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1 Introduction

Estimation of impulse-response functions (IRFs) has garnered growing interest in the recent liter-

ature. In the specific case when the shock of interest is assumed to be observed, it is now widely

recognized that there exist numerous auxiliary regression specifications within a time series frame-

work that can be employed for estimating the impulse response function, either directly or through

iterative methods. These include (i) the local projection regressions popularized by Jordà (2005),

(ii) the distributed lag approach (e.g., Kimball et al. (2006), Kilian (2008a, 2009), Romer and

Romer (2010), and Baumeister and Kilian (2014)), and (iii) iterative approaches utilizing ARDL

regression specifications (e.g., Anzuini et al. (2013), Bachmeier and Cha (2011), Coibion (2012),

Kimball et al. (2006), Romer and Romer (2004, 2010) or Kilian (2008a, 2008b), among others) or

the multivariate VAR or VARX specifications. Relative merits of these approaches in finite samples

of interest were investigated by Choi and Chudik (2019). Extending these specifications to panel

data setting is not straightforward, in part due to the time series bias (popularized by Nickell (1981)

in a dynamic panel data context) as well as cross-sectional dependence.

This paper considers large panels with possibly two cross-section dimensions (motivated by our

application), labeled asM and N , and a time dimension, T . It is assumed that the shock of interest

is observed, common, and the impulse-responses follow a random coeffi cient specification. We derive

suffi cient conditions for consistency and asymptotic normality of the Mean Group (MG) estimator

based on distributed lag specifications (or MGDL for short). Consistency result is obtained as

(M,N, T ) → ∞ jointly without any restrictions on the relative rates N/T and M/T . In contrast,

our asymptotic normality result requires N/T → 0 and M/T → 0 as (M,N, T ) → ∞ jointly. No

restrictions on cross-section dependence are imposed. Similar results are obtained for conventional

panels with single cross-section dimension.

Monte Carlo experiments show satisfactory finite sample performance for the selected sam-

ple sizes of interest, M = N ∈ {30, 40, 50, 100}, and T ≥ 50. Estimation of the cumulative

sums of the impulse response function (also referred to as cumulative multipliers) is also investi-

gated, including the possibility of direct estimation based on regressions with cumulated variables,

ξijt = xijt + ξi,j,t−1. Our results suggest cumulative multipliers are more reliably estimated by cu-

mulating estimated impulse response estimates, as opposed to using regressions featuring cumulated
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variables.

MGDL approach is then applied to estimate the effects of crude oil price shocks, utilizing a

quarterly retail price dataset at the city and product levels, provided by the Council for Community

and Economic Research (C2ER, https://www.c2er.org/redt/). Generic crude oil price increases are

associated with significant increase in retail gasoline prices. The estimated pass-through is fast and

complete, in line with the existing crude oil pass-through studies. Oil price shocks are associated

with significant effects on other product categories as well. This interesting finding may result from

the observation that fluctuations in crude oil prices are influenced by demand shocks that have a

broader impact on both economic activity and prices.

The remainder of the paper is organized as follows. Section 2 introduces the model, proposes

the MGDL estimators, provides asymptotic results, and discusses potential extensions. Section 3

reports on finite sample evidence. Section 4 presents empirical application to US city- and product-

level prices. Section 5 concludes the paper. Mathematical derivations and proofs, and additional

estimation results are provided in an appendix.

A few words on the notations. Throughout the paper, K and K0,K1, ... indicate finite generic

positive constants that do not depend on the sample size (M,N, T ) nor on the subscripts (i, j, t).

These constants could take different values at different instances in the paper. The symbols ‘→p’and

‘→d’respectively denote the convergence in probability and distribution. ‘→j’denotes joint con-

vergence. All vectors are column vectors, represented by bold lower case letters. Matrices are bold

upper case letters. ‖A‖ =
√
% (A′A) is the spectral norm of matrix A,1 % (A) ≡ max

1≤i≤n
{|λi (A)|}

is the spectral radius of A, and |λ1(A)| ≥ |λ2(A)| ≥ ... ≥ |λn(A)| are the eigenvalues of A.

2 MGDL estimator

We consider a panel data with two cross-section dimensions (M,N) and a time dimension (T ).

Let xijt be a variable for the cross-section unit (i, j) in period t, observed for i = 1, 2, ...,M ,

j = 1, 2, ..., N , and t = 1, 2, ..., T . In the application developed in Section 4, the index i refers to

individual price categories and the index j refers to geographic locations. For future reference, we

define the M × 1 vectors xi◦t = (xi1t, xi2t, ..., xiMt)
′ and the NM × 1 vector collecting all units,

1Note that if x is a vector, then ‖x‖ =
√
% (x′x) =

√
x′x corresponds to the Euclidean length of vector x.
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xt = (x′1◦t,x
′
2◦t, ...,x

′
N◦t)

′.

Let vt be a common shock observed for t = 1, 2...., T . We assume xijt can be decomposed as

xijt = aij +
∞∑
`=0

bij`vt−` + zijt, (1)

and we make the assumptions below on the fixed effects (aij), the impulse-response coeffi cients

(bij`), the shock (vt), and the process (zijt). Let h be a selected maximum horizon of interest that

does not depend on the sample size (N,M, T ). We collect bij` for ` = 0, 1, ..., h into an (h+ 1)× 1

vector bij = (bij0, bij1, ..., bijh)′. The dependence of the dimension of bij on h is suppressed to

simplify the notations.

ASSUMPTION 1 (Random coeffi cient assumption) bij = bi+cj+ωij, where bi and cj are non-

random and ωij ∼ IID (0,Ωij). Furthermore,
∑M

j=1 cj = 0, and there exist constants K,K0,K1

and 0 ≤ ρ < 1 such that ‖bi‖ < K, ‖cj‖ < K, K0 < ‖Ωij‖ < K1, and E
(
b2ij`

)
< ρ`K for all

` > h.

ASSUMPTION 2 (Component zijt) There exist constants K and 0 ≤ ρ < 1, such that E
∣∣zijtzijt′∣∣ <

Kρ|t−t
′| for all i, j, t, t′.

ASSUMPTION 3 (Shock vt) vt is independent of vt′ and zijt′ for any i, j and t 6= t′. In addition,

there exist constants K0,K1 such that K0 < E
(
v4t
)
< K1.

The object of interest is the estimation of parameter vectors bi and cj . Assumptions 1-3 are

rather general. First, the commonly used stationary VAR representations for the NM × 1 vector

xt would satisfy our assumptions. Hence xt could be given by a high-dimensional VAR model. xt

can alternatively be represented by a high-dimensional MA(∞) process that falls outside the VAR

representations. In addition, unobserved common shocks or factors are allowed. In fact the cross-

section dependence is left unrestricted in Assumption 2, and zijt can be expected to be strongly

cross-sectionally correlated. Our assumptions are also compatible with heteroskedasticity in all

dimensions (including the time), and the requirement E
∣∣zijtzijt′∣∣ < Kρ|t−t

′| can also accommodate

the possibility of certain breaks.
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One limitation of this setup is that it assumes vt to be observed, thus significantly constraining

the applicability of this approach. In addition, Assumptions 1-3 rule out I(1) processes, but our

approach can be extended to integrated processes of order 1. This extension is discussed below in

Section 2.2 and in the Monte Carlo section.

This paper considers a mean group approach built on the unit-specific DL regressions given by

xijt = aij +
h∑
`=0

bij`vt−` + ehijt, (2)

where ehijt =
∑∞

`=h+1 bij`vt−`+zijt. Denote the corresponding LS estimates of unknown parameters

bij` as b̂ij`, which we collect in an (h+ 1)× 1 vector b̂ij =
(
b̂ij0, b̂ij1, ..., b̂ijh

)′
.

Mean Group Distributed Lag (MGDL) estimators of bi and cj , respectively, are given by

b̂i = N−1
N∑
j=1

b̂ij , for i = 1, 2, ...,M , (3)

and

ĉj = M−1
M∑
i=1

(
b̂ij − b̂i

)
, for j = 1, 2, ..., N. (4)

Inference can be conducted using the non-parametric variance estimators,

V ar
(
b̂i

)
=

1

N (N − 1)

N∑
j=1

ω̂ijω̂
′
ij , (5)

and

V ar (ĉj) =
1

M (M − 1)

M∑
i=1

ω̂ijω̂
′
ij , (6)

where ω̂ij = b̂ij − b̂i − ĉj . The following theorem establishes suffi cient conditions for consistency

and asymptotic normality of the MGDL estimators.

Theorem 1 (Consistency) Let xijt be generated by (1) and Assumptions 1-3 hold. Consider b̂i

and ĉj given by (3) and (4), respectively. Let h ≥ 0 be a fixed integer that does not depend on the

sample size (M,N, T ), and suppose M,N, T →j ∞ without any restrictions on M/T and N/T .
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Then,

b̂i →p bi and ĉj →p cj. (7)

If M,N, T →j ∞ such that M/T → 0 and N/T → 0, then we have

√
N
(
b̂i − bi

)
→d N

(
0, Ω̄i◦

)
, and

√
M (ĉj − cj)→d N

(
0, Ω̄◦j

)
, (8)

where Ω̄i◦ = N−1
∑N

j=1Ωij, and Ω̄◦j = M−1
∑M

i=1Ωij.

Proofs are presented in Appendix.

The MGDL estimator is consistent regardless of the relative rate of expansion of (M,N, T ).

In contrast, for asymptotic distribution to depend only on Ωij , we require N/T → 0 (for b̂i) and

M/T → 0 (for ĉj). According to the Monte Carlo evidence in Section 3, however, the finite sample

performance is satisfactory in samples of interest when (N,M) is non-negligible relative to T .

2.1 MGDL estimator in large panels with a single cross section dimension

Suppose M = 1. Hence, we have data (dropping subscript i = 1) on xjt, generated according to

xjt = aj +
∞∑
`=0

bj`vt−` + zjt. (9)

In this setting, we replace the random coeffi cient Assumption 1 with the following assumption on

the elements of bj = (bj0, bj1, ..., bjh)′.

ASSUMPTION 4 (Random coeffi cient assumption for a single cross-section dimension) bj =

b + ωj, where ωj ∼ IID (0,Ωj). Furthermore, there exist constants K0,K1 and 0 ≤ ρ < 1 such

that ‖b‖ < K, K0 < ‖Ωj‖ < K1, and E
(
b2j`

)
< ρ`K for all ` > h.

The following proposition establishes asymptotic normality of the MGDL estimator. The as-

ymptotic analysis is similar in the case of single-cross-section panels.

Proposition 1 Let M = 1, and (dropping the subscript i = 1) suppose xjt is generated by (9) and
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let Assumptions 2-4 hold. Consider the MGDL estimator

b̂ = N−1
N∑
j=1

b̂j, (10)

where b̂j is the unit-specific LS estimator of bj using the regression,

xjt = aj +
h∑
`=0

bj`vt−` + ehjt. (11)

Let h ≥ 0 be a fixed integer that does not depend on the sample size (N,T ), and suppose N,T →j ∞

such that N/T → 0. Then,
√
N
(
b̂− b

)
→d N

(
0, Ω̄

)
, (12)

where Ω̄ = N−1
∑N

j=1Ωj.

2.2 Extensions

We have considered mean group estimation based on the DL regressions (2). Other unit-specific

estimation approaches could be utilized in place of the DL regression specification. One possibility

is to augment specification (2) with appropriately lagged dependent variable,

xijt = aij +
h∑
`=0

bij`vt−` + ϕxi,j,t−h−1 + ehit. (13)

In the case of I(1) variables, such augmentation will be necessary. We refer to regressions (13)

as augmented DL (or ADL for short), and the resulting mean group estimator is referred to as

MGADL. Additional lags of the dependent variable, or lags of other covariates could also be in-

cluded. There are also several other approaches that could be considered as alternatives to DL

or ADL. These include the local projection approach popularized by Jordà (2005), or the itera-

tive ARDL, VARDL, or VARX∗ approaches. See Choi and Chudik (2019) for a discussion of the

strengths and weaknesses of these approaches.

Another important consideration is the object of interest. In some empirical applications, the
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primary focus can be on the mean cumulative response,

δi,h =
h∑
`=0

bi`,

where δi,h is also commonly referred to as the cumulative multiplier. These multipliers can be

estimated by cumulating estimates of bi`, namely

δ̂i,h =

h∑
`=0

b̂i`.

Alternatively, these multipliers can be estimated directly using the ADL regressions applied to the

I (1) variables generated by cumulating xijt,

ξijt = xijt + ξi,j,t−1,

with the initial value ξij0 set to zero, without any loss of generality. Direct MGADL estimator of

δ̂i,h can be obtained using the following specification.

ξijt = aij +
h∑
`=0

δij`vt−` + ϕξi,j,t−h−1 + θ∆ξi,j,t−h−1 + ehit, (14)

which is similar to (13) but utilizes the I(1) variable ξijt in place of the stationary first differences.

We have effectively included two lags of the dependent variable in (14) to facilitate the exposition

in the MC section below, where we compare the direct and indirect MGADL estimators of δi,h,

assuming the random coeffi cient specification δij` = δi,h + cδj,h + ωδij` implied by Assumption 1.

3 Monte Carlo Evidence

This section investigates the small sample performance of the MGDL estimators of impulse-response

coeffi cients bi = (bi0, bi1, ..., bih)′ and the cumulative multipliers δi,h =
∑h

`=0 bi`. We set the horizon

h = 8 matching the horizon selected in the empirical application below. We consider the MGDL

estimator b̂i given by (3), which is based on the DL regressions (2). Additionally, we consider

the benefits of augmenting regressions in (2) by xi,j,t−h−1, and the three direct options for the
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estimation of δi,h as discussed in Section 2.2. Subsections 3.1-3.3 below respectively provide the

Monte Carlo simulation design, the description of adopted estimators, and statistics of interest.

The last subsection presents a summary of the Monte Carlo findings.

3.1 Data Generating Process

We generate xijt based on (1), namely

xijt = aij +

∞∑
`=0

bij`vt−` + zijt, fori = 1, 2, ...,M, j = 1, 2, ..., N, and t = 1, 2, ..., T, (15)

where the shock vt is generated as vt ∼ N (0, 1) and the fixed effects are generated as aij ∼ N (1, 1).

zijt is generated to be persistent as

zijt = ρijzij,t−1 +
√

1− ρ2ijeijt,

for t = −B + 1,−B + 2, ..., 0, 1, 2, ..., T , in which B = 100, ρij ∼ U [0.3, ρmax] with two choices for

ρmax = 0.5 and ρmax = 0.9. We generate eijt according to

eijt = γijft + εijt,

where ft ∼ N
(
0, 0.12

)
, γij = U [0, 1], and εijt ∼ N (0, 1).

The IRF coeffi cients, bij`, are generated based on the following random coeffi cient specification,

bij` = bi` + cj` + ωij`,

for ` = 1, 2, ..., B, where B = 100,

bi` = H1λ
`
1 +H2λ

`
2,

λ1 = 0.6, λ2 = 0.4, H1 = 2 and H2 = −1.9. This parameterization resembles a hump-shaped IRF

that is common in many applications (see Figure 1 for plots of bi` and δi,h =
∑h

`=0 bi`).
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Figure 1: Plots of bi` and the cumulative multipliers (δi,h =
∑h

`=0 bi`)

(a) Plot of bi`, ` = 0, 1, ..., 8 (b) Plot of δi,h =
∑h

`=0 bi`, h = 0, 1, ..., 8

We generate cj` = 0.1κ`αj , κ` = 0.8`, and αj = 1−2 (j − 1) / (N − 1). This ensures
∑N

j=1 cj` =

0, as required for identification. ωij` is generated as ωij` = κ`×∆ij , where ∆ij ∼ U [−0.2, 0.2]. We

set bij` = 0 for ` > B (and B = 100). Note that due to an exponential decay, bij` are all negligible

for ` > B.

We consider M = N ∈ {30, 40, 50, 100}, and T = {50, 100, 150, 500} and compute RMC = 5000

Monte Carlo replications. Values ofM = N = 40 and T = 100 resemble the dimensions of quarterly

data in our application in Section 4, whereas the largest sample size (T = 500) is more useful when

validating the theoretical results.

3.2 Estimators

For the estimation of bi`, we consider the MGDL estimator with and without augmentation by

lagged dependent variable. The former is based on (2) and the latter is based on the augmented

regression (13).

For the estimation of the cumulative multiplier (δi,h), we consider cumulating the MGDL es-

timates, namely δ̂i,h =
∑h

`=0 b̂i`, which gives us two estimators depending on whether or not the

lagged dependent variable is included in the regression - see (2) and (13). Furthermore, we consider

direct estimation based on the ADL regression (16), which is based on the cumulated variable,

ξijt = xijt + ξi,j,t−1.

We consider three different regression specifications for this exercise obtained from (14). The
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first specification imposes θ = 0 and is given by

ξijt = aij +
h∑
`=0

δij`vt−` + ϕξi,j,t−h−1 + ehit, (16)

which is similar to (13) but utilizes the I(1) variable ξijt in place of xijt. The second specification

is based on (16) with restrictions ϕ = 1 and θ = 0, namely

ξijt = aij +

h∑
`=0

δij`vt−` + ξi,j,t−h−1 + ehit. (17)

The third specification imposes ϕ = 1 only,

ξijt = aij +
h∑
`=0

δij`vt−` + ξi,j,t−h−1 + θ∆ξi,j,t−h−1 + ehit. (18)

Confidence intervals are based on the nonparametric estimator in (5) and we use Bonferroni

correction to control for the family-wise error rate, as proposed by Dunn (1961).

3.3 Objectives

Our focus here is twofold: (i) the estimation of bi`; and (ii) the estimation of the cumulative

multiplier δi,h =
∑h

`=0 bi`. Regarding the first objective, we report the overall estimation bias

computed as

biasb =
1

(h+ 1)NR

R∑
r=1

N∑
i=1

h∑
`=0

(
b̂
(r)
i` − bi`

)
, (19)

the overall RMSE computed as

rmseb =

[
1

(h+ 1)NR

R∑
r=1

N∑
i=1

h∑
`=0

(
b̂
(r)
i` − bi`

)2]1/2
, (20)

and the 95% family-wise (across both ` = 0, 1, ..., h and i = 1, 2, ..., N) confidence intervals coverage

rate

FWCRb,0.95 =
1

R

R∑
r=1

I

{
N∑
i=1

h∑
`=0

I
[
b̂
(r)
i` ∈ CI

(
b̂
(r)
i`

)]
= N (h+ 1)

}
, (21)

where CI
(
b̂
(r)
i`

)
is the 95% family-wise confidence interval for b̂(r)i` .
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In the case of estimation of the cumulative multiplier δi,h, we focus on h = 8, and report the

bias,

biasδ,h =
1

NR

R∑
r=1

N∑
i=1

(
δ̂
(r)

i,h − δi,h
)
, (22)

the RMSE

rmseδ,h =

[
1

NR

R∑
r=1

N∑
i=1

(
δ̂
(r)

i,h − δi,h
)2]1/2

, (23)

as well as the 95% family-wise (across i = 1, 2, ..., N) confidence intervals coverage rate.

FWCRδ,h,0.95 =
1

R

R∑
r=1

I

[
N∑
i=1

I
[
δ̂
(r)

i,h ∈ CI
(
δ̂
(r)

i,h

)]
= N

]
. (24)

3.4 Monte Carlo Findings

Table 1 summarizes the simulation results for the bias (biasb×100), RMSE (rmseb×100), and the

family-wise coverage rate of the 95% confidence intervals (FWCRb,0.95 × 100) for the estimation

of non-cumulative IRF parameters bi. Overall, the bias of the MGDL estimator is small and

diminishes with T . The coverage rate approaches 95 percent with the increase in sample size. For

N = M = 40 and T = 100, the reported coverage rate is 82.7 and 83.82 percent, depending on the

persistence parameter ρmax. The choice of ρmax turns out to be inconsequential to the performance

of the MGDL estimator, although it affects the performance of the MGADL estimator, with a

slightly higher bias for a larger value of ρmax. The RMSE results in Table 1 suggest that the

MGDL estimator is more accurate, but the RMSE reduction from augmenting lagged dependent

variable is marginal, except for small values of T .

The results for the estimation of the cumulative multiplier δi,h (for h = 8) are presented in Table

2 for the simulations with ρmax = 0.5 and in Table 3 for ρmax = 0.8. Regardless of the choice of ρmax,

the direct estimators of δi,8 based on regressions (16)-(18) have consistently poorer performances

in terms of the bias, RMSE, and the coverage rates, compared to the indirect estimator based on

(2) or its augmented counterpart based on (13). The RMSE difference between the direct and

indirect estimators is strikingly large, in the range of 41 and 381 percent for T = 50. Although

the performance gap between the two estimators appear to diminish with an increase in T , it still

remains large even for T = 150. This outcome leads us to focus on the indirect estimators of the
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cumulative multiplier in the empirical application in the next section. Overall, our Monte Carlo

experiments show satisfactory performance of the MGDL and MGADL estimators for the IRF

means bi and their cumulative sums.

Table 1: MC results for the estimation of bi in experiments with low and high persistence

(ρmax = 0.5 and ρmax = 0.9)

Bias (×100) RMSE (×100) Coverage Rate (%)

T : 50 100 150 500 50 100 150 500 50 100 150 500

(a) Experiments with low persistence (ρmax = 0.5)

N =M MGDL

30 -0.16 -0.08 -0.04 -0.02 4.37 3.52 3.29 3.02 77.00 78.92 81.30 86.18

40 -0.17 -0.08 -0.04 -0.02 3.78 3.05 2.86 2.60 82.62 82.70 84.20 89.32

50 -0.17 -0.09 -0.05 -0.02 3.40 2.74 2.56 2.34 83.06 85.80 86.22 90.70

100 -0.17 -0.07 -0.05 -0.01 2.41 1.94 1.82 1.65 87.40 88.56 89.94 93.28

MGADL

30 0.07 0.01 0.02 0.00 4.52 3.55 3.31 3.02 77.06 79.58 81.74 86.34

40 0.06 0.01 0.01 0.00 3.91 3.07 2.87 2.61 82.10 82.92 84.22 89.46

50 0.07 0.00 0.01 0.00 3.52 2.75 2.57 2.34 82.72 86.24 86.68 90.78

100 0.06 0.02 0.01 0.00 2.51 1.95 1.82 1.65 85.20 89.52 90.60 93.54

(b) Experiments with high persistence (ρmax = 0.9)

MGDL

30 -0.16 -0.08 -0.04 -0.02 4.34 3.52 3.29 3.02 78.92 81.02 83.10 87.38

40 -0.18 -0.08 -0.04 -0.02 3.76 3.05 2.85 2.60 83.42 83.82 85.48 90.40

50 -0.17 -0.09 -0.05 -0.02 3.38 2.73 2.56 2.34 84.52 87.26 87.74 91.20

100 -0.17 -0.07 -0.05 -0.01 2.39 1.94 1.82 1.65 88.08 89.34 91.00 93.92

MGADL

30 0.22 0.09 0.07 0.01 4.55 3.56 3.31 3.02 78.32 82.16 83.00 87.52

40 0.21 0.09 0.06 0.01 3.95 3.08 2.87 2.61 81.64 84.04 85.52 90.28

50 0.21 0.08 0.06 0.01 3.56 2.76 2.57 2.34 82.60 87.12 87.94 90.80

100 0.21 0.09 0.06 0.02 2.55 1.96 1.82 1.66 83.54 89.80 91.70 93.26

Notes: This table reports the overall bias and RMSE (both ×100), as defined in (19) and (20), respectively, and the
family-wise coverage rate of Bonferroni-corrected 95 percent confidence intervals, as defined by (21). MGDL

estimator is based on DL regressions (2). MGADL estimator is based on the augmented DL regressions (13).

Reported results are based on 5000 replications.
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Table 2: MC results for the estimation of the cumulative multiplier δi,h (h = 8) in experiments

with low persistence (ρmax = 0.5)

Bias (×100) RMSE (×100) Coverage Rate (%)

T : 50 100 150 500 50 100 150 500 50 100 150 500

N =M (a) MGDL, δ̂i,h =
∑h
`=0 b̂i`

30 -1.45 -0.68 -0.36 -0.15 27.15 24.22 23.65 23.06 86.38 85.88 86.22 85.76

40 -1.56 -0.72 -0.40 -0.14 23.48 21.01 20.50 19.91 88.32 87.04 88.02 88.12

50 -1.49 -0.81 -0.45 -0.17 21.11 18.84 18.35 17.87 89.02 89.34 89.40 88.84

100 -1.56 -0.67 -0.41 -0.12 14.95 13.35 13.02 12.63 90.44 90.36 91.10 91.14

(b) MGADL, δ̂i,h =
∑h
`=0 b̂i`

30 0.65 0.12 0.14 -0.02 28.17 24.41 23.75 23.08 85.94 85.66 86.84 85.92

40 0.58 0.10 0.08 -0.01 24.38 21.17 20.58 19.92 87.82 87.28 88.02 88.10

50 0.60 0.02 0.06 -0.03 21.92 18.98 18.43 17.88 88.34 89.34 89.36 88.96

100 0.54 0.15 0.06 0.00 15.62 13.43 13.05 12.63 89.06 90.46 91.22 91.28

(c) Direct MGDL estimation based on (16) (ϕ is not restricted)

30 -53.52 -21.83 -13.04 -3.38 74.81 45.78 37.33 26.91 17.66 33.98 44.30 68.72

40 -53.32 -21.49 -13.25 -3.44 74.77 43.92 35.45 24.36 16.24 31.02 40.72 66.70

50 -53.32 -22.07 -13.60 -3.39 74.02 43.81 34.56 22.80 14.32 27.94 36.28 63.68

100 -52.98 -21.40 -12.27 -3.23 71.82 41.79 31.77 18.96 10.04 20.78 27.74 51.08

(d) Direct MGDL estimation based on (17) (ϕ is restricted to one)

30 -15.03 -6.33 -3.76 -1.17 50.36 35.98 31.60 25.57 35.86 50.08 59.02 74.78

40 -15.20 -6.54 -4.18 -1.30 49.16 33.78 29.28 22.79 32.02 46.48 54.84 74.58

50 -14.78 -6.73 -4.19 -1.18 47.98 32.92 27.90 21.03 30.94 42.96 50.44 72.20

100 -14.62 -6.16 -3.40 -1.10 45.02 29.95 24.63 16.78 22.54 32.38 39.34 61.24

(e) Direct MGDL estimation based on augmented regression (18)

30 -11.29 -4.11 -2.10 -0.71 41.85 30.11 27.24 24.10 49.16 63.94 71.54 81.52

40 -11.45 -4.33 -2.50 -0.79 39.95 27.57 24.61 21.09 45.14 61.14 69.44 82.58

50 -11.01 -4.36 -2.45 -0.65 38.72 26.17 22.80 19.14 41.78 57.88 66.54 81.40

100 -10.87 -4.10 -2.14 -0.72 34.76 22.27 18.75 14.40 32.06 47.14 56.18 76.38

Notes: This table reports the bias and rmse (both ×100), defined in (22) and (23), respectively, and the family-wise
coverage rate of 95 percent confidence intervals defined in (24). Direct MGDL estimators are based on regression

specifications (16), (17) and (18), which are special cases of (14) with restrictions on ϕ and θ. Reported results are

based on 5000 replications.
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Table 3: MC results for the estimation of the cumulative multiplier δi,h (h = 8) in experiments

with high persistence (ρmax = 0.9)

Bias (×100) RMSE (×100) Coverage Rate (%)

T : 50 100 150 500 50 100 150 200 50 100 150 200

N =M (a) MGDL, δ̂i,h =
∑h
`=0 b̂i`

30 -1.46 -0.69 -0.36 -0.15 28.87 25.16 24.28 23.25 86.74 85.72 86.62 85.64

40 -1.58 -0.73 -0.39 -0.14 25.04 21.83 21.04 20.07 89.20 87.26 87.92 88.52

50 -1.49 -0.82 -0.45 -0.17 22.49 19.57 18.84 18.01 89.24 88.98 89.36 88.82

100 -1.55 -0.67 -0.41 -0.12 15.89 13.86 13.36 12.73 90.96 90.56 91.04 91.06

(b) MGADL, δ̂i,h =
∑h
`=0 b̂i`

30 1.97 0.80 0.61 0.11 30.54 25.48 24.42 23.27 85.60 86.16 86.70 85.68

40 1.91 0.78 0.56 0.13 26.56 22.11 21.16 20.08 87.02 87.40 87.96 88.40

50 1.91 0.72 0.53 0.11 23.88 19.81 18.96 18.03 87.62 89.02 89.20 88.68

60 1.86 0.84 0.50 0.14 17.11 14.04 13.43 12.75 87.88 90.80 91.58 91.04

(c) Direct MGDL estimation based on (16) (ϕ is not restricted)

30 -54.30 -22.25 -13.30 -3.44 76.16 46.59 37.90 27.10 18.40 35.14 45.24 68.62

40 -54.14 -21.95 -13.51 -3.50 76.00 44.60 35.93 24.51 16.74 32.10 41.76 67.24

50 -54.12 -22.52 -13.89 -3.45 75.16 44.45 34.98 22.93 15.02 29.06 37.06 64.10

60 -53.78 -21.84 -12.57 -3.28 72.81 42.26 32.07 19.04 11.08 21.50 28.90 51.44

(d) Direct MGDL estimation based on (17) (ϕ is restricted to one)

30 -15.03 -6.33 -3.76 -1.17 51.35 36.63 32.08 25.73 38.40 51.64 59.84 75.10

40 -15.21 -6.54 -4.17 -1.30 49.92 34.31 29.66 22.93 33.94 48.08 55.66 75.06

50 -14.78 -6.73 -4.20 -1.18 48.59 33.35 28.22 21.15 33.08 44.10 51.34 72.44

60 -14.62 -6.16 -3.40 -1.10 45.35 30.18 24.82 16.86 24.00 33.00 40.36 61.80

(e) Direct MGDL estimation based on augmented regression (18)

30 -8.54 -2.67 -1.05 -0.42 40.63 29.81 27.17 24.13 54.18 67.86 74.38 82.02

40 -8.69 -2.93 -1.46 -0.50 38.13 27.09 24.42 21.08 50.02 64.90 73.14 83.86

50 -8.26 -2.84 -1.37 -0.32 36.76 25.49 22.46 19.10 46.14 62.18 69.68 82.88

60 -8.21 -2.71 -1.29 -0.46 32.35 21.24 18.23 14.32 35.68 51.56 60.22 78.28

Notes: See the notes in Table 2.
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4 The Effects of Oil Price Shocks

This section utilizes a quarterly retail price data provided by the Council for Community and

Economic Research (C2ER, https://www.c2er.org/redt/), formerly known as American Chamber

of Commerce Researchers Association. Originally created for comparing the cost of living for

mid-level managers in various metropolitan areas in the U.S., the C2ER dataset contains retail

prices of a large number of individual goods and services in dollars and cents (see Choi, Choi, and

Chudik (2020)). Our dataset covers retail prices for 43 products (M = 43) in 41 metropolitan areas

(N = 41), spanning from the first quarter of 1990 to the fourth quarter of 2015 (T = 104).

Here we investigate the impacts of crude oil price shocks, computed as the first difference of

log of crude oil prices sequentially sampled at the end of each quarter, on the retail prices. To

this end, we utilize the daily West Texas Intermediate (WTI) crude oil prices obtained from FRED

database (https://fred.stlouisfed.org, series DCOILWTICO). The object of our ultimate interest is

the cumulative multipliers of the oil shock, measured at the horizon of h = 8 quarters.

Guided by the MC results in Section 3, we focus on the MGDL and MGADL approaches based on

the specifications (2) and (13) with h = 8. Table 4 reports the estimates of cumulative multipliers,

δ̂i,h =
∑h

`=0 b̂i`, together with Bonferroni-corrected 95% confidence intervals. Significant entries are

highlighted by asterisks. Not surprisingly, in retail gasoline price (product #26) we note a large

pass-through effect of oil price shocks (59.9% in MGDL). To interpret, a 1% rise in WTI crude oil

prices on average results in an approximate 0.6% increase in retail gasoline prices across US cities.

Given that the crude oil accounts for about a half of the cost of producing gasoline (Baumeister

and Kilian (2014)), our results indicate a full pass-through.
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Table 4: Estimates of oil price shocks cumulative multipliers (h = 8)

MGDL MGADL
Product category δ̂i,8 Conf. Interval♦ δ̂i,8 Conf. Interval♦

1 TBONESTEAK 0.126* [0.068,0.184] 0.121* [0.067,0.175]
2 GROUNDBEEF 0.193* [0.123,0.263] 0.194* [0.123,0.264]
3 FRYINGCHICKEN 0.008 [-0.075,0.090] 0.005 [-0.084,0.093]
4 CANNED TUNA 0.042 [-0.035,0.119] 0.043 [-0.034,0.120]
5 WHOLEMILK 0.158* [0.101,0.214] 0.152* [0.095,0.209]
6 EGGS 0.251* [0.188,0.315] 0.250* [0.185,0.316]
7 MARGARINE 0.071 [-0.016,0.158] 0.073 [-0.014,0.161]
8 CHEESE 0.065* [0.010,0.120] 0.064* [0.011,0.118]
9 POTATOES 0.449* [0.346,0.552] 0.447* [0.345,0.550]
10 BANANAS 0.194* [0.131,0.258] 0.194* [0.126,0.262]
11 LETTUCE -0.027 [-0.105,0.050] -0.028 [-0.109,0.054]
12 BREAD 0.172* [0.104,0.241] 0.172* [0.104,0.239]
13 COFFEE 0.201* [0.147,0.255] 0.201* [0.145,0.257]
14 SUGAR 0.146* [0.094,0.198] 0.144* [0.094,0.194]
15 CORNFLAKES 0.009 [-0.037,0.054] 0.008 [-0.037,0.052]
16 CANNED PEAS 0.109* [0.014,0.204] 0.105* [0.012,0.199]
17 CANNED PEACHES 0.052* [0.005,0.099] 0.052* [0.003,0.100]
18 TISSUES 0.151* [0.105,0.196] 0.150* [0.103,0.197]
19 DETERGENT 0.123* [0.073,0.174] 0.125* [0.075,0.176]
20 SHORTENING 0.246* [0.197,0.295] 0.241* [0.191,0.291]
21 FROZEN CORN 0.028 [-0.047,0.102] 0.028 [-0.048,0.103]
22 SOFT DRINK 0.068 [-0.010,0.145] 0.069 [-0.009,0.148]
23 HOME PRICE 0.003 [-0.030,0.037] 0.004 [-0.031,0.038]
24 PHONE 0.009 [-0.034,0.051] 0.005 [-0.041,0.050]
25 AUTO MAINTENANCE -0.519* [-0.568,-0.469] -0.523* [-0.572,-0.475]
26 GASOLINE 0.599* [0.558,0.640] 0.569* [0.528,0.610]
27 DOCTOR VISIT -0.006 [-0.050,0.037] -0.006 [-0.051,0.038]
28 DENTIST VISIT -0.095* [-0.144,-0.046] -0.094* [-0.144,-0.044]
29 MCDONALD’S HAMBURGER 0.048* [0.005,0.091] 0.048* [0.003,0.092]
30 PIZZA -0.027 [-0.071,0.017] -0.029 [-0.074,0.016]
31 FRIED CHICKEN 0.018 [-0.054,0.089] 0.023 [-0.052,0.098]
32 HAIRCUT 0.030 [-0.017,0.077] 0.030 [-0.017,0.077]
33 BEAUTY SALON 0.028 [-0.031,0.087] 0.024 [-0.036,0.085]
34 TOOTHPASTE -0.022 [-0.094,0.050] -0.015 [-0.097,0.067]
35 DRY CLEANING 0.018 [-0.021,0.057] 0.016 [-0.023,0.055]
36 MAN’S SHIRT -0.092* [-0.181,-0.003] -0.093* [-0.181,-0.004]
37 APPLIANCE REPAIR 0.081* [0.030,0.131] 0.083* [0.033,0.134]
38 NEWSPAPER -0.052 [-0.140,0.037] -0.054 [-0.141,0.033]
39 MOVIE 0.020 [-0.009,0.049] 0.020 [-0.009,0.048]
40 BOWLING -0.055 [-0.140,0.031] -0.049 [-0.133,0.035]
41 TENNIS BALLS -0.014 [-0.080,0.051] -0.010 [-0.076,0.057]
42 BEER 0.072* [0.039,0.104] 0.071* [0.039,0.104]
43 WINE 0.044 [-0.010,0.099] 0.047 [-0.010,0.104]

Notes: (♦) 95 percent family-wise confidence intervals are reported.
(*) Statistically significant estimates are highlighted by asterisk.

This table reports MGDL and augmented MGDL cumulative multiplier estimates δ̂i,h at horizon h = 8 quarters
for the crude oil price shocks. MGDL estimates are based on DL regressions and augmented MGDL regressions xijt = aij +∑h
`=0 bij`vt−`+ehit, and augmented MGDL estimates are based on regressions xijt = aij+

∑h
`=0 bij`vt−`+ϕxi,j,t−h−1+ehit,

where xijt is log-difference of price for product category i in city j in period t from C2ER dataset, which spans M = 43 reported
categories over N = 41 cities, covering T = 104 quarterly periods from 1990Q1 to 2015Q4.
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Further inspection of the impulse response coeffi cients b̂i` suggests that the full pass-through

takes place within one quarter, in line with our economic intuition. Interestingly, the cumulative

multiplier estimates are also statistically significant in many other products (21 out of the remaining

42), mostly in traded goods. The cumulative multiplier estimates are, however, a bit smaller in

the non-gasoline product prices, with the mean cumulative multiplier of 10.1% and the median of

12.6%. Nevertheless, these significant secondary effects of crude oil prices are somewhat surprising,

which is better aligned with the notion that changes in crude oil prices are primarily influenced

by demand shocks that have a broader impact on economic activity and overall price levels. The

estimates of location effects (cj) are reported in Table A1 in Appendix, which are economically

very small and insignificant in the vast majority of locations under study.

5 Conclusion

This paper develops the estimators of impulse-responses in a panel setting with one or two cross-

sections under assumptions that the shock is common, observed, and the impulse responses follow

a random coeffi cient specification. We derive suffi cient conditions for consistency and asymptotic

normality of mean group estimation based on the distributed lag and augmented distributed lag

specifications. These estimators are found to have satisfactory small sample performance. We then

illustrate the empirical relevance of our analysis by examining how shocks in crude oil prices affect

the retail prices of diverse products in metropolitan areas across the United States.

Several potential extensions remain for future research. Specifically, within the context of panel

data, alternative methodologies beyond the distributed lag specifications investigated in this paper

warrant further exploration. Some of these alternative approaches may yield panel estimators with

improved performance in small samples.
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A Appendix

This appendix consists of two sections. Section A.1 presents lemmas and proofs. Section A.2

presents additional empirical results.

A.1 Lemmas and Proofs

Lemma A.1 Let Assumptions 1-3 hold, h ≥ 0 be a fixed integer that does not depend on the

sample size, and define T − h × 1 vectors v` = (vh+1−`, vh+2−`, ..., vT−`)
′ for ` = 0, 1, 2, ..., h, and

ehij = (eh,i,j,h+1, eh,i,j,h+2, ..., eh,i,j,T )′, where ehijt =
∑∞

`=h+1 bij`vt−` + zijt. Then there exists a

constant K that does not depend on (i, j, T ), such that

E

∥∥∥∥V′ehij
T − h

∥∥∥∥2 < K

T
, (A.1)

where V = (τ ,v0,v1, ...,vh)′ and τ is T − h× 1 vector of ones.

Proof. Consider individual elements of (h+ 2) × 1 vector V′ehij/ (T − h). Let s` be (h+ 2) × 1

selection vector for the (`+ 2)-th element, for ` = −1, 0, 1, ..., h. For ` = −1, we have

s′−1V
′ehij

T − h =
1

T − h

T∑
t=h+1

ehijt, (A.2)

and for ` = 0, 1, 2, ..., h, we have

s′`V
′ehij

T − h =
1

T − h

T∑
t=h+1

vt−`ehijt. (A.3)

We derive stochastic upper bounds for (A.2) and (A.3) next. Recall ehijt =
∑∞

`=h+1 bij`vt−` + zijt.

Using Assumption 2 and noting h is fixed, we have

E

(
1

T − h

T∑
t=h+1

zijt

)2
=

1

(T − h)2

T∑
t=h+1

T∑
t′=h+1

E
(
zijtzijt′

)2
<
K

T
. (A.4)
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where K does not depend on (i, j, T ). Furthermore, under Assumptions 1 and 3, we have

E

(
1

T − h

T∑
t=h+1

∞∑
`′=h+1

bij`′vt−`′

)2
<
K

T
, (A.5)

where K does not depend on (i, j, T ). Using (A.4) and (A.5), we obtain

E

∥∥∥∥s′−1V
′ehij

T − h

∥∥∥∥2 < K

T
.

Consider (A.3) next. We have

1

T − h

T∑
t=h+1

vt−`ehijt =
1

T − h

T∑
t=h+1

vt−`zijt +
1

T − h

T∑
t=h+1

vt−`

∞∑
`′=h+1

bij`′vt−`′ .

For the first term, using Assumptions 2 and 3, we obtain (noting that E
(
vt−`vt′−`zijtzijt′

)
=

E (vt−`vt′−`)E
(
zijtzijt′

)
and E (vt−`vt′−`) = 0 for t 6= t′)

E

(
1

T − h

T∑
t=h+1

vt−`zijt

)2
=

1

(T − h)2

T∑
t=h+1

T∑
t′=h+1

E
(
vt−`vt′−`zijtzijt′

)
=

1

(T − h)2

T∑
t=h+1

E
(
v2t−`

)
E
(
z2ijt
)
<
K

T
.

Similarly, for the second term we obtain under Assumptions 1 and 3,

E

(
1

T − h

T∑
t=h+1

vt−`

∞∑
`′=h+1

bij`′vt−`′

)2
<
K

T
.

These results imply

E

∥∥∥∥s′−`V
′ehij

T − h

∥∥∥∥2 < K

T
, for ` = 0, 1, 2, ..., h.

This completes the proof.

Lemma A.2 Let xijt be generated by (1) and Assumptions 1-3 hold. Let h ≥ 0 be a fixed integer

that does not depend on the sample size, and let εij = b̂ij − bij, where b̂ij is the LS estimator of
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(h+ 1)× 1 vector bij = (bij0, bij1, ..., bijh)′ in the DL regression (2). Then

εij = Op

(
T 1/2

)
, (A.6)

uniformly in i, j. In addition, let NT = N (T ) and MT = M (T ) be any nondecreasing positive-

integer-valued functions of T . Then,

N−1T

NT∑
j=1

εij = Op

(
T 1/2

)
, (A.7)

M−1T

MT∑
i=1

εij = Op

(
T 1/2

)
, (A.8)

and

M−1T N−1T

NT∑
j=1

MT∑
i=1

εij = Op

(
T 1/2

)
. (A.9)

Proof. Let xij = (xij,h+1, xij,h+2, ..., xijT )′, v` = (vh+1−`, vh+2−`, ..., vT−`)
′ for ` = 0, 1, 2, ..., h,

ehij = (eh,i,j,h+1, eh,i,j,h+2, ..., eh,i,j,T )′, and let τ be the T − h × 1 vector of ones. Define also the

T − h × (h+ 2) matrix V = (τ ,v0,v1, ...,vh)′. Vectors xij , v`, ehij , and τ , and the matrix V all

depend on T , but subscript T is omitted to simplify the notations. We also omitted the subscript

h from xij , v`, τ , and V, although these vectors and matrix depend also on h. Using this notation,

the DL regression (2) can be written in a matrix form as

xij = Vb∗ij + ehij , (A.10)

where b∗ij =
(
aij ,b

′
ij

)′
. Consider ε∗ij = b̂∗ij − b∗ij , where b̂∗ij is the LS estimator of b∗ij given by

b∗ij =
(
V′V

)−1
V′xij . (A.11)
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Since εij is part of ε∗ij =
(
âij − aij , ε′ij

)′
, a suffi cient condition for (A.6) to hold is ε∗ij = Op

(
T 1/2

)
.

Substituting (A.10) in (A.11), we obtain

ε∗ij = b∗ij − b∗ij =

(
V′V

T − h

)−1 V′ehij
T − h

=
(
Σ̂−1v −Σ−1v

) V′ehij
T − h + Σ−1v

V′ehij
T − h ,

where Σ̂v = V′V
T , and under Assumption 3 we have plimT→∞ Σ̂v = Σv, where Σv is full rank. It

follows
(

Σ̂−1v − Σ−1v

)
= op (1) and

∥∥Σ−1v ∥∥ < K. In addition, result (A.1) of Lemma A.1 implies

V′ehij
T − h = Op

(
T 1/2

)
,

uniformly in i, j. It now follows that ε∗ij = Op
(
T 1/2

)
, uniformly in i, j, which implies (A.6). To

establish (A.7), consider first,

N−1T

NT∑
j=1

ε∗ij =
(

Σ̂−1v − Σ−1v

)N−1T NT∑
j=1

V′ehij
T − h


+Σ−1v

N−1T NT∑
j=1

V′ehij
T − h

 .
Lemma A.1 established E ‖V′ehij/(T − h)‖2 < K/T , where the constant K does not depend on

i, j. Hence, for any positive integer-valued function NT = N (T ),

E

∥∥∥∥∥∥N−1T
NT∑
j=1

V′ehij
T − h

∥∥∥∥∥∥
2

≤ N−1T
NT∑
j=1

E

∥∥∥∥V′ehij
T − h

∥∥∥∥2 < K

T
,

and therefore

N−1T

NT∑
j=1

V′ehij
T − h = Op

(
T 1/2

)
.

Since also
(
Σ̂−1v −Σ−1v

)
= op (1), and ‖Σv‖ < K, it follows that N−1T

∑NT
j=1 εij = Op

(
T 1/2

)
. This

completes the proof of (A.7). Results (A.8)-(A.9) can be established using the same steps.
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Proof of Theorem 1.. Let εij = b̂ij − bij . We have

b̂i = N−1
N∑
j=1

b̂ij = N−1
N∑
j=1

bij +N−1
N∑
j=1

εij .

Substituting bij = bi + cj + ωij (Assumption 1), we obtain

b̂i = bi +N−1
N∑
j=1

(cj + ωij) +N−1
N∑
j=1

εij .

But N−1
∑N

j=1 cj = 0. In addition, V ar
(
N−1

∑N
j=1ωij

)
= N−2

∑N
j=1Ωij , and ‖Ωij‖ < K under

Assumption 1. Hence, N−1
∑N

j=1ωij = Op
(
N−1/2

)
. Furthermore, N−1

∑N
j=1 εij = Op

(
T−1/2

)
by

result (A.7) of Lemma A.2. Hence,

b̂i − bi = Op

(
N1/2

)
+Op

(
T−1/2

)
.

The consistency result b̂i →p bi follows. Consider next the probability limit of ĉj . We have

ĉj = M−1
M∑
i=1

(
b̂ij − b̂i

)
= M−1

M∑
i=1

b̂ij −N−1
N∑
j=1

b̂ij


= M−1

M∑
i=1

b̂ij −M−1N−1
M∑
i=1

N∑
j=1

b̂ij

Using b̂ij = bij + εij and bij = bi + cj + ωij , we obtain

ĉj = M−1
M∑
i=1

(bi + cj + ωij + εij)−M−1N−1
M∑
i=1

N∑
j=1

(bi + cj + ωij + εij)

= cj +M−1
M∑
i=1

(bi + ωij + εij)−M−1
M∑
i=1

bi −M−1N−1
M∑
i=1

N∑
j=1

(ωij + εij)

= cj +M−1
M∑
i=1

(ωij + εij)−M−1N−1
M∑
i=1

N∑
j=1

(ωij + εij) .
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Under Assumption 1, we have

M−1
M∑
i=1

ωij = Op

(
M−1/2

)
, and M−1N−1

M∑
i=1

N∑
j=1

ωij = Op

(
M−1/2N−1/2

)
.

These results, together with results (A.8) and (A.9) of Lemma A.2 establish

ĉj = cj +Op

(
M−1/2

)
+Op

(
M−1/2N−1/2

)
+Op

(
T−1/2

)
,

hence ĉj →p cj as required.

We establish asymptotic distribution next. We have

√
N
(
b̂i − bi

)
= N−1/2

N∑
j=1

ωij +N−1/2
N∑
j=1

εij

Since ωij ∼ IID (0,Ωij), K0 < ‖Ωij‖ < K1, under Assumption 1, we have

N−1/2
N∑
j=1

ωij →d N
(
0, Ω̄i◦

)
,

where Ω̄i◦ = N−1
∑N

j=1Ωij . In addition, result (A.7) of Lemma A.2 implies N−1/2
∑N

j=1 εij =

Op
(
N1/2T−1/2

)
. Hence for any i, as N,T →j ∞ such that N/T → 0, we obtain

√
N
(
b̂i − bi

)
→d N

(
0, Ω̄i◦

)
.

Consider the asymptotic distribution of ĉj next. We have

√
M (ĉj − cj) = M−1/2

M∑
i=1

ωij +M−1/2
M∑
i=1

εij −M−1/2N−1
M∑
i=1

N∑
j=1

ωij

−M−1/2N−1
M∑
i=1

N∑
j=1

εij .
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Using the same arguments as before, we have

M−1/2
M∑
i=1

ωij →d N
(
0, Ω̄◦j

)
,

and

M−1/2N−1
M∑
i=1

N∑
j=1

ωij = Op

(
N−1/2

)
,

where Ω̄◦j = M−1
∑M

i=1Ωij . Using results (A.8) and (A.9) of Lemma A.2, we obtain

M−1/2
M∑
i=1

εij = Op

(
M1/2T−1/2

)
,

and

M−1/2N−1
M∑
i=1

N∑
j=1

εij = Op

(
M1/2T−1/2

)
.

Hence, for any j, as M,T →j ∞ such that M/T → 0,

√
M (ĉj − cj)→d N

(
0, Ω̄◦j

)
.

This completes the proof.

Proof of Proposition 1.. Proof of Proposition 1 follows the same lines of arguments as the

proof of Theorem 1. Result (A.6) of Lemma A.2 implies b̂j = bj + εj = bj + Op
(
T−1/2

)
, and we

have

b̂ = N−1
N∑
j=1

b̂j = N−1
N∑
j=1

bj +Op
(
T−1

)
= N−1

N∑
j=1

ωj +Op

(
T−1/2

)
,

where we substituted bj = b + ωj (Assumption 4). Noting that N−1
∑N

j=1ωj = O
(
N−1/2

)
, we

obtain b̂→p b, as N,T →j ∞, without any restrictions on N/T . Consider next

√
N
(
b̂− b

)
= N−1/2

N∑
j=1

ωij +Op

(
N1/2T−1/2

)
.
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But since ωj ∼ IID (0,Ωj), andK0 < ‖Ωj‖ < K1, under Assumption 4, we haveN−1/2
∑N

j=1ωj →d

N
(
0, Ω̄

)
, where Ω̄ = N−1

∑N
j=1Ωj . Hence as N,T →j ∞ such that N/T → 0, we obtain

√
N
(
b̂− b

)
→d N

(
0, Ω̄

)
.

This completes the proof.

A.2 Additional Empirical Results
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Table A1: Estimates of IRF location effects (cδj,h) for oil price shocks cumulative multipliers at

horizon h = 8

MGDL Augmented MGDL
City or Metro Area, State ĉδj,8 Conf. Interval♦ ĉδj,8 Conf. Interval♦

1 Amarillo, TX 0.012 [-0.013,0.036] 0.007 [-0.016,0.030]
2 Atlanta, GA 0.018 [-0.006,0.042] 0.017 [-0.007,0.042]
3 Cedar Rapids, IA -0.031* [-0.052,-0.010] -0.029* [-0.051,-0.007]
4 Charlotte-Gastonia-Rock Hill, NC-SC -0.004 [-0.024,0.016] -0.006 [-0.027,0.016]
5 Chattanooga, TN-GA -0.041* [-0.064,-0.017] -0.043* [-0.067,-0.019]
6 Cleveland-Akron, OH -0.017 [-0.041,0.006] -0.017 [-0.040,0.007]
7 Colorado Springs, CO -0.001 [-0.029,0.027] 0.000 [-0.029,0.029]
8 Columbia, MO 0.004 [-0.021,0.030] 0.005 [-0.021,0.031]
9 Columbia, SC -0.030* [-0.049,-0.011] -0.033* [-0.051,-0.014]
10 Dallas-Fort Worth, TX 0.000 [-0.023,0.023] -0.002 [-0.024,0.020]
11 Denver-Boulder-Greeley, CO -0.032* [-0.061,-0.003] -0.028 [-0.058,0.003]
12 Dover, DE 0.030* [0.009,0.051] 0.030* [0.008,0.052]
13 Houston-Galveston-Brazoria, TX -0.022 [-0.048,0.005] -0.026 [-0.052,0.001]
14 Huntsville, AL 0.024 [-0.003,0.051] 0.023 [-0.005,0.051]
15 Jonesboro, AR -0.004 [-0.025,0.017] -0.006 [-0.029,0.016]
16 Joplin, MO -0.029* [-0.050,-0.009] -0.029* [-0.050,-0.007]
17 Knoxville, TN 0.030* [0.011,0.049] 0.031* [0.010,0.052]
18 Lexington, KY 0.049* [0.030,0.068] 0.050* [0.029,0.071]
19 Los Angeles-Riverside-Orange County, CA -0.013 [-0.032,0.005] -0.010 [-0.029,0.008]
20 Louisville, KY-IN 0.004 [-0.013,0.021] 0.002 [-0.018,0.022]
21 Lubbock, TX 0.000 [-0.021,0.022] 0.000 [-0.021,0.022]
22 Memphis, TN-AR-MS 0.012 [-0.013,0.036] 0.010 [-0.016,0.035]
23 Montgomery, AL 0.009 [-0.019,0.036] 0.006 [-0.022,0.034]
24 Odessa-Midland, TX 0.021 [-0.001,0.044] 0.016 [-0.007,0.039]
25 Oklahoma City, OK 0.015 [-0.012,0.042] 0.015 [-0.011,0.042]
26 Omaha, NE-IA -0.031* [-0.057,-0.004] -0.033* [-0.058,-0.008]
27 Philadelphia-Wilmington-Atlantic City, PA-NJ-DE-MD 0.008 [-0.016,0.033] 0.007 [-0.019,0.034]
28 Phoenix-Mesa, AZ -0.047* [-0.074,-0.019] -0.041* [-0.070,-0.011]
29 Portland-Salem, OR-WA -0.011 [-0.048,0.026] -0.008 [-0.047,0.031]
30 Raleigh-Durham-Chapel Hill, NC 0.008 [-0.014,0.031] 0.010 [-0.015,0.034]
31 Reno, NV 0.039* [0.015,0.064] 0.040* [0.015,0.065]
32 Salt Lake City-Ogden, UT 0.022 [-0.005,0.048] 0.022 [-0.006,0.049]
33 San Antonio, TX 0.029* [0.000,0.059] 0.036* [0.009,0.064]
34 South Bend, IN 0.033 [-0.002,0.068] 0.033 [-0.002,0.069]
35 Springfield, IL -0.027 [-0.056,0.003] -0.029 [-0.059,0.001]
36 St. Cloud, MN 0.045* [0.020,0.070] 0.045* [0.019,0.071]
37 St. Louis, MO-IL -0.055* [-0.080,-0.029] -0.051* [-0.077,-0.025]
38 Tacoma, WA -0.005 [-0.035,0.024] -0.005 [-0.035,0.025]
39 Tucson, AZ -0.013 [-0.042,0.016] -0.012 [-0.042,0.019]
40 Waco, TX -0.013 [-0.037,0.011] -0.014 [-0.039,0.011]
41 York, PA 0.011 [-0.012,0.035] 0.015 [-0.008,0.038]

Notes: (♦) 95 percent family-wise confidence intervals are reported.
(*) Statistically significant estimates are highlighted by asterisk.

Cumulative location effects are defined as cδj,h =
∑h
`=0 cjh, where cjh are the location effects defined in As-

sumption 1. This table reports MGDL and augmented MGDL cumulative location effects estimates ĉδi,h =
∑h
`=0 ĉih at

horizon h = 8 quarters for the crude oil price shocks. MGDL estimates are based on DL regressions and augmented
MGDL regressions xijt = aij +

∑h
`=0 bij`vt−` + ehit, and augmented MGDL estimates are based on regressions xijt =

aij +
∑h
`=0 bij`vt−` + ϕxi,j,t−h−1 + ehit, where xijt is log-difference of price for product category i in city j in period t from

C2ER dataset, which spans M = 43 reported categories over N = 41 cities, covering T = 104 quarterly periods from 1990Q1
to 2015Q4.
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