.467,0.194] -0.029 [-0.108,0.050] 0.211 [-0.426,0.849] 0.470 [-0.047,0.987]
3 FRYINGCHICKEN 0.041 [-0.312,0.394] -0.070 [-0.334,0.195] 0.000 [-0.067,0.066] -0.035 [-0.458,0.387] 0.011 [-0.362,0.385]
4 CANNED TUNA 0.047 [-0.438,0.532] -0.182 [-0.511,0.147] -0.001 [-0.081,0.079] -0.176 [-0.799,0.446] -0.178 [-0.720,0.364]
5 WHOLEMILK -0.020 [-0.545,0.504] -0.198 [-0.555,0.159] -0.018 [-0.110,0.073] 0.219 [-0.491,0.928] 0.139 [-0.463,0.741]
6 EGGS -0.072 [-1.276,1.132] -0.189 [-0.939,0.561] 0.014 [-0.178,0.207] 0.009 [-1.503,1.520] 0.188 [-1.060,1.435]
7 MARGARINE 0.058 [-0.322,0.439] -0.070 [-0.381,0.241] -0.010 [-0.084,0.064] -0.207 [-0.724,0.311] -0.241 [-0.711,0.230]
8 CHEESE 0.028 [-0.309,0.365] -0.038 [-0.241,0.165] 0.008 [-0.031,0.048] -0.112 [-0.555,0.330] -0.319 [-0.701,0.063]
9 POTATOES 0.676 [-0.340,1.693] 0.153 [-0.623,0.929] 0.000 [-0.209,0.209] -0.114 [-1.568,1.341] -0.179 [-1.410,1.052]
10 BANANAS 0.130 [-0.324,0.584] 0.150 [-0.377,0.677] 0.044 [-0.096,0.184] 0.067 [-0.499,0.633] -0.202 [-0.712,0.309]
11 LETTUCE 0.183 [-1.337,1.703] 0.275 [-1.133,1.683] 0.013 [-0.359,0.386] 0.228 [-1.378,1.833] -0.232 [-1.611,1.147]
12 BREAD 0.062 [-0.307,0.431] -0.037 [-0.346,0.273] 0.016 [-0.050,0.083] 0.057 [-0.445,0.559] -0.011 [-0.447,0.426]
13 COFFEE 0.127 [-0.407,0.661] 0.080 [-0.484,0.644] 0.064 [-0.083,0.212] 0.000 [-0.737,0.737] -0.372 [-0.987,0.243]
14 SUGAR -0.039 [-0.397,0.319] 0.107 [-0.165,0.380] 0.023 [-0.047,0.094] -0.047 [-0.542,0.448] -0.070 [-0.489,0.349]
15 CORNFLAKES 0.068 [-0.222,0.359] 0.027 [-0.248,0.302] 0.022 [-0.043,0.088] 0.016 [-0.384,0.415] -0.033 [-0.382,0.317]
16 CANNED PEAS 0.023 [-0.444,0.490] -0.138 [-0.500,0.223] -0.018 [-0.103,0.066] -0.179 [-0.786,0.428] -0.257 [-0.769,0.254]
17 CANNED PEACHES 0.040 [-0.208,0.288] 0.014 [-0.132,0.160] 0.010 [-0.021,0.042] -0.050 [-0.361,0.262] -0.060 [-0.337,0.217]
18 TISSUES 0.279 [-0.213,0.771] 0.303 [-0.083,0.690] 0.056 [-0.045,0.157] 0.229 [-0.424,0.883] 0.215 [-0.313,0.743]
19 DETERGENT 0.022 [-0.627,0.672] 0.123 [-0.498,0.743] -0.021 [-0.187,0.145] -0.013 [-0.915,0.889] 0.483 [-0.261,1.227]
20 SHORTENING 0.284 [-0.225,0.793] -0.126 [-0.411,0.159] 0.003 [-0.048,0.054] 0.358 [-0.394,1.110] 0.083 [-0.554,0.720]
21 FROZEN CORN 0.056 [-0.501,0.613] 0.203 [-0.238,0.644] 0.059 [-0.055,0.172] 0.016 [-0.391,0.423] -0.027 [-0.392,0.338]
22 SOFT DRINK 0.046 [-0.242,0.333] 0.027 [-0.179,0.233] 0.005 [-0.042,0.052] -0.009 [-0.383,0.365] 0.037 [-0.296,0.371]
23 HOME PRICE 0.022 [-0.086,0.130] 0.014 [-0.066,0.093] 0.002 [-0.017,0.020] 0.041 [-0.105,0.187] -0.008 [-0.154,0.138]
24 PHONE 0.014 [-0.183,0.210] 0.016 [-0.124,0.156] -0.013 [-0.046,0.019] -0.070 [-0.305,0.166] 0.016 [-0.192,0.225]
25 AUTO MAINTENANCE 0.799 [-0.855,2.454] -0.006 [-0.141,0.130] 0.000 [-0.031,0.030] 0.048 [-2.326,2.422] 0.243 [-1.753,2.239]
26 GASOLINE -0.212 [-1.594,1.170] 0.167 [-0.660,0.994] 0.050 [-0.154,0.255] 0.811 [-1.090,2.713] 0.686 [-1.008,2.381]
27 DOCTOR VISIT -0.024 [-0.213,0.165] -0.012 [-0.175,0.152] -0.004 [-0.042,0.034] -0.083 [-0.328,0.163] -0.071 [-0.293,0.151]
28 DENTIST VISIT -0.215 [-0.668,0.239] 0.027 [-0.348,0.402] -0.006 [-0.107,0.096] -0.142 [-0.774,0.490] 0.011 [-0.528,0.550]
29 MCD.’S HAMBURGER -0.018 [-0.204,0.167] -0.029 [-0.140,0.082] 0.001 [-0.023,0.025] -0.096 [-0.343,0.150] -0.069 [-0.285,0.146]
30 PIZZA 0.165 [-0.112,0.442] -0.054 [-0.177,0.069] 0.000 [-0.027,0.028] -0.036 [-0.428,0.356] -0.170 [-0.504,0.165]
31 FRIED CHICKEN 0.015 [-0.191,0.221] -0.004 [-0.138,0.129] 0.009 [-0.019,0.038] 0.025 [-0.233,0.283] -0.078 [-0.298,0.141]
32 HAIRCUT 0.042 [-0.109,0.192] 0.014 [-0.114,0.143] 0.003 [-0.025,0.031] 0.037 [-0.139,0.213] 0.017 [-0.149,0.184]
33 BEAUTY SALON -0.019 [-0.220,0.182] 0.064 [-0.132,0.260] 0.012 [-0.031,0.055] 0.002 [-0.270,0.274] -0.032 [-0.284,0.220]
34 TOOTHPASTE -0.014 [-0.355,0.327] -0.016 [-0.214,0.182] -0.005 [-0.051,0.041] -0.009 [-0.488,0.471] -0.096 [-0.497,0.305]
35 DRY CLEANING 0.003 [-0.141,0.147] -0.014 [-0.115,0.087] -0.002 [-0.025,0.022] -0.025 [-0.220,0.170] -0.014 [-0.187,0.160]
36 MAN’S SHIRT 0.060 [-0.361,0.482] 0.138 [-0.279,0.556] 0.029 [-0.072,0.130] 0.019 [-0.517,0.555] 0.016 [-0.452,0.484]
37 APPLIANCE REPAIR 0.031 [-0.187,0.249] -0.043 [-0.199,0.114] -0.008 [-0.043,0.027] -0.004 [-0.282,0.274] -0.042 [-0.308,0.224]
38 NEWSPAPER -0.126 [-0.403,0.151] -0.013 [-0.166,0.141] -0.003 [-0.039,0.033] -0.104 [-0.419,0.212] -0.055 [-0.331,0.221]
39 MOVIE -0.015 [-0.124,0.094] -0.009 [-0.110,0.092] 0.000 [-0.024,0.024] -0.029 [-0.173,0.115] -0.052 [-0.184,0.081]
40 BOWLING 0.035 [-0.177,0.246] -0.056 [-0.236,0.124] -0.008 [-0.051,0.034] 0.033 [-0.238,0.303] -0.068 [-0.297,0.161]
41 TENNIS BALLS -0.020 [-0.293,0.253] -0.019 [-0.209,0.171] -0.003 [-0.048,0.042] -0.013 [-0.345,0.319] -0.049 [-0.341,0.242]
42 BEER 0.201 [-0.343,0.746] 0.040 [-0.438,0.519] -0.017 [-0.141,0.108] 0.241 [-0.477,0.958] -0.037 [-0.666,0.593]
43 WINE -0.033 [-0.287,0.222] -0.059 [-0.406,0.288] -0.003 [-0.092,0.085] -0.008 [-0.320,0.303] -0.037 [-0.324,0.249]

Notes: (♦) 95 percent family-wise confidence intervals are reported.
(*) None of the estimates in this table are statistically significant base don the reported family-wise confidence

intervals.
This table reports the MGDL cumulative multiplier estimates δ̂i,h at horizon h = 4 quarters for the U.S. monetary

policy shocks by Bu, Rogers, and Wu (2021, BRW), Aruoba and Drechsel (2022, AD), Romer and Romer (2004, RR) updated by
Wieland (2021), Nakamura and Steinsson (2018, NS), and Gürkaynak, Sack, and Swanson (2005, GSS). The MGDL estimates
are based on augmented DL regressions xijt = aij +

∑h
`=0 bij`vt−` +ϕ1xi,j,t−h−1 ++ehit, where xijt is log-difference of price

for product category i in city j in period t from C2ER dataset, which spans M = 43 reported categories over N = 41 cities,
covering T = 104 quarterly periods from 1990Q1 to 2015Q4.
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