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1 Introduction

Energy commodity prices play an important role in individual country-level economies.

They are known to affect a number of macroeconomic variables including inflation,

gross domestic product, exchange rate, stock market prices and interest rate as well

as other commodity prices such as raw materials, metals, minerals and agricultural

products whose cost depends on extraction and transportation. Energy commodi-

ties (such as oil, gas and coal) are important inputs to many industries, such as

transport, agriculture, metal and mineral, construction, manufacturing, and chem-

ical, amongst others. Consequently, a reliable forecast of energy prices is critical

for Central Banks, Treasures, Investors and International Organisations such as

the International Monetary Fund (IMF) and the World Bank (WB) to implement

policy responses and advice about energy commodity price fluctuations.

Figure 1 shows a strong co-movement of oil, gas and coal, across three distinctive

economic periods: the great moderation from the middle 1980s to early 2002, the

global financial crisis (GFC) (2008-2009), and the post-GFC period. The Great

Moderation period is characterised by stable inflation and economic growth for the

global economy. This period is also considered a period of smother business cycle in

contrast to previous periods dominated by sharp boom and bust cycles. The second

period from 2002 to 2008 is characterised by a rapid increase in commodity prices

in line with the fast expansion of large developing economies such as China, India

and other highly populated developing economies. These economies have rapidly

increased energy consumption. For example, according to the World Bank (WB)

China’s consumption of energy has increased by 50% in this short period. From

January 2002 to July 2008 oil, gas and coal prices increase by a factor of 4.9, 5.2

and 4.4 respectively. In 2008, the GFC took place and commodity prices sharply

declined in line with the collapse of the world economy. From August 2008 to

February 2009 oil, gas and coal declined by 61.6, 62.9 and 58.3 per cent respectively.

From March 2009 to January 2010, oil, gas and coal sharply rebounded, rising by a

factor of 1.8, 1.5 and 1.4 respectively. After the initial recovery post-GFC, energy

commodity prices experienced a period of higher volatility to the present.

The main focus of this paper is to forecast energy commodity prices (oil, gas and

coal) based on a large global database. The literature has applied, often separately,

several macroeconomic and financial variables to predict energy and commodity

prices. Different measures of economic activity have been largely used to predict

energy commodity prices, such as Caldara et al. (2019), Aastveit et al. (2015) and

Bjørnland et al. (2018), amongst others. Alquist et al. (2019) develop a factor-based

identification strategy to link fluctuations in commodity prices and global economic

activity.

The relationship between energy commodity prices and inflation has been inten-

sively studied by academics and central bank researchers, see for example Charles

and Fisher (2011). Energy commodity prices and inflation are often understood
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in terms of cause-and-effect relationship. For example, Hammoudeh and Reboredo

(2018) observed that oil has strong forward and backward linkages with economy

and energy price components for the US inflation.

Several authors relate monetary variables such as interest rate and monetary

aggregates as important predictors of commodity prices (including energy prices).

Cologni and Manera (2008) finds that oil prices and inflation rate shocks are trans-

mitted to the real economy and therefore central banks are forced to increase inter-

est rates, while the findings in Anzuini et al. (2013) suggest that US monetary policy

shocks drive both energy and non-energy commodity prices. Ratti and Vespignani

(2015) find that monetary aggregates and interest rates in large developed and

developing economies are important determinants of energy and non-energy com-

modity prices. Amongst others, Ravazzolo et al. (2016), Foroni et al. (2015), Chen

and Rogoff (2003) show the close connection between exchange rates and commod-

ity prices for countries dependent on commodity prices or commodity currencies.

Finally, the energy and oil prices literature has extensively studied the relation-

ship between oil/commodity prices and stock market returns. For example, Kilian

and Park (2009) and Kang et al. (2016) study the relationship between oil prices

and the aggregated and industry-disaggregated stock market in the U.S. Abhyankar

et al. (2013), related oil price increases with a decline in the Japanese stock mar-

ket. Diaz et al. (2016) study the impact of oil prices volatility on the G7 economies.

They find that the stock market for all G7 economies negatively responded to oil

prices volatility from 1970 to 2014. Lombardi and Ravazzolo (2016) extend the

analysis to asset allocation.

Building on this evidence we collect and update up to 2018Q4 the global VAR

data set of Mohaddes and Raissi (2018). This large dataset contains around 200

series for the 33 largest world economies. The data frequency is quarterly, it spans

the sample period from 1979Q1 to 2018Q4, and it includes measures of economic

activity (GDP and industrial production), inflation, short- and long-term interest

rate, nominal exchange rate and stock markets. Then, we apply a dynamic fac-

tor model to it and extract information from all the variables jointly. The large

dimensionality of our database relative to the time-series length poses nontrivial

challenges to standard dimension reduction techniques such as the factor analysis

model. Particularly, when the sample size is small compared to the number of

variables, the estimates from the standard factor model are very imprecise. In the

most extreme case where the sample size is smaller than the number of variables,

the maximum likelihood estimates are meaningless without additional assumptions

on the model structure. Motivated by these issues, we assume sparse loadings

meaning that more elements of the factor loading matrix become zero and apply a

penalized maximum likelihood approach that allows to shrink parameters to zero

and to estimate sparse factor loadings. Besides statistical accuracy, another issue

concerns the interpretation of the factors in the estimated model. In standard fac-
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tor analysis, all the estimated loadings are different from zero, meaning that all the

observed variables from all countries in principle contribute to the latent factors.

In reality, this may not be the case since certain observed variables may play a role

in explaining the latent factors whilst others do not. Finally, after computing the

factors, we use a bridge equation based on autoregressive or vector autoregressive

models to predict from 1 quarter to 4 quarters ahead energy commodity prices.

The approach to factor construction proposed in this paper is global in nature:

it is not constrained within a dominant geographical region and instead relies on

exploiting the information from a large number of observable variables represent-

ing the entire global economy. Moreover, different factors can be associated with

specific variables, such as inflation, equity prices, exchange rates and interest rates,

supporting the construction of global factors of macroeconomic variables. Our em-

pirical findings support the presence of pronounced sparsity and heterogeneity in

the estimates for the loading matrix, thus showing that each latent factor is likely to

depend on a subset of the original variables in the Global VAR data set. Compared

to the benchmark random walk (RW) model, our model based on sparse factors

improves the accuracy of 1-quarter ahead predictions for all the energy commodity

prices. The largest accuracy gains occur when predicting gas prices with the lowest

mean square prediction error values for 1- to 4-quarters ahead.

The paper is organized as follows. Section 2 describes the updated VAR global

dataset. Section 3 outlines the proposed model and the sparse factor analysis

methodology used for estimation. Section 4 summarizes our empirical findings.

Section 5 concludes and provides final remarks.

2 Data

The data used in this paper is from the global VAR dataset from Mohaddes and

Raissi (2018) updated to include 2018Q4 (the most recent available data). We

also use quarterly energy commodity prices data from World Bank (WB) for the

natural logarithm of the nominal price of oil, gas and coal.1 The Global VAR

dataset includes the most relevant quarterly macroeconomic variables for the 33

largest economies, accounting overall for more than 80% of the global economy as

of 2018. The energy commodity prices raw data are shown in Figure 1. The series

followed similar trends and experienced strong growth from beginning of 2000 to

the US financial crisis when they dramatically dropped; resurged from 2010 up to

another drop in 2014; and a final resurge in 2017-2018. There is, however, large

heterogeneity across them with gas for example being more volatile from 2000 to

2009. Therefore, our out-of-sample period from 2000 to 2018 corresponds to very

volatile prices and overperforming a simple random walk benchmark might be not

1We use average prices, see https://www.worldbank.org/en/research/commodity-markets for
data and definitions.
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straightforward.

The country-level variables included in our model are: the natural logarithm of

real GDP (RGDP), the rate of inflation calculated by taking the difference of the

natural logarithm of the consumer price index (CPI), the natural logarithm of the

nominal equity price index deflated by CPI (nomEQ), the natural logarithm of the

exchange rate of country i at time t expressed in US dollars deflated by country

i’s CPI (Fxdol), the nominal short-term percent interest rate per quarter (Rshort)

and the nominal long-term percent interest rate per quarter (Rlong). The main

data sources are Haver Analytics, the International Monetary Funds International

Financial Statistics (IFS) database, and Bloomberg. When data were not available

from these sources, we employed the other national datasets described in Mohaddes

and Raissi (2018). Finally, as in the original database from Mohaddes and Raissi

(2018), we use final vintage data.

3 Model

Let xt = (x1,t, . . . , xn,t)
′ be a vector of monthly variables observed at times t =

1, . . . , T included in our global dataset which have been standardized to have a

mean equal to zero and variance equal to one. A dynamic factor model is then

given by the following observation equation:

xt = Λft + εt, εt ∼ N(0,Ψ), (1)

where Λ is a (n× r) matrix of factor loadings, ft = (f1t, . . . , frt)
′ is a (r× 1) vector

of static common factors and εt = (ε1t, . . . , εnt)
′ is the idiosyncratic component with

zero expectation and R as covariance matrix. The dynamics of the common factors

follows a VAR process:

ft = Aft−1 + ut (2)

where ut ∼ N(0, Q), and Q is a (r×r) full-rank matrix, A is a (r×r) matrix where

all roots of det(Ir−Az) lie outside the unit circle. In our empirical analaysis, we set

the autoregressive lag structure of the VAR model in equal to 1. We investigated

the usefulness of higher order lags, but results were qualitatively similar. We also

note that factors are demeaned to have zero mean.

The idiosyncratic and VAR residuals are assumed to be independent and iden-

tically distributed [
εt

ut

]
∼ iid N

([
0

0

]
,

[
R 0

0 Q

])
(3)

The h-step ahead predictions of each of the S commodity prices, ys,t+h, s = 1, · · · , S,

are obtained by using a bridge equation where commodity prices (ys,t) are expressed
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as a linear function of the expected common factors and lags of yt+h follows:

ys,t+h = αs + ρsys,t+h−1 + z′sft+h + es,t+h, es,t+h ∼ N(0, σs,e) (4)

where zs is an r × 1 vector of parameters.2 Accordingly, predictions of commodity

prices (ys,t+h) are constructed from equation (4), conditional on the estimated

parameters and the factor forecasts. The model is labelled as DFM-AR. Note, that

equation (4) implies that h-step ahead forecasts are computed as iterative forecasts.

An alternative approach, not considered in this paper, is the direct multi-step ahead

forecasting suggested by Marcellino et al. (2006).

We also investigate the use a VAR model to predict jointly the full vector of

commodity prices yt+h = (y1,t+h, · · · , yS,t+h) by the multivariate model

yt+h = C + Φyt+h−1 +B′Ft+h + et+h, et+h ∼ N(0,Σe). (5)

The model is labelled as DFM-VAR.

Equations (1) and (2) are commonly estimated following a two-step procedure;

e.g., see Giannone et al. (2008). In the first step, principal component analysis

or factor analysis are used to estimate the latent factors, while the second step

entails finding maximum likelihood estimates for the latent VAR proces. One issue

with this approach is that estimation becomes very imprecise when the number

of variables n is relatively large compared to the number of observations. In the

most extreme case where the number of observations T is much smaller than n,

maximum likelihood estimates for the standard factor analysis model do not exist.

An additional problem with the traditional approaches is that the estimated matrix

of loadings Λ is not sparse, meaning that all its elements are different from zero

even when in reality certain elements of Λ might be exactly zero, i.e. some variables

may play no role in forming certain latent factors. This means that the additional

statistical errors deriving from the estimation of the irrelevant loadings would result

in larger forecasting errors.

Motivated by these issues, we propose to use a penalized likelihood approach

to extract the latent factors. Penalized likelihood estimation, such as Lasso-type

penalization, has been successfully applied in a number of domains in statistics

and econometrics to deal with complex likelihood functions with a large number

of parameters. In this paper, we follow the penalized factor analysis estimation

methodology first considered by Choi et al. (2010). Hirose and Yamamoto (2015)

developed algorithms to compute the entire solution path, permitting the applica-

tion of a wide variety of convex and nonconvex penalties.

2As for the VAR model in (2) we also investigate to include more lags of ys,t in (4), but forecast
accuracy did not improve.
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3.1 Penalized maximum likelihood estimation

Assuming fixed factors, the observable random vector xt follows a multivariate nor-

mal distribution with variance-covariance matrix Σ = ΛΛ′ + Ψ. The log-likelihood

function is, up to an additive constant not depending on parameters

`(Λ,Ψ) = −T
2

[
log |ΛΛ′ + Ψ|+ tr{(ΛΛ′ + Ψ)−1Σ̂}

]
, (6)

where Σ̂ is the sample variance-covariance matrix. The maximum likelihood esti-

mates of Λ and Ψ are found by solving ∂`(Λ,Ψ)/∂Λ = 0 and ∂`(Λ,Ψ)/∂Λ = 0.

Following Hirose and Yamamoto (2015), estimates for the loading, Λ̂ρ,γ , are ob-

tained by maximizing the penalized log-likelihood function

`ρ,γ(Λ,Ψ) = `(Λ,Ψ)− T
n∑
i=1

r∑
j=1

penρ,γ(|Λij |), (7)

where ρ > 0 and γ > 0 are regularization parameter. Here pen(·) is a penalty with

amount of shrinkage controlled by ρ and γ. Particularly, for smaller values of ρ,

we have greater shrinkage, meaning that more elements of the loading matrix Λ

become zero. In this paper, we focus on the following popular nonconvex penalties:

• The smoothly clipped absolute deviation (SCAD) penalty defined by

penρ,γ(z) =


ρz, z ≤ ρ

γρz − (z2 + ρ2)2

γ − 1
, ρ ≤ z ≤, γρ

γ2(γ2 − 1)

2(γ − 1)
, z > γρ.

• The minimax convex penalty (MC+) defined by

penρ,γ(z) =


ρz − z2

2γ
, z ≤ ργ,

1

2
γρ2, z > γλ.

For each value of ρ > 0, γ → ∞ yields the soft threshold operator (i.e., the

Lasso penalty), whilst γ → 1+ produces hard threshold operator.

The maximization of the penalized likelihood is computed efficiently through a

generalized Expectation-Maximization (EM) algorithm. Given number of latent

factors r ≥ 1, and a grid of choices for the tuning parameters γ and ρ, estimated

loading matrices are computed in the maximization step through the coordinate-

descent approach described in Hirose and Yamamoto (2015). Estimates in this

paper are obtained using the R package fanc (Hirose et al., 2016).

For our empirical analyses, it is important to select the appropriate value of the

regularization parameters ρ and γ, as well as the unknown number of latent factors
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r. The selection of the triple (ρ, γ, r) can be viewed as a model selection. To this

end, we use the Bayesian information criterion (BIC)

BIC(ρ, λ, r) = −2`ρ,γ(Λ̂ρ,γ , Ψ̂ρ,γ) + log(T )× df(r, n), (8)

where df(r, n) = rn+ r(r + 1)/2 is an estimate of the degrees of freedom, i.e. the

number of effective parameters. Note that our estimate for the degrees of freedom is

naive in the sense that we are ignoring the constraints on certain loadings to be zero;

thus, we have no guarantee that df(r, n) results in model selection consistency. On

the other hand, estimation of degrees of freedom in high-dimensional factor analysis

is an ongoing research topic and more theory would be needed in this context.

In other works involving penalized likelihood approaches, the number of effective

parameters is often approximated by taking the number of nonzero elements in Λ̂ρ,γ .

By doing this, however, we would under-estimate the effective degrees of freedom of

our model since we would treat the selected model as the true model, thus ignoring

completely the undertainty related to the model selection process. Following the

Generalized information criterion approach of Konishi and Kitagawa (1996), we

also estimated directly the model-selection bias by non-parametric bootstrap for

the log-likelihood `ρ,γ(Λ̂ρ,γ , Ψ̂ρ,γ), finding models with complexity similar to those

selected by our naive BIC approach.

4 Empirical analysis

This section provides the results of the application of the proposed dynamic fac-

tor model to predict energy commodity prices. In the first subsection we focus

on in-sample results, in particular evaluating factor loadings, sparsity and factor

dynamics. The second subsection provides details of the forecast exercises and

results.

4.1 In-sample results

Our in-sample analysis focuses on the estimation via penalized maximum likelihood

of factors ft and factor loadings Λ in equation (1) when applied to the updated

global VAR dataset.

The first step is the estimation of the number of factors. We apply the BIC

selection in equation (3.1) resulting in r = 8 factors. In particular, the BIC value

steadily declines up to 8 factors, then it stabilizes before increasing again when

r > 10. The selected number of factors partly confirms previous findings. Based on

US data, Ludvigson and Ng (2009), Stock and Watson (2012) and Casarin et al.

(2015) find optimal number of factors equal to 7, 5 and 7, respectively.

The selected tuning parameters are ρ = 0.14 and γ = 1.01 essentially corre-

sponding to the hard threshold operator, and indicate a high level of sparsity in
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the factor loadings. Indeed, we recall that Λ is a (174× 8) matrix and therefore it

requires the estimation of 1392 parameters. Thus, estimation would be imprecise

without imposing sparsity. Moreover, it could not be realistic imposing that all vari-

ables from all 33 countries contribute to all the factors. Tables 1 and 4 summarize

the composition of the estimated factor loadings. In particular, Table 1 reports the

proportion of times a certain variable is included in constructing factors. A variable

i has a significant contribution to factor j if the corresponding factor loading esti-

mate Λ̂ij is different from zero, where Λ̂ is the estimated loading matrix. A value

of 1 means that all variables associated to a specific group are included; a value of

0 indicates not variables are included. Table 4 provides detailed results. Table 1

organizes the results in two groups: by variables and by geographical regions.

When grouping across all variables (column All), we find that from 30% to 40%

of the estimated loadings were exactly zero. This is a substantial sparsity level,

indicating not all variables are useful for all factors. On the other hand, we found

a large heterogeneity across factors. All 8 factors load on most of the real GDP

(RGDP) variables, with a minimum of 7% of the real variables restricted to zero

for the eight factor and a maximum of 21% zero restrictions for the seventh factor.

CPI variables are important for the third and, above all, the sixth factors. The

seventh factor is an equity price factor (nomEQ) with no sparsity, whether the

second factor loads mainly on nominal exchange rate (Fxdol). Factor three loads

with no sparsity on short interest rates (Rshort), but this variable is also relevant

for the first, the fifth and the sixth factors, supporting the connections of interest

rates to many variables, in particular CPI (sixth factors). Finally, all long interest

rates (Rlong) variables are included to compute the eight factor, and most of them

in factors one, three, four, five and six.

As a second evidence we classify results in geographical regions. Following

Bjørnland et al. (2017), we divide countries in four main continents: North America,

South America, Europe and Asia.3 The heterogeneity is very large, with only the

third factor loading on all South American variables, and from 40% to 25% of factor

estimates are in most cases restricted to zero. Therefore, our evidence indicates that

factors are strongly connected to specific variables and not geographical regions,

providing a supportive evidence of the importance of global database.

Figure 2 shows the estimated eight factors. We note specific patterns of the

factors that can be explained by the factor loadings. For example, the sixth factor

is the one that resembles a global inflation factor. It shows large values in the

early part of the sample, then it decreases over the ’80s, stabilizes in the ’90s and

beginning of 2000 before becoming negative starting from the US financial crises.

The seventh factor captures equity collapses in October 1987, for the Gulf War

(1990-1991), around the Asian financial crisis (1997-1998), associated to the burst

3Australia, New Zealand and South Africa are grouped in the Asia continent to avoid groups with few
variables. We also note that not all variables are available for all countries, in particular equity premium
and long interest rates are missing for some of the Asian and South American countries.
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of the internet bubble (2000), and to the US financial crisis (2008). Factor three

proxies the declines of the short interest rates over the sample. Finally, there is not

a clear output factor because most factors upload on RGDP variables and output

growth has been quite heterogeneous across countries in our sample. Finally, Table

2 provides the estimate of the matrix Q in equation (2).

4.2 Forecasting results

4.2.1 Alternative models

We compare the dynamic factor models DFM-AR in (1)-(2)-(4) and DFM-VAR

in (1)-(2)-(5) to three standard models usually applied when investigating energy

commodity price predictability, see Alquist et al. (2013).

The benchmark model is the random walk model:

yt+h,s = yt,s + et+h,s. (9)

The model assumes that the most accurate prediction for future values of variables

yt+h,s is the last available price yt,s.

The second model is the (parsimonious) univariate asutoregressive (AR) speci-

fication, whereas the errors are assumed to be normally distributed with zero mean

and σ2h variance. The autoregressive model can be written as follows

yt,s =

p∑
l=1

φlyt−l,s + et,s. (10)

To account for the long autoregressive lag properties of energy commodity prices,

see Kilian (2009), we fix p=8 (two years) and select with the AIC criterion the

optimal p lag for each series and for each vintage.

The third model is the vector autoregressive (VAR) model. Let yt+h = (yt+h,1, . . . , yt+h,3)
′

denote the (3× 1) vector of energy commodity prices. The VAR model of order p

is formulated as follows:

yt+h =

p∑
l=1

Φlyt+h−l + et, (11)

where Φl is the (3 × 3) matrix of autoregressive coefficients. The vector of errors

et is assumed to be serially uncorrelated and normally distributed with zero mean

and a full covariance matrix Σ. As for the AR model, we choose optimal p via AIC

for each vintage.

4.2.2 Forecast evaluation

We compare the different models in predicting the three energy commodity (loga-

rithmic) prices for four horizons, h =1, 2, 3 and 4 quarters ahead. We assess the
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goodness of our forecasts using the mean square forecasting errors (MSFEs) for

each forecast horizon h. The MSFE for h = 1, . . . , 4, model i= RW, AR, VAR,

DFM-AR, DFM-VAR, s=coal, gas and oil is computed as

MSFEh,i,s =
1

T −R

T−1∑
t=R

(ŷt+h,i,s − yt+h,s)2 , (12)

where T is the number of observations, R is the initial in-sample period to compute

the first forecasts, yt+h,s is the realized value of the variable s at time t + h, and

ŷt+h,i,s is the model i forecast of yt+h,s made at time t.

In addition, to provide a rough gauge of whether the differences in forecast

accuracy based on square forecasting errors are significant, we apply the Model

Confidence Set procedure of Hansen et al. (2011) across models for a fixed variable

s and a fixed horizon h to jointly compare their predictive power. We implemented

the MCS procedure with Tmax,M test (Hansen et al., 2011, p. 465) at the α = 0.15

significance level, using the R function MCSprocedure within the package MCS in

Bernardi and Catania (2018).

4.2.3 Results

We split the full quarterly sample 1979Q1-2018Q4 into two periods: an initial in-

sample period 1979Q1-1999Q4 and an out-of-sample (OOS) period 2000Q1-2018Q4.

We use an expanding recursive window to estimate the models and produce 76

forecasts (2000Q1-2018Q4) for each of the energy commodity prices by extending

the in-sample period with a new observation at each step. For each of the 76 OOS

values, we produce from 1- to 4-step ahead forecasts using several different models

described in the previous section. Models are re-estimated for each one of the 76

vintages.

Table 3 reports the OOS forecasting results for the different individual models

when predicting the three energy commodity prices at the four horizons we consider.

In the second row, the MSFE for the benchmark RW model is reported; on the

contrary ratios between the MSFEs of the AR, VAR, FDM-AR and DFM-VAR

models and the MSFE of the RW model are reported in the other rows. Values

less than 1 indicates that forecasts from the current model are more accurate than

forecasts of the RW model.

We find three clear results. The first one is that the benchmark model RW is

difficult to beat, as documented in many studies on oil price predictability, see e.g.

Alquist et al. (2013) and Baumesteir and Kilian (2015). We generalize the finding

to other energy commodity prices as coal and gas. Second, the model that offers

larger predictability relative to the RW is the DFM-AR model. The DFM-AR

provides the lowest MSFE at 1-quarter ahead horizon for all variables, and at all

horizons when predicting gas prices. Moreover, the DFM-AR is the only model

always included in the model confidence set in all twelve forecasting exercises we
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consider. The DFM-VAR model also does very well when predicting gas prices and

it gives the lowest MSFE in all four horizons with reductions up to 15%. But the

DFM-VAR does not provide any economic gain when predicting coal and oil. In

the letter case, it is not included in the model confidence set at any horizon. This

results hints to a different behaviour of gas prices that respond both to gas-market

fundamentals and to other commodity energy markets. Other energy commodity

prices are mainly driven by their own fundamentals. Finally, the VAR model gives

the largest errors. The model has a larger MSFE than that of the RW model in all

cases and it is never included in the best set of models.

5 Conclusion

This paper proposes the use of a dynamic factor model based on a penalized max-

imum likelihood approach to forecast oil, gas and coal commodity prices. The

nature of our approach is global, since our model is constructed using an update

version of the Global VAR dataset proposed by Mohaddes and Raissi (2018), which

includes important information from the largest 33 economies globally accounting

for more than 80% of the global economy. Specifically, we consider measures of

output, inflation, interest rates, equity markets and exchange rates of these coun-

tries as well as data for other non-energy commodities (metal and agricultural

commodity prices). We estimate a factor model using a penalized likelihood ap-

proach that enables shrinking loading parameters to zero, thus resulting in sparse

factor loadings. The sparse estimates are shown to improve forecasts compared to

standard methods and enhance the interpretation of the role played by observable

variables in forming latent factors. Interestingly, each factor mostly captures differ-

ent economic information and we identify global inflation, interest rates and equity

premium factors.

For forecasting, we introduce a bridge equation relating the latent factors to

energy commodity prices. We carried out out-of-sample testing of the accuracy

of our forecasting by splitting the original sample into an initial sample period

(1979Q1-199Q4) and out-of-sample period (2000Q1-2018Q4). Using a moving fore-

casting window approach, we estimated the models and produced 76 forecasts (1 to

4 periods ahead) for each energy commodity prices (oil, gas and coal). Main results

indicate that the model which provides the largest predictability gains relative to

the RW is our dynamic factor model. Precisely, our model provides more accurate

forecasts than the benchmark RW model for 1-quarter ahead for all energy com-

modities. When predicting gas prices, the model gives the lowest MSFE values for

1 to 4 quarters ahead.
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Table 1: Factor loadings summary

Factors 1 2 3 4 5 6 7 8
Variable groups

All 0.644 0.592 0.713 0.632 0.707 0.678 0.672 0.609
RGDP 0.909 0.818 0.848 0.909 0.879 0.848 0.788 0.939
CPI 0.606 0.364 0.727 0.424 0.606 0.848 0.424 0.485
nomEQ 0.192 0.269 0.192 0.423 0.462 0.385 1.000 0.154
Fxdol 0.406 0.875 0.563 0.531 0.594 0.250 0.656 0.531
Rshort 0.875 0.531 1.000 0.688 0.844 0.844 0.625 0.625
Rlong 0.889 0.667 0.944 0.889 0.889 0.944 0.556 1.000

Geographical regions
North America 0.727 0.455 0.636 0.636 0.546 0.546 0.818 0.727
South America 0.810 0.524 1.000 0.524 0.714 0.381 0.524 0.619
Europe 0.662 0.662 0.676 0.662 0.732 0.775 0.747 0.648
Asia 0.563 0.563 0.676 0.634 0.704 0.690 0.620 0.549

Notes: Percentage of significant variables included in constructing factors. A variable (RDGP, CPI, etc.)

has a significant contribution to a given factor j, with j = 1, . . . , 8, if Λ̂ij 6= 0 where Λ̂ij is the (ij)th

element of the estimated loading matrix Λ̂. A value of 1 indicates all variables associated to a specific

group are included; a value of 0 indicates not variables are included.

Table 2: Factor residual correlations

Factors 1 2 3 4 5 6 7 8
1 1.140 -0.051 -0.153 -0.052 0.330 -0.051 0.126 0.184
2 -0.051 1.312 -0.121 -0.159 0.164 0.288 -0.283 0.059
3 -0.153 -0.121 1.071 0.016 -0.037 0.128 0.099 0.207
4 -0.052 -0.159 0.016 1.330 -0.618 0.157 -0.175 -0.228
5 0.330 0.164 -0.037 -0.618 1.524 0.025 0.127 -0.181
6 -0.051 0.288 0.128 0.157 0.025 1.169 -0.019 0.277
7 0.126 -0.283 0.099 -0.175 0.127 -0.019 1.257 0.163
8 0.184 0.059 0.207 -0.228 -0.181 0.277 0.163 1.354

Notes: Estimates of the covariance matrix Q in equation (2).
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Table 3: MSFE

h=1 h=2 h=3 h=4
COAL

RW 0.020∗ 0.056∗ 0.093∗ 0.127∗

AR 1.208∗ 1.245∗ 1.299∗ 1.345∗

VAR 1.200 1.441 1.608 1.676
DFM-AR 0.966∗ 1.036∗ 1.091∗ 1.118∗

DFM-VAR 1.013∗ 1.104∗ 1.165∗ 1.185∗

GAS
RW 0.022∗ 0.061 0.097∗ 0.123∗

AR 1.239∗ 1.270 1.261∗ 1.346∗

VAR 3.022 2.789 2.750 3.106
DFM-AR 0.964∗ 0.925∗ 0.912∗ 0.921∗

DFM-VAR 0.913∗ 0.842∗ 0.860∗ 0.952∗

OIL
RW 0.024∗ 0.057∗ 0.084∗ 0.106∗

AR 1.355 1.473 1.557 1.665
VAR 1.322 1.781 2.024 2.039
DFM-AR 0.974∗ 1.077∗ 1.140∗ 1.150∗

DFM-VAR 1.024 1.162 1.235 1.243

Notes: Notes: The Table reports mean square forecast error (MSFE) for different models and four

different forecasting horizons, h=1, 2, 3 and 4 quarters ahead. For the RW baseline models, the Table

reports MSFEs; for all other models, table reports ratio between MSFE of current model and MSFE of

RW benchmark. Entries less than 1 indicate that forecasts from current model are more accurate than

forecasts from corresponding baseline model. A ∗ indicates the models that belong to the Superior Set

of Models delivered by the Model Confidence Set procedure for each horizon h at confidence level 15%.
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Figure 1: Energy Commodity Prices
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Notes: The Figure shows coal, gas and oil prices.

Figure 2: Factors
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Notes: The Figure shows the eight estimated factors.
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Appendix

This appendix reports details results for factor loadings, displaying results for each

variable and each country.
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Table 4: Factor loadings

Factors
Series Countries 1 2 3 4 5 6 7 8

RGDP

’Argentina’ 0.648 0.012 0.482 0.053 0.522 0.006 0.003
’Australia’ 0.734 -0.160 0.148 0.034 0.528 -0.026 0.000
’Austria’ 0.310 0.484 -0.079 0.599 -0.266
’Belgium’ 0.317 0.011 0.228 0.423 0.085 0.700 -0.151
’Brazil’ 0.553 0.013 0.639 -0.012 -0.029 0.414 -0.002 0.114

’Canada’ 0.711 -0.246 0.359 -0.027 0.345 -0.047 0.015
’China ’ 0.035 -0.020 -0.704 -0.217 -0.332 -0.446 -0.058 0.194
’Chile’ 0.624 -0.002 0.293 0.027 0.625 0.001 0.083

’Finland’ 0.843 0.015 -0.489 -0.501
’France’ 0.467 -0.012 -0.086 0.395 0.052 0.675 -0.034 0.000

’Germany’ 0.018 0.387 0.617 0.039 0.329 -0.077 0.284
’India’ 0.605 -0.008 0.507 -0.006 -0.177 0.500 0.009 0.078

’Indonesia’ 0.711 0.088 0.252 0.382 0.051 0.185
’Italy’ 0.380 0.551 0.222 0.127 0.589 0.007 -0.001

’Japan’ -0.375 -0.011 -0.655 0.001 -0.209 -0.495 -0.007 0.013
’Korea’ -0.322 -0.030 -0.707 0.173 -0.101 -0.517 -0.011 0.172

’Malaysia’ -0.308 -0.010 -0.816 -0.057 -0.109 -0.384 -0.014 0.055
’Mexico’ 0.503 -0.017 0.475 -0.011 0.079 0.610 0.059

’Netherlands’ -0.281 0.044 -0.425 0.612 -0.058 -0.232
’Norway’ 0.617 -0.026 0.258 0.183 0.598 -0.138

NewZealand’ 0.733 -0.017 0.047 0.040 0.578 -0.003
’Peru’ 0.683 0.011 0.554 -0.026 0.396 -0.003 0.072

Philippines’ 0.543 0.002 0.370 0.004 0.007 0.592 -0.001 0.157
SouthAfrica’ 0.472 0.007 0.630 0.024 0.037 0.530 0.015 0.012
SaudiArabia’ -0.075 -0.016 -0.880 -0.061 -0.274 -0.187 -0.038 0.055
’Singapore’ -0.256 -0.766 -0.071 -0.172 -0.419 -0.014 -0.031

’Spain’ 0.516 0.002 0.375 0.219 0.018 0.647 -0.009 -0.013
’Sweden’ 0.820 0.001 0.116 -0.168 0.414 -0.047 0.126

Switzerland’ 0.529 0.008 -0.427 -0.387 -0.097 0.453
’Thailand’ -0.189 -0.451 -0.466 -0.384 0.047 0.158
’Turkey’ 0.272 0.004 0.725 0.041 0.109 0.410 0.020 0.159

’UK’ 0.676 -0.005 0.329 0.341 -0.020 0.440 0.001 0.007
’USA’ 0.510 -0.032 -0.333 0.619 -0.028

CPI

’Argentina’ 0.258 0.045 0.546 -0.293 0.160
’Australia’ 0.520 -0.029 0.448 -0.152 0.333 -0.024
’Austria’ -0.152 0.474 0.162
’Belgium’ 0.337 0.145 -0.238 -0.254 0.672 0.040 -0.152

Notes: The Table reports factor loading estimates Λ in equation (1). Empty cells indicate the corre-

sponding λij are shrink to zero.
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Factors
Series Countries 1 2 3 4 5 6 7 8

CPI

’Brazil’ -0.259 0.549 0.022 -0.041 0.331
’Canada’ 0.408 0.257 0.006 -0.212 0.582 0.059 -0.030
’China ’ -0.295 0.222 -0.147 0.014 0.163
’Chile’ 0.221 0.545 0.152 0.275 -0.027 0.261

’Finland’ 0.422 0.046 0.360 -0.222 0.564 0.018
’France’ 0.447 0.222 -0.068 0.742 0.044 -0.040

’Germany’ -0.190 0.619 0.092
’India’ -0.150 0.239

’Indonesia’ 0.314 0.354
’Italy’ 0.370 -0.015 0.345 0.012 0.733 0.008

’Japan’ 0.193 0.383 0.282
’Korea’ 0.040 0.411 0.045 0.529 0.088 0.143

’Malaysia’ 0.462 0.105
’Mexico’ 0.438 0.722 -0.171 0.074

’Netherlands’ 0.603 -0.060
’Norway’ 0.457 0.067 0.353 0.378

’New Zealand’ 0.547 -0.055 0.418 0.074 0.367
’Peru’ 0.558 -0.372 0.155

’Philippines’ 0.165 0.080 0.343 0.289
’South Africa’ 0.158 -0.039 0.596 0.208 -0.101 0.192
’Saudi Arabia’ -0.245 -0.294 0.148

’Singapore’ -0.228 0.515
’Spain’ 0.308 -0.051 0.348 0.555

’Sweden’ 0.298 0.409 -0.249 0.503 0.037
’Switzerland’ 0.327 -0.217 0.463

’Thailand’ -0.047 0.316 0.512 0.192
’Turkey’ -0.414 0.008 0.433 0.420 0.548 0.096 0.199

’UK’ 0.204 0.184 0.298 -0.002 0.495 0.186
’USA’ 0.211 0.144 0.309 -0.080 0.532 0.162

nomEQ

’Argentina’ 0.199 0.386 -0.240 0.235
’Australia’ 0.201 0.721
’Austria’ -0.094 -0.152 0.606
’Belgium’ -0.078 -0.002 0.049 0.711
’Canada’ 0.108 0.610 -0.018

’Chile’ -0.034 0.257 0.326 0.259 0.161
’Finland’ 0.030 0.000 0.190 0.543
’France’ 0.096 0.013 0.775

’Germany’ 0.510
’India’ -0.168 0.448
’Italy’ 0.146 0.119 0.095 0.604

’Japan’ 0.194 0.567
’Korea’ -0.151 0.402

’Malaysia’ 0.206 -0.023 0.470
’Netherlands’ -0.035 0.079 -0.005 0.030 0.825

’Norway’ 0.133 -0.025 0.724
’New Zealand’ 0.057 0.112 0.521
’Philippines’ 0.207 -0.250 0.409

Notes: Continue Table 4.
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Factors
Series Countries 1 2 3 4 5 6 7 8

nomEQ

’South Africa’ 0.157 0.584
’Singapore’ 0.219 -0.032 0.005 0.680

’Spain’ 0.076 0.016 -0.020 0.682 -0.045
’Sweden’ 0.095 0.016 0.749 -0.014

’Switzerland’ -0.143 0.782
’Thailand’ -0.179 -0.147 0.453

’UK’ 0.010 0.007 0.075 0.774
’USA’ 0.550

Fxdol

’Argentina’ 0.329 0.107 0.504 -0.163 -0.327
’Australia’ 0.271 0.193 -0.344 0.188
’Austria’ -0.012 0.941 -0.032 0.043 -0.003 -0.073 0.327 -0.006
’Belgium’ 0.040 0.921 -0.016 0.010 -0.001 0.307 -0.023
’Brazil’ -0.301 0.013 0.530 -0.011 0.356

’Canada’ -0.053 0.256 0.250 -0.365 0.252
’China ’ 0.240 -0.029 0.156
’Chile’ 0.261 0.202 0.368 -0.221 -0.287 0.000

’Finland’ -0.038 0.854 -0.029 0.260 0.009
’France’ 0.055 0.920 0.001 0.300 -0.019

’Germany’ -0.007 0.939 -0.034 0.054 -0.062 0.324 -0.001
’India’ -0.146 0.236 0.177 -0.119 -0.180 0.158

’Indonesia’ 0.069 0.171
’Italy’ 0.872 0.018 -0.003 0.026 0.262 0.008

’Japan’ 0.341 -0.148 0.000 0.228
’Korea’ 0.000 0.113 0.204 -0.247

’Malaysia’ 0.258 0.189 0.000
’Mexico’ 0.348 -0.029 0.475 -0.287 0.106 -0.255

’Netherlands’ 0.938 -0.033 0.059 0.005 -0.056 0.323
’Norway’ 0.596 0.112 0.107

’New Zealand’ 0.388 0.026 -0.169 0.100
’Peru’ 0.009 0.476 -0.308 0.000 0.112

’Philippines’ 0.183 -0.004 0.234 -0.154
’South Africa’ 0.347 0.057 -0.165 -0.162
’Saudi Arabia’ 0.326 0.311 -0.218

’Singapore’ 0.493 0.232 -0.150
’Spain’ 0.848 -0.025 0.043 0.048 0.282 0.003

’Sweden’ 0.601 -0.053 0.030 0.054
’Switzerland’ 0.672 0.269

’Thailand’ 0.235 0.155
’Turkey’ -0.263 0.237 0.223 0.294 0.462 -0.033 0.278

’UK’ 0.535 -0.132

Rshort

’Argentina’ 0.154 -0.144
’Australia’ 0.338 0.872 -0.054 -0.224 0.169 -0.051
’Austria’ -0.043 0.007 0.639 0.037 -0.053 0.585 -0.067 -0.036
’Belgium’ 0.093 -0.001 0.634 -0.013 0.599 -0.051 0.008
’Brazil’ -0.010 0.234 -0.229

Notes: Continue Table 4.
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Factors
Series Countries 1 2 3 4 5 6 7 8

Rshort

’Canada’ 0.326 0.019 0.600 -0.051 0.594 -0.031 0.000
’China ’ -0.371 -0.002 0.654 0.157 0.101 0.072 0.232
’Chile’ 0.234 0.548 0.516 -0.054 0.122

’Finland’ 0.187 0.812 -0.086 -0.114 0.378 -0.040 0.019
’France’ 0.296 0.640 -0.142 0.073 0.621 -0.026 -0.125

’Germany’ -0.044 0.017 0.585 0.029 -0.065 0.653 -0.083 -0.071
’India’ -0.412 -0.004 0.501 -0.029 0.420 0.138 0.061 0.386

’Indonesia’ -0.166 0.047 0.253 0.284 0.512
’Italy’ 0.214 0.710 -0.169 0.007 0.542 -0.016 0.001

’Japan’ 0.258 0.539 -0.019 -0.116 0.584 -0.005 0.170
’Korea’ 0.136 0.001 0.419 0.393 0.150 0.556 0.002 0.158

’Malaysia’ 0.239 0.691 -0.045 0.304 0.408 0.018 -0.028
’Mexico’ 0.379 0.845 -0.100 0.108 -0.090 -0.004 0.052

’Netherlands’ 0.000 -0.011 0.620 0.136 0.588 -0.077
’Norway’ 0.248 0.036 0.867 0.000 0.235 -0.110

’New Zealand’ 0.331 -0.029 0.868 0.077 0.065
’Peru’ 0.313 -0.362

’Philippines’ 0.030 0.798 0.067 0.172
’South Africa’ -0.248 0.060 0.699 -0.130 0.007 0.000 -0.055

’Singapore’ 0.225 0.020 0.495 0.000 0.155 0.660
’Spain’ 0.146 0.019 0.758 -0.022 0.009 0.428 0.066

’Sweden’ 0.077 0.810 -0.107 -0.047 0.408 -0.023 0.000
’Switzerland’ -0.395 -0.002 0.643 0.019 -0.197 0.186 -0.003 0.116

’Thailand’ -0.010 0.587 0.000 0.277 0.518 0.020 0.040
’Turkey’ -0.552 0.494 0.031 0.463 -0.013 0.000 -0.165

’UK’ 0.170 0.747 0.212 -0.009 0.421
’USA’ 0.324 0.063 0.596 0.068 0.006 0.572 0.018 -0.102

Rlong

’Australia’ 0.308 -0.006 0.860 -0.148 -0.102 0.373 0.006 -0.096
’Austria’ 0.057 -0.017 0.748 -0.032 0.033 0.571 -0.018 -0.191
’Belgium’ 0.222 -0.009 0.725 -0.145 -0.012 0.601 -0.016 -0.149
’Canada’ 0.143
’France’ 0.297 0.702 -0.158 -0.030 0.616 -0.021 -0.150

’Germany’ 0.732 -0.009 0.033 0.579 -0.002 -0.210
’Italy’ 0.167 -0.018 0.652 -0.209 -0.012 0.610 -0.005 -0.001

’Japan’ 0.262 0.621 -0.035 -0.087 0.618 0.040
’Korea’ 0.058 0.520 0.260 0.206 0.605 0.096

’Netherlands’ 0.071 -0.005 0.686 -0.012 0.018 0.644 -0.014 -0.185
’Norway’ 0.293 0.903 -0.076 -0.011 0.288 -0.021 -0.085

’New Zealand’ 0.395 -0.015 0.874 0.043 -0.011 0.203 -0.039
’South Africa’ -0.233 0.040 0.831 0.002 0.233 -0.027 0.007

’Spain’ 0.184 -0.003 0.730 -0.129 -0.014 0.502 0.032
’Sweden’ 0.121 -0.021 0.828 -0.051 0.025 0.423 0.001 -0.052

’Switzerland’ -0.152 -0.024 0.784 -0.024 0.436 -0.208
’UK’ 0.188 -0.007 0.726 0.036 0.027 0.549 -0.047

’USA’ 0.324 0.047 0.704 -0.092 0.562 0.007 -0.138

Notes: Continue Table 4.
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