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This paper introduces the idea of self-instrumenting endogenous regressors in settings 
when the correlation between these regressors and the errors can be derived and used to 
bias-correct the moment conditions. The resulting bias-corrected moment conditions are 
less likely to be subject to the weak instrument problem and can be used on their own 
and/or augmented with other available moment conditions (if any) to obtain more efficient 
estimators. This approach can be applied to estimation of a variety of models such as 
spatial and dynamic panel data models. This paper focuses on the latter, and proposes a 
new estimator for short-T dynamic panels by augmenting Anderson and Hsiao (AAH) 
estimator with bias-corrected quadratic moment conditions in first differences which 
substantially improve the small sample performance of the AH estimator without sacrificing 
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1 Introduction

Analysis of linear dynamic panel data models where the time dimension (T ) is short relative to

the cross section dimension (n), plays an important role in applied research. The estimation of

such panels is carried out predominantly by the application of the Generalized Method of Moments

(GMM) after first-differencing.1 This approach utilizes instruments that are uncorrelated with the

errors but are potentially correlated with the target variables (the included regressors). A number

of well-known GMM estimation methods have been advanced in the literature.2 The GMMmethods

apply to autoregressive (AR) panels as well as to AR panels augmented with strictly or weakly ex-

ogenous regressors and are developed under fairly general conditions, which is important for applied

work. However, the GMM methods are subject to a number of well-known drawbacks. Anderson

and Hsiao (1981 and 1982)’s estimator of AR(1) panels has poor small sample performance due to

weak correlations between the regressors and the instruments when the autoregressive coeffi cient is

moderately large. Subsequently proposed GMM estimators have better small sample performance

but at the cost of more restricted assumptions. The popular first-difference GMM estimator due

to Arellano and Bond (1991) uses lagged levels rather than first-differences as instruments, and the

system GMM approach by Blundell and Bond (1998) considers additional moment conditions that

help identification but impose strong requirements on the initialization of the dynamic processes.

In particular, as discussed in Section 2, the system GMM approach does not allow for the initial

values to systematically differ from the long-run means.

This paper proposes a novel idea of self-instrumenting the endogenous regressors in settings

where the correlation between the regressors and the errors can be derived instead of searching

for instruments that are uncorrelated with the error terms. The resulting ‘bias-corrected’moment

conditions are less likely to be subject to the weak instrument problem and can be used on their

own and/or augmented with other available moment conditions (if any) to obtain more effi cient

estimators. Our idea differs from the wide variety of the bias-corrected estimation methods in the

literature, which correct a first-stage estimator for small-T bias and tend to be applicable under

1Other approaches in the literature include the likelihood-based methods (Hsiao et al., 2002, Lancaster, 2002,
Moral-Benito, 2013, Hayakawa and Pesaran, 2015, and Dhaene and Jochmans, 2016), X-differencing method (Han
et al., 2014), factor-analytical method (Bai, 2013), and bias-correction methods mentioned below.

2Anderson and Hsiao (1981 and 1982), Holtz-Eakin et al. (1988), Arellano and Bond (1991), Ahn and Schmidt
(1995), Arellano and Bover (1995), Blundell and Bond (1998), and Hayakawa (2012), among others. A recent
contribution by Breitung, Hayakawa, and Kripfganz (2019) is also an interesting addition to the GMM literature.
Their bias-corrected methods of moments estimator requires homoskedastic errors over time.

1



more restrictive assumptions.3 Instead of correcting the bias of standard GMM estimators, we

consider correcting the ‘bias’of the moment conditions before estimation, when possible. The idea

of self-instrumenting has wide-ranging applications for robust estimation and inference in settings

where the correlation between the regressors and the errors can be derived. This paper focuses

on dynamic panels. Another application is the estimation of spatial panel data models which is

pursued in Pesaran and Yang (2020).

By self-instrumenting lagged differences, we develop a simple bias-corrected methods of moment

(BMM) estimator under general conditions on initialization of the underlying dynamics, individual

effects, with (possibly) heteroskedastic error variances over time as well as cross-sectionally. The

resultant moment conditions turn out to be quadratic, and only reduce to linear moment conditions

if the underlying AR processes are stationary. In this special case we show the BMM estimator to

be identical to the first difference least square estimator proposed by Han and Phillips (2010). We

establish consistency and asymptotic normality of the BMM estimator under general conditions

and discuss its relation to a variety of GMM estimators proposed in the literature. These results

help illustrate the important role played by the initialization of the AR processes in the case of

short T panels.

We also consider augmenting the bias-corrected moment conditions with other moment condi-

tions available in the literature, and for maximum robustness to assumptions regrading individual

effects and initial values we focus on Anderson and Hsiao type moment conditions. Accordingly, we

propose a new augmented Anderson and Hsiao (AAH) estimator which substantially improve the

small sample performance of the AH estimator without sacrificing on the generality of its underlying

assumptions. The AAH estimator holds under less restrictive conditions imposed by other preva-

lent GMM estimators proposed by Arellano and Bond (AB), and Blundell and Bond (BB) in the

literature, and is more generally applicable. For testing the validity of the BB moment conditions,

we consider a Hausman type test based on the difference between BB and AAH estimators.

Monte Carlo (MC) experiments document AAH’s good small sample performance in comparison

3See, for example, methods based on exact analytical bias formula or its approximation, Bruno (2005), Bun (2003),
Bun and Carree (2005, 2006), Bun and Kiviet (2003), Hahn and Kuersteiner (2002), Hahn and Moon (2006), Juodis
(2013), and Kiviet (1995, 1999); simulation-based bias-correction methods by Everaert and Ponzi (2007), and Phillips
and Sul (2003, 2007); the jackknife bias corrections by Dhaene and Jochmans (2015), and Chudik, Pesaran, and Yang
(2018); or the recursive mean adjustment correction procedures, Choi et al. (2010)). Most of these bias-correction
techniques do not apply to short-T type panels where the error variances are heteroskedastic (over i and t), with the
exception of Juodis (2013), and possibly the simulation-based bias-correction method of Everaert and Ponzi (2007).
A comparative analysis of GMM estimators considered in this paper and bias correction estimators is a welcome
addition to the literature but lies beyond the scope of the present paper.
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with a number of GMM alternatives. Perhaps not surprisingly the AAH estimator represents a sub-

stantial improvement over the AH estimator across all designs considered. When compared to AB

and BB estimators, the AAH is less effi cient in designs that satisfy the more restrictive assumption

that underlie BB estimators, but continues to perform well even in cases where the system-GMM

type estimators are inconsistent. The robustness of the AAH estimator is an important advantage

since in practice it is not known if the additional restrictions of the AB and BB estimators are met,

and it is therefore desirable to consider estimation procedures that are robust to violation of such

restrictive assumptions. In this regard, the AAH estimator is a useful addition to the literature.

The remainder of this paper is organized as follows. Section 2 sets up the baseline panel AR(1)

model and discusses AH and subsequent GMM moment conditions. Section 3 introduces the main

idea and presents a simple BMM estimator. Section 4 introduces the AAH estimator and discusses

the related literature, in particular Ahn and Schmidt (1995, 1997). Section 5 discusses extensions

of AAH estimator to ARX and VAR short-T panel data models. Section 6 discusses the problem

of moment proliferation and adopts the One Covariate at the time Multiple Testing approach by

Chudik, Kapetanios, and Pesaran (2018) for selection of relevant subset of AAH moments for

estimation and inference. Section 7 presents MC evidence, and the last section concludes and

discusses avenues for future research. Further results and discussions are provided in an Appendix.

2 Panel AR(1) model and assumptions

We begin with a simple panel AR(1) model to set out the main idea. Specifically, consider the

following dynamic panel data model

yit = αi + φyi,t−1 + uit, for i = 1, 2, ..., n, (1)

where {αi, 1 ≤ i ≤ n} are unobserved unit-specific effects, uit is the idiosyncratic error term, and

yit are generated from the initial values, yi,−mi for mi ≥ 0, and t = −mi + 1,−mi + 2..., 1, 2, ..., T .

Using (1) to solve for the initial observations yi0, we obtain

yi0 = φmiyi,−mi + αi

(
1− φmi
1− φ

)
+

mi−1∑
`=0

φ`ui,−`. (2)
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It is assumed that available observations for estimation and inference are yit, for i = 1, 2, ..., n, and

t = 0, 1, 2, ..., T . For the implementation of the proposed estimator we require T ≥ 3, although

under mean and variance stationarity identification of φ could be achieved even if T = 2, namely

if the panel covers three time periods.

ASSUMPTION 1 (Parameter of interest) The true value of φ, denoted by φ0, is the parameter

of interest, and it is assumed that φ ∈ Θ, where Θ ⊂ (−1, 1] is a compact set.4

In the case where |φ| < 1, and mi → ∞, then E (yit) = E (αi) / (1− φ) for all t. We set

µi = αi/ (1− φ) and refer to µi as the long-run mean of yit, even if mi is finite. However in the

unit-root case (φ = 1), µi is not defined and to avoid incidental linear trends we set αi = 0.

Taking first differences of (1), we obtain

∆yit = φ∆yi,t−1 + ∆uit, (3)

for t = 2, 3, ..., T , and i = 1, 2, ..., n; but ∆yi1 is given by

∆yi1 = bi − (1− φ)

mi−1∑
`=0

φ`ui,−` + ui1, (4)

where

bi = −φmi (1− φ) (yi,−mi − µi) . (5)

The relations (4) and (5) show how the deviations of starting values from the long-run means, given

by (yi,−mi − µi), affect ∆yi1.

The contribution of the first term in (4) to ∆yi1 is given by bi, and consequently it is clear that

the initialization of the process will be unimportant for |φ| < 1, E |yi,−mi − µi| < K, and mi large.

We aim for a minimal set of assumptions on the starting values and individual effects, since in

practice such assumptions are diffi cult to ascertain, and they could have important consequences

for estimation and inference when mi and T are both small.

We consider the following assumptions on the errors, uit, and the starting values, yi,−mi .

ASSUMPTION 2 (Idiosyncratic errors) For each i = 1, 2, ..., n, the process {uit, t = −mi + 1,

−mi + 2, ..., 1, 2, ..., T} is distributed with mean 0, E
(
u2
it

)
= σ2

it, and there exist positive constants

4Our theory applies for all finite values of φ so long as T and mi are fixed as n → ∞. We focus on −1 < φ ≤ 1,
since we believe these values are most relevant in empirical applications.
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c and K such that 0 < c < σ2
it < K. Moreover, σ̄2

tn ≡ n−1
∑n

i=1 σ
2
it → σ̄2

t as n → ∞, and

supitE |uit|4+ε < K for some ε > 0. For each t, uit is independently distributed over i. For each i,

uit is serially uncorrelated over t.

ASSUMPTION 3 (Initialization and individual effects) Let bi ≡ −φmi [(1− φ) yi,−mi − αi] and

ς2
i = E

(
b2i
)
. Then ς̄2

n ≡ n−1
∑n

i=1 ς
2
i → ς̄2 as n → ∞, and supiE |bi|4+ε < K for some ε > 0.

In addition, bi is independently distributed of (bj , ujt)
′ for all i 6= j, i, j = 1, 2, ..., n, and t =

−mj + 1,−mj + 2, ..., 1, 2, ..., T , and the following conditions hold:

E (∆uitbi) = 0, for i = 1, 2, ..., n, and t = 2, 3, ..., T . (6)

Remark 1 Assumption 2 does not allow the errors, uit, to be cross-sectionally dependent, as is

customary in the GMM short-T panel data literature, and together with Assumption 3 ensures also

that ∆yit is cross-sectionally independent. When errors are weakly cross-sectionally correlated, in

the sense defined in Chudik, Pesaran, and Tosetti (2011), then the BMM estimators proposed in

this paper remain consistent, but the inference based on them will no longer be valid.

Remark 2 Assumption 2 allows errors to be unconditionally heteroskedastic across both i and t.

Remark 3 Assumption 3 allows for E (bi) to vary across i, and therefore, in view of (3)-(4),

E (∆yit) can vary across both i and t.

2.1 Assumptions underlying GMM estimators

It is important to compare our assumptions on the individual effects and the starting values with

those maintained in the GMM literature. Under Assumptions 2 and 3, initial first-differences, ∆yi1,

given by (4) have fourth-order moments and the following moment conditions, which are key to our

estimation method, hold

E (∆yis∆uit) = 0, for i = 1, 2, ..., n, s = 1, 2, ..., t− 2, and t = 3, 4, ..., T. (7)

The same moment conditions are also utilized by Anderson and Hsiao (1981, 1982). However, the

subsequent GMM estimators advanced by Arellano and Bond (1991), Arellano and Bover (1995),

and Blundell and Bond (1998) require stronger conditions on the initial values and the individual

5



effects as compared to (7). The first-difference GMM approach considered by Arellano and Bond

(1991) assumes

E (yis∆uit) = 0, for i = 1, 2, ..., n, s = 0, 1, 2, ..., t− 2, and t = 2, 3, ..., T , (8)

which imply (7) but are not required for the moment conditions in (7) to hold. It is clear that

the estimator based on (8) will depend on the distributional assumptions regarding the individual

effects, whereas an estimator based on (7) need not depend on the distributional assumptions

regarding the individual effects.5

In addition to (8), the system GMM approach considered by Arellano and Bover (1995) and

Blundell and Bond (1998) also requires that6

E [∆yi,t−1 (αi + uit)] = 0, for i = 1, 2, ..., n; and t = 2, 3, ..., T. (9)

These additional restrictions impose further requirements on the errors and the initial values. To

see this, first note that iterating (3) from t = 1 and using (4) we have

∆yit = φt−1

[
bi + ui1 − (1− φ)

mi−1∑
`=0

φ`ui,−`

]
+

t−2∑
`=0

φ`∆ui,t−`. (10)

Since for all i, uit’s are assumed to be serially uncorrelated, then condition (9) is met if

φt−2E [bi (αi + uit)] + φt−2E (ui1αi) + (φ− 1)φt−2
mi−1∑
`=0

φ`E (αiui,−`) +
t−3∑
`=0

φ`E (αi∆ui,t−`−1) = 0,

for i = 1, 2, ..., n; and t = 2, 3, ..., T . In the case where mi → ∞, the first term vanishes and the

moment conditions (9) will be satisfied if E (uitαi) = 0, for all i and t ≤ T − 1. If mi is finite it is

further required that E [bi (αi + uit)] = 0, unless φ = 0. Now using (5) and noting that |φ| < 1, we

5Suppose that |φ| < 1, and consider the case where mi is finite, namely, 0 ≤ mi < K, and consider the following
initial values yi,−mi = µi + υi, where E (υi) = 0, and E (υi∆uit) = 0, for i = 1, 2, ..., n, and t = 3, 4, ..., T . υi
measures the extent to which the initial values yi,−mi deviate from the long-run means, µi. Under this specification
of initial values, ∆yit, for t = 0, 1, ..., T and all i does not depend on µi, and estimator based on (7) will not depend
on the distributional assumptions about µi.

6The complete set of moment conditions is E [∆yis (αi + uit)] = 0, for i = 1, 2, ..., n, s = 1, 2, ..., t − 1, and
t = 2, 3, ..., T . The set of conditions in (9) contains the T − 2 moment conditions in the system GMM approach that
are not redundant.
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have7

E [bi (αi + uit)] = −φmi (1− φ)E [(yi,−mi − µi) (αi + uit)]

= −φmi (1− φ)E [(yi,−mi − µi)αi] .

Therefore, when mi is finite for the moment conditions (9) to hold it is also required that

E [µi (yi,−mi − µi)] = 0, for i = 1, 2, ..., n. (11)

This condition requires that for each i, individual effects are uncorrelated with the deviations of

initial values from their equilibrium values (long-run means µi). These restrictions might not hold

in practice. For example, condition (11) is violated if some processes start from zero (yi,−mi = 0),

but the individual effects differ from zero (µi 6= 0).

It is true that by imposing additional conditions on individual effects and starting values it

might be possible to obtain a more effi cient estimator of φ. However, it is also desirable to seek

estimators of φ that are consistent under reasonably robust set of assumptions on starting values,

individual effects, and error variances. Seen from this perspective, Assumption 3 is more general

than the moment conditions assumed in the existing GMM literature.

When comparing GMM estimators, it is also worth noting from (10) that if |φ| < 1 and {yit}

are initialized in a distant past (with mi →∞), then ∆yit will no longer depend on αi and renders

the BMM and Anderson-Hsiao estimators invariant to the individual effects. However, this is not

the case for the GMM estimators that make use of lagged values of yit in construction of their

moment conditions. As a result, the performance of such GMM estimators can be affected by the

ratio
∑n

i=1 V ar (αi) /
∑n

i=1 V ar (uit). See Blundell and Bond (1998) and Binder et al. (2005) for

further discussions.

3 BMM estimation of short-T AR(1) panels

Following the GMM approach we consider the first-differenced version of the panel AR model (3),

but instead of using instruments for ∆yi,t−1 that are uncorrelated with the error terms, ∆uit,

we propose a self-instrumenting procedure whereby ∆yi,t−1 is ‘instrumented’ for itself, but the

7Note that by assumption E (uitαi) = 0 = E (uityi,−mi), for t = 2, 3, ....
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population bias due to the non-zero correlation between ∆yi,t−1 and ∆uit is corrected accordingly.

The advantage of using∆yi,t−1 as an instrument lies in the fact that by construction it has maximum

correlation with the target variable (itself), so long as we are able to correct for the bias that arises

due to Cov (∆yi,t−1,∆uit) 6= 0. To summarize, GMM searches for instruments that are uncorrelated

with the errors but are suffi ciently correlated with the target variables. Instead, we propose using

the target variables as instruments but correct the moment conditions for the non-zero correlations

between the errors and the instruments. Both approaches employ method of moments, but differ

in the way the moments are constructed.

Using ∆yi,t−1 as an instrument, we obtain under Assumptions 2 and 3,

E (∆uit∆yi,t−1) + σ2
i,t−1 = 0, for i = 1, 2, ..., n, and t = 2, 3, ..., T − 1. (12)

To solve for σ2
it, we note that E (∆uit)

2 = σ2
i,t−1 +σ2

it and E (∆ui,t+1∆yit) = −σ2
it. Hence, σ

2
i,t−1 =

E (∆uit)
2 + E (∆ui,t+1∆yit), and we obtain the following quadratic moment (QM) condition,

E (∆uit∆yi,t−1) + E (∆uit)
2 + E (∆ui,t+1∆yit) = 0, (13)

for i = 1, 2, ..., n, and t = 2, 3, ..., T − 1. It is useful to note that the solution σ2
i,t−1 = E (∆uit)

2 +

E (∆ui,t+1∆yit) depends on the set of assumptions considered, and different solutions could be

obtained under different (stricter) conditions. In this paper, we focus on the general set of conditions

summarized by Assumptions 2 and 3, although other conditions can be obtained if one is prepared

to make stronger assumptions such as σ2
it = σ2

i,t−1 = σ2
i . Another possibility is to assume covariance

stationarity of yit, which will lead to a linear moment condition solution, discussed in Remark 5

below.8

Initially, we use the QM condition (13) alone to obtain an estimator of φ. We propose averaging

(13) over i and t, which will deliver a simple exactly identified moment estimator. In Section 4, we

consider optimally weighting the moment conditions in (13), and augmenting them with Anderson-

Hsiao type moment conditions.

Averaging moment condition (13) over t, and substituting (3) for ∆uit and ∆ui,t+1, we obtain

E [MiT (φ)] = 0, for i = 1, 2, ..., n, (14)

8Covariance stationarity requires strong restrictions on the initialization of the dynamic processes, in addition to
time-invariant error variances.

8



where

MiT (φ) =
1

T − 2

T−1∑
t=2

[
(∆yit − φ∆yi,t−1) ∆yi,t−1 + (∆yit − φ∆yi,t−1)2 + (∆yi,t+1 − φ∆yit) ∆yit

]
.

(15)

The BMM estimator is then given by

φ̂nT = arg min
φ∈Θ

∥∥M̄nT (φ)
∥∥ , (16)

where ‖.‖ denotes the Euclidean norm, Θ ⊂ (−1, 1] is a compact set for the admissible values of φ

defined by Assumption 1, and

M̄nT (φ) =
1

n

n∑
i=1

MiT (φ) . (17)

To derive the asymptotic properties of φ̂nT , let φ0 denote the true value of φ, assumed to lie

inside Θ, and note that under φ = φ0, (3) yields ∆yit = φ0∆yi,t−1 + ∆uit, and (15) can be written

as

MiT (φ) =
1

T − 2

T−1∑
t=2


[∆uit − (φ− φ0) ∆yi,t−1] ∆yi,t−1

+ [∆uit − (φ− φ0) ∆yi,t−1]2

+ [∆ui,t+1 − (φ− φ0) ∆yit] ∆yit


= ΛiT + ViT , (18)

where

ViT =
1

T − 2

T−1∑
t=2

(
∆uit∆yi,t−1 + ∆u2

it + ∆ui,t+1∆yit
)
, (19)

and ΛiT = (φ− φ0)2QiT − (φ− φ0)
(
QiT +Q+

iT + 2HiT

)
, in which

QiT =
1

T − 2

T−1∑
t=2

∆y2
i,t−1, Q

+
iT =

1

T − 2

T−1∑
t=2

∆y2
it, and HiT =

1

T − 2

T−1∑
t=2

∆uit∆yi,t−1. (20)

We have one unknown parameter φ and one moment condition (14). Suppose there exists φ̂nT such

that M̄nT

(
φ̂nT

)
= 0. Then (18) evaluated at φ = φ̂nT yields

(
φ̂nT − φ0

) [(
φ̂nT − φ0

)
Q̄nT − B̄nT

]
= −V̄nT , (21)
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where V̄nT = n−1
∑n

i=1 ViT , Q̄nT = n−1
∑n

i=1QiT , and

B̄nT =
1

n

n∑
i=1

(
QiT +Q+

iT + 2HiT

)
. (22)

Using results (A.4)-(A.5) of Lemma A.1 in the appendix, under Assumptions 1-3, we have (for a

fixed T )

Q̄nT = E
(
Q̄nT

)
+Op

(
n−1/2

)
, and B̄nT = E

(
B̄nT

)
+Op

(
n−1/2

)
, (23)

where

E
(
Q̄nT

)
=

1

n

n∑
i=1

E (QiT ) > 0. (24)

In addition, using result (A.6) of Lemma A.2 in the appendix, we have

V̄nT = Op

(
n−1/2

)
. (25)

We now use (21) to show that there exists a unique
√
n-consistent estimator of φ. Suppose that

φ̂nT is a
√
n-consistent estimator of φ. Then we establish that such an estimator is in fact unique.

Using (21), we have

√
n
(
φ̂nT − φ0

)2
Q̄nT −

√
n
(
φ̂nT − φ0

)
B̄nT = −

√
nV̄nT . (26)

But, if there exists a
√
n-consistent estimator, then

√
n
(
φ̂nT − φ0

)2
Q̄nT = Op

(
n−1/2

)
, and hence

B̄nT
√
n
(
φ̂nT − φ0

)
=
√
nV̄nT +Op

(
n−1/2

)
. (27)

Also, using (23) the above can be written as

E
(
B̄nT

)√
n
(
φ̂nT − φ0

)
=
√
nV̄nT +Op

(
n−1/2

)
.

where by (25),
√
nV̄nT = Op (1). If

B̄T = lim
n→∞

E
(
B̄nT

)
6= 0, (28)

10



it then follows that the
√
n-consistent estimator, φ̂nT , must be unique. It also follows that

√
n
(
φ̂nT − φ0

)
a∼ B̄−1

T

√
nV̄nT .

Finally, using result (A.7) of Lemma A.2 in the appendix, we have
√
nV̄nT →d N (0, ST ), where

ST = limn→∞ n−1
∑n

i=1E
(
V 2
iT

)
, and it follows that

√
n
(
φ̂nT − φ0

)
→d N (0,ΣT ) with ΣT =

B̄−2
T ST .

The key condition for the existence of a
√
n-consistent estimator of φ is given by B̄T 6= 0. But

using (20) in (22) we have B̄T = limn→∞ n−1
∑n

i=1BiT , where

BiT =
1

T − 2

T−1∑
t=2

(
∆y2

i,t−1 + ∆y2
it + 2∆uit∆yi,t−1

)
. (29)

It is now easily seen that condition B̄T 6= 0 is satisfied when ∆yit is a stationary process (for

mi →∞, σit = σ2
i and |φ| < 1). In this case we have

B̄T = 2

(
1− φ
1 + φ

)
σ̄2 > 0,

where σ̄2 = limn→∞ n−1
∑n

i=1 σ
2
i . In the non-stationary case (with m finite) B̄T 6= 0 even if φ = 1

so long as σit is suffi ciently variable over the observed sample. As a simple example consider the

case where T = 3, and note that (see Section A.1 of the Appendix)

B̄3 = σ̄2
2 − σ̄2

1 + (1− φ)2 σ̄2
1 +

(
1 + φ2

)
(1− φ)ψ0. (30)

where σ̄2
t = limn→∞ n−1

∑n
i=1 σ

2
it, and

ψ0 = (1− φ) lim
n→∞

1

n

n∑
i=1

E (yi0 − µi)2 − 2 lim
n→∞

1

n

n∑
i=1

E [ui1 (yi0 − µi)] . (31)

If φ = 1, then B̄3 = σ̄2
2 − σ̄2

1, and B̄3 6= 0, if and only if σ̄2
1 6= σ̄2

2. When |φ| < 1, B̄3 6= 0 even if

σ̄2
1 = σ̄2

2, except for when (1− φ)
(
1 + φ2

)
ψ0 = φ(2− φ)σ̄2

1 − σ̄2
2. Therefore, time variations in the

average error variances, σ̄2
t , can help identification under the BMM quadratic moment condition,

particularly if φ is close to unity.

The following theorem summarizes the main results established above.

Theorem 1 Suppose yit, for i = 1, 2, ..., n, and t = −mi+1,−mi+2, ..., 1, 2, ..., T , are generated by

11



(1) with starting values yi,−mi, and the true value of the parameter of interest φ0. Let Assumptions

1-3 hold, and suppose B̄T 6= 0 and n−1
∑n

i=1E
(
V 2
iT

)
→ ST > 0, where B̄T is given by (28) and ViT

is defined in (19). Consider the BMM estimator φ̂nT given by (16). Let T be fixed and n → ∞.

Then, the unique
√
n-consistent estimator φ̂nT satisfies

√
n
(
φ̂nT − φ0

)
→d N (0,ΣT ) ,

where

ΣT = B̄−2
T ST . (32)

Remark 4 When B̄T = 0, from (21) we have,

(
φ̂nT − φ0

)2
Q̄nT = V̄nT +

(
φ̂nT − φ0

)
Op

(
n−1/2

)
, (33)

and, given that Q̄nT → Q̄T > 0 as n → ∞, there exists a unique n1/4-consistent estimator φ̂nT .

As noted earlier a leading case when B̄T = 0, is the unit root case (φ = 1) under error variance

homogeneity over t.

The variance term in (32), ΣT , can be estimated consistently by

Σ̂nT = ̂̄B−2

nT

(
1

n

n∑
i=1

V̂ 2
i,nT

)
, (34)

where ̂̄BnT =
1

n

n∑
i=1

(
QiT +Q+

iT + 2Ĥi,nT

)
, (35)

Ĥi,nT = (T − 2)−1∑T−1
t=2 ∆ûit∆yi,t−1, ∆ûit = ∆yit − φ̂nT∆yi,t−1, (∆ûit depends on n and T , but

we omit subscripts n, T to simplify the notations), and

V̂i,nT = − 1

T − 2

T−1∑
t=2

(
∆ûit∆yi,t−1 + ∆û2

it + ∆ûi,t+1∆yit
)
. (36)

Consistency of Σ̂nT is established in Proposition 1 in the appendix.

Remark 5 In the case of covariance stationary panels (|φ| < 1 and mi → ∞), we have ∆yit =∑∞
`=0 φ

`∆ui,t−`, where E
(
u2
it

)
= σ2

i and therefore E
(
∆y2

it

)
= 2σ2

i / (1 + φ) is time-invariant. Under

these restrictions σ2
i = (1 + φ)E

(
∆y2

i,t−1

)
/2, E (∆uit∆yi,t−1) = E (∆ui,t+1∆yit), and using (12)

12



the quadratic moment condition, (13), simplifies to the following linear moment condition:

E (∆yit∆yi,t−1) +
1

2
(1− φ)E

(
∆y2

i,t−1

)
= 0,

which yields the associated BMM estimator

φ̂n =

∑n
i=1

∑T
t=2

(
2∆yit∆yi,t−1 + ∆y2

i,t−1

)
∑n

i=1

∑T
t=2 ∆y2

i,t−1

. (37)

Note that in this case φ is identified even when T = 2. Interestingly enough, the above linear

BMM estimator is identical to the first-difference least square (FDLS) estimator proposed by Han

and Phillips (2010).9 As discussed by Han and Phillips (2010), φ̂n given by (37) has standard

Gaussian asymptotics for all values of φ ∈ (−1, 1] and does not suffer from the weak instrument

problem. Hence the BMM estimator reduces to FDLS estimator under covariance stationarity.

However, when T is fixed the covariance stationarity assumption is rather restrictive for most

empirical applications in economics, where typically not much is known about the initialization

of the dynamic processes over i, and it is not possible to rule out the heteroskedasticity of error

variances over t.

4 Augmented Anderson Hsiao (AAH) estimator

The BMM estimator above is useful for illustrative purposes, but it is not asymptotically effi cient

partly due to averaging of moment conditions over t, and more importantly due to not exploring

additional readily available moment conditions that hold under the same set of assumptions. As

noted above, amongst the moment conditions proposed in the literature, only the ones proposed by

AH are suffi ciently general, and accordingly, we propose to augment the T − 2 QM condition (13)

with the (T − 2) (T − 1) /2 AH moment conditions (7). These provide (T − 2) (T − 1) /2 + T − 2

AAH moment conditions in total. As usual, we can obtain first, second and cumulative updating

GMM estimators based on these quadratic-linear moment conditions.

Remark 6 It is clear that conditions (7) and (13) do not imply conditions (8) and/or (9) since

(7) and (13) rely only on first differences, whereas (8) and (9) also rely on levels. Hence, it is

possible that (7) and (13) can hold whilst (8) and/or (9) might not hold. An example of this case

9We are grateful to Kazuhiko Hayakawa for drawing our attention to this fact.
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is discussed and explored in Monte Carlo section below.

The set of AAH moment conditions (7) and (13) is a subset of the conditions listed in Ahn and

Schmidt (1995, 1997), who explored a complete set of moments conditions under stronger set of

assumptions than are necessary for AAH alone, see their Assumptions SA1-SA3. Suffi cient set of

assumptions that give rise to AAH are the following ‘basic’assumptions:

(BA1) For all i, the uit are mutually uncorrelated.

(BA2) E [(yi0 − µi) ∆uit] = 0 for all i and t = 2, 3, ..., T ,

where µi = αi/ (1− φ) is the long-run mean. Assumption BA1 on its own has been considered as

Case H of Ahn and Schmidt (1997), which implies T (T − 3) /3 moment conditions. Assumption

BA2 is implied by assumptions SA1-SA2 of Ahn and Schmidt (1995), but not vice versa. The full

set of moment conditions based on BA1 and BA2 is the union of AH moment conditions given

by (7) and QM moment conditions given by (13). Derivation of the asymptotic distribution and

conducting inference requires additional standard high-level regularity conditions routinely used in

the GMM literature.10

It is of interest to consider the effi ciency loss that arises when using AAH moment conditions,

whilst in fact the more restrictive system GMM conditions (8)-(9) hold. To shed light on this,

we report the ratios of asymptotic variances of the AH, first-difference GMM and system GMM

estimators, all relative to that of the AAH estimator. We illustrate the asymptotic effi ciency

gains and losses in Table 1 in the same way as in Ahn and Schmidt (1995). We are interested

in two questions: (i) How much is gained by adding QM conditions to AH, and (ii) how much

is lost by not utilizing the additional moment conditions assuming that the DGP satisfies all of

the restrictions in (8) and (9). Following Ahn and Schmidt (1995), we tabulate the asymptotic

variance ratios for the stationary homoskedastic case for different values of φ, and different ratios

of E
(
α2
i

)
/E
(
u2
it

)
= σ2

α/σ
2
u, for all i and t. The results, computed by simulations, are summarized

in Table 1.

As can be seen from Table 1, augmenting AH moment conditions with the quadratic moment

conditions (13) results in substantial effi ciency gains for all values of φ, σ2
α/σ

2
u and the three choices

10These are listed, for example, in Pesaran (2015). In particular, assumptions for consistency are given by Assump-
tions A1 and A2 in Chapter 10 of Pesaran (2015) and the additional assumptions for asymptotic normality are given
by Assumptions A3-A5 of the same chapter. See also Assumptions 1-3 for a set of low-level assumptions required for
consistency and asymptotic normality.
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of T = 3, 6 and 10, being considered. The effi ciency gains are particularly pronounced for values

of φ close to unity. Also as to be expected the two estimators perform equally well for all values

of σ2
α/σ

2
u since both use first-differences as instruments and hence are not affected by σ

2
α. The

effi ciency gain of AAH over AH reduces somewhat when T is increased.

Table 1: Asymptotic effi ciency of AH, AB and BB estimators relative to the AAH

estimator under stationarity

var (AH) /var (AAH) var (AB) /var (AAH) var (BB) /var (AAH)

σ2α/σ
2
u σ2α/σ

2
u σ2α/σ

2
u

φ 0.5 1 4 0.5 1 4 0.5 1 4
T = 3

-0.9 1.5 1.5 1.5 1.0 1.0 1.1 0.9 1.0 1.0
-0.8 1.7 1.7 1.7 1.0 1.1 1.2 0.9 1.0 1.0
-0.5 2.3 2.3 2.3 1.1 1.2 1.6 0.9 0.9 1.0
-0.3 2.9 2.9 2.9 1.2 1.3 1.9 0.9 0.9 1.0
0 4.0 4.0 4.0 1.2 1.5 2.4 0.8 0.9 0.9

0.3 5.3 5.3 5.3 1.2 1.7 3.0 0.6 0.7 0.9
0.5 6.4 6.4 6.4 1.2 1.7 3.4 0.4 0.5 0.7
0.8 8.2 8.2 8.2 1.2 1.7 4.1 0.1 0.1 0.3
0.9 9.2 9.2 9.2 1.9 2.6 3.8 0.05 0.05 0.06

T = 6

-0.9 1.3 1.3 1.3 1.0 1.0 1.1 1.0 1.0 1.0
-0.8 1.3 1.3 1.3 1.1 1.1 1.1 1.0 1.0 1.0
-0.5 1.6 1.6 1.6 1.2 1.2 1.4 1.0 1.0 1.0
-0.3 1.8 1.8 1.8 1.3 1.4 1.6 1.0 1.0 1.0
0 2.2 2.2 2.2 1.5 1.6 2.0 1.0 1.0 1.0

0.3 3.0 3.0 3.0 1.7 2.0 2.6 0.9 1.0 1.0
0.5 3.9 3.9 3.9 2.0 2.4 3.3 0.9 0.9 1.0
0.8 6.1 6.1 6.1 2.5 3.5 5.1 0.5 0.6 0.8
0.9 7.6 7.6 7.6 2.5 4.0 6.3 0.2 0.3 0.5

T = 10

-0.9 1.2 1.2 1.2 1.0 1.0 1.1 1.0 1.0 1.0
-0.8 1.2 1.2 1.2 1.1 1.1 1.1 1.0 1.0 1.0
-0.5 1.3 1.3 1.3 1.1 1.2 1.2 1.0 1.0 1.0
-0.3 1.5 1.5 1.5 1.2 1.3 1.4 1.0 1.0 1.0
0 1.7 1.7 1.7 1.4 1.5 1.6 1.0 1.0 1.0

0.3 2.2 2.2 2.2 1.6 1.8 2.0 1.0 1.0 1.0
0.5 2.7 2.7 2.7 1.9 2.2 2.5 1.0 1.0 1.0
0.8 4.8 4.8 4.8 2.9 3.6 4.3 0.8 0.9 0.9
0.9 6.5 6.5 6.5 3.6 4.6 5.8 0.5 0.6 0.8

Notes: This table reports ratios of asymptotic variance of the Anderson and Hsiao (AH), Arellano and Bond (AB)
and Blundell and Bond (BB) estimators relative to the asymptotic variance of the augmented AH (AAH) estimator
in a stationary design with E

(
α2i
)

= σ2α and E
(
u2it
)

= σ2u, and for different values of the AR coeffi cient, φ.
Asymptotic variances are computed by simulations.

Turning now to the second issue, namely effi ciency loss of AAH relative to AB and BB esti-

mators, we first note that interestingly enough, the expected effi ciency gain of AB over AAH does
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not materialize and AAH is in fact generally more effi cient than the AB estimator, with effi ciency

gain of AAH increasing substantially as larger values of φ and σ2
α/σ

2
u are considered. Increasing

T does not seem to have much effect on the relative effi ciency of the AB estimator. The results

in Table 1 also confirm the sensitivity of the AB estimator to the ratio, σ2
α/σ

2
u. In contrast, the

BB estimator performs favorably relative to the AAH estimator (and by implication relative to the

AB estimator) particularly, for values of φ close to unity. However, this effi ciency gain is achieved

assuming that E [µi (yi,−mi − µi)] = 0, for i = 1, 2, ..., n, which might not hold in practice. (see

(11) and the related discussions). The cost of using BB estimator is inconsistency if condition (11)

is not met. Further evidence on this is provided in the Monte Carlo section.

The above simulations suggest that AAH estimator cannot be more effi cient than BB estimator

when all BB moment conditions are met. This can be seen formally by investigating more closely

the relation between the BB condition (9) and the QM moment condition (12), or equivalently

(13). Substituting uit = ∆uit + αi + ui,t−1 in (9) we have

E [∆yi,t−1 (αi + uit)] = E (∆yi,t−1∆uit) + E [∆yi,t−1 (αi + ui,t−1)] ,

and since ∆yi,t−1 = φ∆yi,t−2 + ∆ui,t−1, then

E [∆yi,t−1 (αi + uit)] = E (∆yi,t−1∆uit)+φE [∆yi,t−2 (αi + ui,t−1)]+E (∆ui,t−1αi)+E (∆ui,t−1ui,t−1) .

(38)

But under BB moment conditions E (∆ui,t−1αi) = 0, as well as

E [∆yi,t−2 (αi + ui,t−1)] = 0. (39)

Using these results in (38) we now have

E [∆yi,t−1 (αi + uit)] = E (∆yi,t−1∆uit) + E (∆ui,t−1ui,t−1)

= E (∆yi,t−1∆uit) + σ2
i,t−1 = 0,

which is the same as the QM condition given by (12). Namely, the QM condition is implied by

the BB moment conditions and not vice versa, and hence under BB conditions the AAH estimator

cannot be more effi cient than the BB estimator. Note that (39) is the same as (9) and it is satisfied
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if E (∆ui,t−1αi) = 0 and E [µi (yi,−mi − µi)] = 0, as discussed in Section 2. However, when the

BB conditions (8) and/or (9) are not met the BB estimator becomes inconsistent contrary to the

AAH estimator that continues to be consistent. Therefore, the main two conditions underlying

the Hausman test (Hausman, 1978) are met and the validity of BB moment conditions can be

tested using the Hausman procedure. Denoting the AAH and BB estimators by φ̂
aah

nT and φ̂
bb

nT ,

respectively, the Hausman test statistic is defined by

Hn =
(
φ̂
aah

nT − φ̂
bb

nT

)2 [
V̂ ar

(
φ̂
aah

nT

)
− V̂ ar

(
φ̂
bb

nT

)]−1
, (40)

assuming that V̂ ar
(
φ̂
aah

nT

)
− V̂ ar

(
φ̂
bb

nT

)
> 0, where V̂ ar

(
φ̂
aah

nT

)
and V̂ ar

(
φ̂
bb

nT

)
are consistent

estimators of the asymptotic variances of φ̂
aah

nT , and φ̂
bb

nT , respectively. Under the null hypothesis

that the BB conditions are met, Hn is asymptotically distributed as χ2 (1), for a fixed T and as

n→∞.

5 Extensions

There are two important extensions of model (1). The first extension is to allow for additional

regressors. Let xit be k − 1 additional regressors, and consider the ARX model

yit = αi + φyi,t−1 + β′xit + uit, for i = 1, 2, ..., n, t = 1, 2, ..., T . (41)

The regressors in xit can be strictly or weakly exogenous. AAH moment conditions (7) and (13)

can be augmented by the standard orthogonality for the regressors xit, as is standard in the GMM

literature. This paper does not have anything new to add regarding instrumenting the regressors

xit.

Remark 7 When xit are weakly exogenous and the objective of the analysis is impulse-response

analysis or forecasting, then one could employ a panel VAR model in zit = (yit,x
′
it)
′, which we

consider below. It is also possible to derive the conditional model (41) from the joint distribution of

yit and xit. In cases where the joint distribution is given by a VAR model, then the conditional model

(41) can be obtained only under very restrictive conditions derived in the Appendix. Specifically,

θit = Ω−1
xx,itωxy,it must be time invariant, where ωxy,it = E (ux,ituy,it), Ω−1

xx,it = E
(
ux,itu

′
x,it

)
,

and uit =
(
uy,it,u

′
x,it

)′
are the idiosyncratic innovations in the panel VAR representation of zit =
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(yit,x
′
it)
′.

The second extension we consider is a panel VAR model in the k × 1 vector of variables zit =

(yit,x
′
it)
′,

zit = αi + Φzi,t−1 + uit, (42)

for t = 0, 1, 2, ..., T , and i = 1, 2, ..., n, with the initial values given by zi,0, where αi is a k × 1

vector of individual effects, Φ is a k× k matrix of slope coeffi cients, and uit = (ui1t, ui2t, ..., uikt)
′ is

a k×1 vector of idiosyncratic errors. Similarly, to the univariate case, the set of linear AH moment

conditions is given by:

E
(
∆zis∆u′it

)
= 0k×k, for i = 1, 2, ..., n, s = 1, 2, ..., t− 2, and t = 3, 4, ..., T, (43)

and the QM moment conditions are given by:

E
(
∆uit∆z′i,t−1

)
+E

[
∆uit∆u′it

]
+E

(
∆ui,t+1∆z′it

)
= 0k×k, for i = 1, 2, ..., n, and t = 2, 3, ..., T −1.

(44)

AAH estimation of the panel VAR model can proceed based on (43) and (44), which replace (7)

and (13), respectively.

6 Problem of proliferation of moment conditions

As it is well known, the number of moment conditions that underlie any of the GMM based

estimation techniques discussed above (AH, AAH, AB, or BB) grow at the quadratic rate in T .

Consequently, the number of moments can get quite large even for moderate values of T . Under

their respective set of assumptions, these are all valid moments and their relevance (strength) varies,

some of which could be weakly identifying. Unless the number of cross-section dimension, n, is

suffi ciently large, as compared to the number of moment conditions, h = h (T ), the proliferation of

moments will have negative consequences for estimation and inference in finite samples. See, for

instance, Anderson and Sorenson (1996), Clark (1996), and Hansen, Heaton, and Yaron (1996).

The many moment problem often occurs together with the weak moment problem, but they are not

necessarily the same. Han and Phillips (2006) provide a number of asymptotic theoretical results

for GMM estimation that allow for the number of moments to increase with sample size, whilst

moment conditions may only be weakly identifying, encompassing earlier contributions by Bekker
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(1994), Staiger and Stock (1997), Stock and Wright (2000), and Chao and Swanson (2003), among

others. GMM estimators utilizing many weak moment conditions may not be consistent and the

rate of convergence could depend not only on the sample size, but also on the number and quality

of the moment conditions.

Hsiao and Zhang (2015) show that the AB estimator is asymptotically biased if T/n → c, for

some 0 < c < ∞, as n, T → ∞. This bias can be reduced using jackknife instrumental variables

estimation (JIVE), which has been considered in a general GMM framework by Angrist, Imbens,

and Krueger (1999), Chao, Swanson, Hausman, Newey, and Woutersen (2012), Hansen and Kozbur

(2014), Lee, Moon, and Zhou (2017), Phillips and Hale (1977) and Zhang and Zhou (2020).11

Koenker and Machado (1999) and Donald, Imbens, and Newey (2003) consider GMM estimation

under a large number of strong moments, and provide conditions on the number of moments that

permits the usual asymptotic theory and inference. In particular, Koenker and Machado (1999)

show h3/n→ 0 is suffi cient for validity of conventional GMM asymptotic inference.

There are two approaches to dealing with a large number of valid moments. One is to use them

all, but combine them in such a way that allows for the number of moments to be large relative to the

sample size so that consistency and valid inference are achieved. The second approach is to select

and use only a subset of available moments. Contributions to this strand of the literature includes

Donald and Newey (2001), Kuersteiner (2002), Hall and Peixe (2003), Inoue (2006), Hall, Inoue,

Jana, and Shin (2007), and Donald, Imbens, and Newey (2009).12 In what follows we propose a new

sub-set selection procedure by adapting the One Covariate at the time Multiple Testing (OCMT)

recently developed by Chudik, Kapetanios, and Pesaran (2018) for variable selection to the problem

of moment selection in the case of the AAH estimator.

6.1 Moment selection using OCMT approach

In the case of AH moments listed in (7), there are t− 2 instruments for ∆yi,t−1, for t = 3, 4, ..., T .

We collect them in the set Si,t−2 = {∆yi,1,∆yi,2, ...,∆yi,t−2}. In general, it is not possible to derive
11Monte Carlo findings reported in Zhang and Zhou (2020) suggest very good size performance of JIVE corrected

AB GMM estimator. However, the size reported in Zhang and Zhou (2020) is computed using standard deviation of
the estimated slope coeffi cients across Monte Carlo replications, as opposed to conducting the empirically relevant
tests, where standard deviation of slope coeffi cients is estimated for each replication. Hence the findings in Zhang
and Zhou (2020) are not indicative of inference that can be conducted in empirical applications.
12 In addition to the literature on selecting relevant moment from a set valid moments, there is a vast literature on

moment validity, and the selection of valid moments, including Andrews (1999), Andrews and Lu (2001), Chatelain
(2007), and Liao (2013). A problem of selecting valid as well as relevant moments has been consideed by Cheng and
Liao (2015).
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analytical expressions for the correlation of the target variable ∆yi,t−1 and individual instruments

in Si,t−2 in the case where the underlying dynamic processes are initialized from finite pasts, and

little is known about the data generating processes for the initial values. It is, nevertheless, possible

to show that corr (∆yi,t−1,∆yi,t−`) declines in ` at an exponential rate in the case of stationary

initial values. This is illustrated in the following example.

Example 1 Let yit = αi + φyi,t−1 + uit, for t = ...,−1, 0, 1, ..., T and i = 1, 2, ..., n, where |φ| < 1.

Then yit = µi +
∑∞

`=0 φ
`ui,t−`, and

∆yit = uit +

∞∑
`=1

φ`−1 (φ− 1)ui,t−`,

where µi = αi/ (1− φ). Provided E (uituit′) = 0 for t 6= t′ and E
(
u2
it

)
is bounded, it follows that

|corr (∆yi,t−1,∆yi,t−`)| < Kφ|`−1|.

Hence it could be the case that some of the t − 2 instruments in Si,t−2 are rather weak and

consequently not very useful in improving the asymptotic variance of the resulting GMM estimator.

Our suggestion is, for each t = 4, 5, ..., T , to apply OCMT method to select the relevant instruments

from the set Si,t−2. It is desirable to always include ∆yi,t−2, which is likely to have the largest

correlation with the target variable ∆yi,t−1, as a conditioning (or pre-selected) variable in the

OCMT procedure, as described below.

OCMT algorithm for selecting AH instruments for a given t (= 4, 5, ..., T )

1. Estimate the (t− 1) individual first stage regressions

∆yi,t−1 = a` + β`∆yi,t−2 + θ`∆yi,`, for ` = t− 3, t− 4, ..., 1 (45)

by least squares and compute the associated t-ratios for the coeffi cients θ` in the above

regression, denoted as tθ̂`(s) = θ̂`/s.e.
(
θ̂`

)
for stage s = 1. The first stage OCMT selection

indicator is given by

Ĵ`,(1) = I[|tθ̂`(1)| > cp (t− 1, δ)], for ` = 1, 2, ..., t− 2, (46)
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where cp(t, δ) is a critical value function defined by

cp (t, δ) = Φ−1
(

1− p

2tδ

)
, (47)

Φ−1 (.) is the inverse of standard normal distribution function, 0 < p < 1, and δ > 0.

Following Chudik, Kapetanios, and Pesaran (2018), we set p = 0.05 and δ = 1 in the first

stage, while another value, δ∗ = 2, is used in subsequent stages of OCMT described below.

Variables with Ĵi,(1) = 1 are selected as instruments in the first stage. If no variables are

selected in the first stage, then OCMT procedure stops. Otherwise, increase s by one.

2. The next stage (s > 1) is computed by regressing ∆yi,t−1 on a constant, ∆yi,t−2, all instru-

ments selected from the previous stages, and, one-at-time, the remaining instruments not yet

selected. Let tθ̂`,(s) denote the corresponding t-ratio of the instruments considered for selec-

tion in the stage s > 1. Then the instruments are added to the selected set if the indicator

Ĵ`,(s) = I[|tθ̂`,(s) | > cp (t− 1, δ∗)] is one. If no instruments are selected in stage s, then the

OCMT procedure stops. Otherwise s is increased by one.

3. Step 2 is repeated until no further instruments are selected.

The outcome of this data-dependent selection of moments is ĥnT selected AH moments, T −2 ≤

ĥnT ≤ (T − 2) (T − 1) /2.13

7 Monte Carlo Evidence

We now provide some evidence on the small sample performance of the AAH estimator as compared

to AH, and the two popular AB and BB estimators (also known as first-difference and the system

GMM estimators). In addition, we also investigate the small sample performance of the AAH

estimator using the subset of AAH moments selected by the OCMT procedure.

7.1 Data generating process (DGP)

The dependent variable is generated as

yit = αi + φyi,t−1 + uit, (48)

13This idea can be applied to the any of the GMM estimators considered in this paper. Our focus is on the AAH
estimator.
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for i = 1, 2, ..., n, and t = 1, 2, ..., T . We consider φ = 0.4, 0.6, 0.8, 0.9 and report results for φ = 0.4

and 0.8 in the body of the paper.14 Individual effects are generated as

αi =

T∑
t=1

ρtuit + πi, πi ∼ IIDN (1, 1) . (49)

We consider two values for ρ = 0 or 0.8. When ρ 6= 0 then the individual effects are correlated

with errors uit, and AB and BB restrictions implicit in (8)-(9), respectively, are not satisfied. The

processes are initialized as

yi,0 = µi + κπi + υi, υi ∼ IIDN (0, 1) , (50)

where µi = αi/ (1− φ). We consider two values for κ = 0 or 1. When κ 6= 0 the individual effects

are correlated with the deviations of initial values from their long-run means µi, and BB restrictions

implicit in (9) are not satisfied. But setting κ 6= 0 on its own does not invalidate the AB restrictions

implicit in (8).

Restriction κ = 0 rules out any systematic deviations of initial values from their long-run means.

It is less likely to hold in empirical applications, where individual dynamic processes over i might

have been initialized from a recent past and possibly from non-stationary initial value distributions.

In contrast, the restriction ρ = 0 appears much less restrictive, since it would be satisfied whenever

fixed effects are uncorrelated with innovations.

The idiosyncratic errors, uit, are generated as non-Gaussian processes with heteroskedastic

error variances, namely uit = (eit − 2)σia/2 for t ≤ [T/2], and uit = (eit − 2)σib/2 for t > [T/2],

with σ2
ia ∼ IIDU (0.25, 0.75), σ2

ib ∼ IIDU (1, 2), and eit ∼ IIDχ2 (2), where [T/2] is the integer

part of T/2. σ2
ia and σ

2
ib are generated independently of eit. This ensures that the errors have

zero means, and are conditionally heteroskedastic, in particular, V (uit|σia) = σ2
ia for t ≤ [T/2],

and V (uit|σib) = σ2
ib for t > [T/2]. We consider comprehensive choices of sample sizes T =

3, 4, 5, 6, 8, 10, 12, 14, 16, 18, 20 and n = 100, 200, 500, 1000, 2000, 4000, 8000. Findings for selected

sample choices are reported below, whilst the full set of results is available from authors upon

request. 2000 replications were carried out for each experiment.

Besides the parameter of interest φ, the key parameters of the MC design are κ and ρ. AH

and AAH estimators are valid for all values of κ and ρ. AB estimators require ρ = 0, and the

14Findings for the remaining values of φ are available from authors upon request.
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BB estimator requires ρ = 0 and κ = 0. Consequently, we consider the following three sets

of experiments, based on values of ρ and κ: (i) experiments with ρ = 0 and κ = 0 labeled as

experiments where both AB and BB restrictions are met; (ii) experiments with ρ = 0 and κ 6= 0

labeled as experiments where BB restrictions are not met whilst AB restrictions are met, and (iii)

experiments with ρ 6= 0 and κ 6= 0 labeled as experiments where neither AB nor BB restrictions

are met.

7.2 Estimation methods

We consider 2-step GMM estimators based on the AH moment conditions given by (7), AAH

moment conditions given by (7) and (13), Arellano and Bond’s first-difference moment conditions

given by (8), and the Arellano and Bover’s and Blundell and Bond’s system moment conditions given

by (8)-(9).15 These estimators are labeled below as AH, AAH, AB, and BB, respectively. Inference

is conducted using the conventional standard errors. In addition to two-step GMM estimator based

on AAH moments, we also consider using OCMT to select relevant AAH moments, as discussed

in Subsection 6.1, denoted as AAH-O. In particular, our AAH-O estimator is based on the union

of T − 2 quadratic moments in (13) and ĥnT selected subset of AH moments using the OCMT

procedure described in Subsection 6.1, noting that T − 2 ≤ ĥnT ≤ (T − 2) (T − 1) /2, the number

of moments for the AAH-O estimator lies between 2 (T − 2) and (T − 2) (T − 1) /2 + T − 2.

7.3 Monte Carlo findings

7.3.1 Comparison of AH and AAH estimators

We first focus on the comparison of AH and AAH estimators in experiments where both AB and

BB restrictions are met (ρ = 0 & κ = 0).16 Results for bias and RMSE (both ×100) of estimating

φ are reported in Table 2, and size and power of the tests at the 5% nominal level are reported

in Table 3 and Figure 1. Table 2 shows very large RMSE values for the AH estimator, especially

when T = 3. Once the set of AH moment conditions (7) is augmented by the quadratic moment

conditions in (13), we see a substantial drop in the reported RMSE values. The small sample

improvements in RMSE are more than 10 fold for T = 3, and about four to five-fold for T = 4, 5,

15We found that cumulative updating (CU) estimators exhibit often worse performance than the 2-step estimators
in our experiments. A comaprison of two-step and CU estimators is available in an earlier version of this paper,
Chudik and Pesaran (2017).
16Findings for the relative performance of AH and AAH estimators are similar for other experiments, available

from authors upon request.

23



and smaller but still substantial for larger values of T , all regardless of n. The relative RMSE

differences are somewhat more pronounced when φ = 0.8, as compared to the ones obtained for

φ = 0.4. Compared to the AH estimator, the AAH estimator is less biased in almost all reported

cases, and has a smaller RMSE even for T = 14. This suggests that correcting for bias will be

unimportant for the reported sample choices.

In line with the bias and RMSE findings, we see in Table 3 that there are substantial gains in

power from the augmentation of the AH moments with the new quadratic moment conditions in

(13). These differences can be seen more clearly in Figure 1, shown for the sample combinations,

n = 1000, T = 4 and 6. The empirical power functions of the AAH estimator are rather flat when

φ = 0.8, and T = 4. As to be expected, the results for the AH estimator improve with a decrease

in φ (as AH instruments become stronger), and/or a rise in T . In contrast, the empirical power

function of the AAH estimator is much more satisfactory. The size of the AH and AAH estimators

reported in Table 3 are close to their nominal value of 0.05, in cases where T/n is suffi ciently small.

For T = 3 the reported size is close to 5% for all values of n considered, whereas for T = 4, size

is close to 5 percent only for n ≥ 500. Size clearly deteriorates in the case where the number

of moments is not suffi ciently small relative to the number of cross-section units, n, which is a

well-known problem in the GMM literature.

7.3.2 Comparison of AAH and AAH-O estimators

With an increase in T , the number of moments becomes large, many of which could be relatively

weak. In such a case, using a well chosen sub-set of moments could improve the small sample

performance. We investigate the small sample benefits and drawbacks of using OCMT procedure

described in Section 6.1 to select a subset or relevant AH moments. The AAH-O estimator is

based on the union of T − 2 quadratic moments (13) and the selected subset of AH moments.

We expect that for a fixed T and as n → ∞, all relevant moments will be selected by OCMT

procedure and therefore asymptotically AAH, and AAH-O achieve the same variance (for a fixed

T ), although AAH-O could have lower or higher RMSE compared with AAH in finite samples.

These expectations are in line with the reported findings in Tables 4-5 and Figure 2. First, the

average number of moments (reported in the last columns of Table 4) increases in n for a fixed T ,

since all of the AAH moments are relevant albeit with a varying degree of strength. The differences

in RMSE values between AAH and AAH-O estimators are negligible for the largest value of n,
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as expected. Second, AAH-O outperforms AAH in cases with highest value of the ratio T/n,

for example when n = 100, and T > 12. However, for intermediate cases with more moderate

T/n ratio, AAH-O tends to perform less well as compared to the AAH estimator in terms of

RMSEs. The size distortions of AAH-O are not as serious as the size distortions of AAH, but still

quite substantial in the case of experiments where T ≥ 10 and n < 2000.

7.3.3 Comparison of AAH with AB and BB estimators

We now turn to the small sample performance of the AAH estimator compared to the AB and BB

estimators. Comparisons for experiments where both AB and BB restrictions are met are reported

in Tables 6-7 and Figure 3. In these experiments AAH is asymptotically less effi cient than BB,

and this is reflected in the lower values of RMSEs obtained for the BB estimator; although it is

interesting to note that these differences are not large in many cases. This result is also in line

with the asymptotic relative effi ciency of the BB estimator reported in Table 1. The situation is

very different when the AAH estimator is compared to the AB estimator. As can be seen from

Table 6, in all cases the AAH estimator performs better (in many cases substantially) than the AB

estimator. Size of the tests based on the individual estimators is close to 5% when n is suffi ciently

large relative to T , otherwise when T is large relative to n inference could be unsafe with substantial

over-rejections.17

To investigate the factors behind the better performance of the BB estimator, we now consider

experiments where individual effects are correlated with the deviations of initial values yi0 − µi,

by setting κ = 1. In these experiments, reported in Tables 8-9 and Figure 4, the restrictions

underlying the BB estimator are not met. Hence, BB is estimator is no longer consistent, which

shows the BB estimator having large biases and close to 100 percent size over-rejections. The

remaining two estimators (AAH and AB) are consistent and their relative performance is very

similar to the previous experiments reported in Tables 6-7, with the proposed AAH estimator

generally dominating the AB estimator.

In the last set of experiments, reported in Tables 10-11 and Figure 5, we also allow for correlation

of errors and fixed effects (by setting the parameter ρ = 0.8), in addition to κ = 1. In these

experiments AAH continues to be valid, but the moment conditions of AB and BB are both violated.

17The size performance can be improved upon by considering alternative estimates of standard errors, such as
Windmeijer (2005) finite sample corrections for the standard errors of two-step GMM estimators, or Newey and
Windmeijer (2009) standard errors for the CU-GMM estimators. These or other alternative estimators of standard
errors are not pursued in this paper.
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As a result both of these estimators perform very poorly, and exhibit large biases and substantial

size distortions even when T = 3. In contrast, the MC findings for the AAH estimator perform well,

and in fact are numerically identical to those reported in Tables 8-9, since due to first-differencing

the AAH estimator is not affected by changes in ρ and κ.18

Overall, the MC findings show that the AAH estimator is robust and outperform its ‘cousin’, the

AH estimator by a wide margin. The AB and BB estimators are not robust to ρ 6= 0, and BB is also

not robust to κ 6= 0. In the case of experiments with ρ = 0 & κ = 0, the AAH estimator continues

to outperform the AB estimator, but performs less well when compared to the BB estimator, which

is obtained under a much stronger set of restrictions (given by (11)). In practice it is not known

whether these additional restrictions on the initialization of dynamic processes are satisfied, and

violation of these conditions renders the BB estimator inconsistent with large biases and substantial

over-rejections.

7.3.4 Hausman test for a comparison of AAH and BB estimators

We now consider the small sample performance of the Hausman test proposed in Section 4. This

test compares AAH and BB estimators. As already noted, under the null hypothesis of BB condi-

tions holding, we have V ar (AAH) ≤ V ar (BB), whereas BB estimator will be inconsistent if BB

conditions are not met. Table 12 shows the rejection rates of Hausman test (defined by ( 40)) at

5 per cent nominal level under the null that BB conditions are met (namely H0 : ρ = κ = 0), as

well as the rejection rates under the alternative hypothesis H1 : ρ = 0 and κ = 1, under which

the BB conditions do not hold. For T = 3 and all choices of n considered, our findings suggest

that the Hausman test has relatively good size. However, rejection rates increase well beyond the

5 per cent nominal level as T increases and n is not suffi ciently large. These distortions can be

observed in sample sizes where V ar (AAH) and V ar (BB) are not well estimated due to large

number of moments and n not being suffi ciently large. Under the null hypothesis we also observe

a large incidence of cases (reported in the right part of Table 2) where V̂ ar (AAH) < V̂ ar (BB)

and Hausman test is therefore not applicable. Large incidence of these cases relate to very small

differences in RMSE values reported earlier in Table 6, in particular for larger values of T .

Rejection rates under the alternative hypothesis (H1 : ρ = 0 and κ = 1) are quite large and

quickly approach one as n increases, suggesting relatively good power of the Hausman test for this

18To make the results in Tables 10 & 11 and Tables 8 & 9 comparable we have used the same seed for generating
the random numbers.
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design. Overall, Hausman test seems to work well when T is suffi ciently small but as T is increased

the size distortion quickly appear in a same pattern as the reported size distortions observed in

Table 7.

8 Concluding remarks

Instead of searching for instruments that are uncorrelated with the errors, this paper proposes to

use the regressors (target variables) themselves in cases where the correlation between the target

variables and the errors can be derived. This approach will lead to possibly nonlinear bias-corrected

moment conditions. In this paper this idea is applied to the estimation of short-T dynamic panel

data models, and a new augmented Anderson-Hsiao (AAH) estimator is proposed without making

additional restrictions. The basic idea has potential applications in other settings, including spatial

panel data models. The idea can also be exploited to estimate unknown parameters of a known

distributional functional form of slope coeffi cients in short-T autoregressive or vector autoregressive

panels with heterogenous slope coeffi cients, which we leave for future research.

The proposed AAH estimator is applicable under less restrictive conditions on the initialization

of the dynamic processes and the individual effects as compared to the leading first-difference and

system-GMM methods advanced in the literature. It is, however, acknowledged that the AAH

estimators can be less effi cient asymptotically when the stricter requirements of the system GMM

estimator proposed by Blundell and Bond hold. The robustness of the AAH estimators is likely

to be an advantage in practice where it is not possible to know if the stronger requirements of the

system-GMM estimators are met, and thus avoid possible estimation bias and incorrect inference.

To decide between AAH and BB estimators in empirical applications we also propose a Hausman

type test which is shown to work well when T is small and n suffi ciently large.

This paper only considered panels with a fixed T . In panels with n, T → ∞ jointly, there is

an important issue that pertains to the GMM approach, namely the problem of combining a large

number of moment conditions. We have briefly discussed this topic and proposed using OCMT to

select a subset of relevant moment conditions as a simple way to mitigate the adverse effects of

moments proliferation.
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Table 2: Bias and RMSE of AH and AAH estimators when both Arellano and Bond
(AB) and Blundell and Bond (BB) restrictions are met

Bias (×100) RMSE(×100)
φ0 = 0.4 φ0 = 0.8 φ0 = 0.4 φ0 = 0.8

T n AH AAH AH AAH AH AAH AH AAH
3 100 < -100 4.63 32.37 4.98 >1000 21.32 >1000 29.09
3 200 < -100 3.22 < -100 4.88 >1000 13.62 >1000 23.48
3 500 8.85 1.49 < -100 2.18 227.47 6.85 >1000 10.14
3 1000 8.91 0.65 >100 1.76 88.28 4.25 >1000 7.40
3 2000 2.34 0.04 14.91 0.52 25.58 2.63 108.21 4.08
3 8000 0.99 -0.06 3.15 -0.06 11.97 1.23 23.40 1.68

4 100 -11.18 1.22 -39.91 0.22 51.22 12.05 94.44 14.56
4 200 -3.70 0.36 -24.55 0.21 34.55 7.44 75.82 10.65
4 500 -2.43 -0.01 -10.60 -0.01 19.97 4.05 41.66 6.40
4 1000 -0.83 0.13 -3.78 0.13 13.78 2.88 26.43 4.33
4 2000 -0.71 -0.10 -2.21 -0.10 9.78 2.03 17.50 3.04
4 8000 -0.08 -0.01 -0.15 -0.01 4.65 1.06 8.40 1.53

5 100 -4.68 1.18 -26.99 -0.17 21.26 10.74 49.53 10.77
5 200 -2.43 0.59 -15.29 -0.28 14.65 8.00 34.44 6.81
5 500 -0.95 -0.02 -5.73 -0.23 9.42 3.03 20.15 4.00
5 1000 -0.13 -0.02 -2.53 -0.20 6.58 2.09 13.57 2.72
5 2000 -0.33 -0.09 -1.69 -0.16 4.60 1.47 9.49 1.88
5 8000 -0.04 -0.02 -0.36 -0.04 2.26 0.75 4.51 0.95

6 100 -5.01 1.08 -23.59 0.14 17.29 9.86 38.13 9.27
6 200 -2.42 0.24 -12.94 -0.06 11.74 6.08 25.62 6.51
6 500 -1.05 -0.14 -5.20 -0.39 7.13 2.64 14.30 3.70
6 1000 -0.37 -0.01 -2.42 -0.14 5.09 1.83 9.91 2.49
6 2000 -0.19 -0.07 -1.28 -0.14 3.51 1.32 6.71 1.75
6 8000 -0.03 -0.02 -0.20 -0.05 1.75 0.63 3.23 0.86

10 100 -3.40 0.48 -14.08 0.22 8.84 5.66 19.59 6.38
10 200 -1.49 0.17 -7.05 -0.01 5.59 3.03 11.61 3.92
10 500 -0.60 -0.03 -2.54 -0.04 3.37 1.82 6.05 2.32
10 1000 -0.22 -0.03 -1.20 -0.12 2.36 1.25 3.97 1.46
10 2000 -0.16 -0.03 -0.60 -0.07 1.65 0.84 2.74 0.98
10 8000 -0.04 -0.01 -0.14 -0.03 0.79 0.41 1.30 0.49

Notes: "AH" is the 2-step GMM estimator based on the (T − 2) (T − 1) /2 Anderson and Hsiao’s moment conditions (7), "AAH"
is the augmented Anderson and Hsiao 2-step GMM estimator based on the (T − 2) (T − 1) /2 + T − 2 moment conditions (7)
and (13). The DGP is given by yit = αi + φyi,t−1 + uit, for i = 1, 2, ..., n, and t = 1, 2, ..., T , with yi,0 = µi + κπi + υi, where
µi = αi/ (1− φ), αi =

∑T
t=1 ρ

tuit + πi, πi ∼ IIDN (1, 1), and υi ∼ IIDN (0, 1). This table reports findings for experiments
where κ = ρ = 0, namely AB and BB restrictions are met. BB restrictions are not satisfied when κ 6= 0, and AB restrictions are
not satisfied when ρ 6= 0. Errors uit are generated to be cross-sectionally heteroskedastic and non-normal, uit = (eit − 2)σia/2

for t ≤ [T/2], and uit = (eit − 2)σib/2 for t > [T/2], with σ2ia ∼ IIDU (0.25, 0.75), σ2ib ∼ IIDU (1, 2), eit ∼ IIDχ2 (2), and
[T/2] is the integer part of T/2. See Section 7 for a full description of the MC experiments.
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Table 3: Size and Power of AH and AAH estimators when both Arellano and Bond
(AB) and Blundell and Bond (BB) restrictions are met

Size (5% level, ×100) Power (5% level, ×100, H1 : φ = φ0 + 0.1)
φ0 = 0.4 φ0 = 0.8 φ0 = 0.4 φ0 = 0.8

T n AH AAH AH AAH AH AAH AH AAH
3 100 5.8 6.2 7.7 7.0 8.3 21.2 10.0 18.7
3 200 6.2 4.6 7.8 5.8 9.1 26.0 9.8 21.2
3 500 5.9 4.5 7.3 3.9 9.8 47.3 10.2 30.5
3 1000 5.8 4.6 6.3 4.5 10.9 73.4 9.8 45.4
3 2000 4.5 5.3 5.8 4.6 11.2 95.8 9.9 76.6
3 8000 5.0 5.0 4.8 4.6 16.5 100.0 11.5 99.9

4 100 11.0 10.2 19.2 12.7 16.0 35.0 23.2 30.6
4 200 7.5 7.4 13.0 9.5 12.3 45.6 17.3 34.0
4 500 6.3 6.1 7.9 6.6 13.9 71.7 12.8 47.6
4 1000 5.2 5.3 5.8 5.9 16.6 91.7 11.9 65.9
4 2000 6.3 5.3 5.3 5.8 23.5 99.5 13.2 88.1
4 8000 5.0 5.6 4.9 5.8 56.8 100.0 23.3 100.0

5 100 13.0 15.5 25.7 17.3 24.5 51.1 33.6 46.0
5 200 8.3 10.9 16.3 10.8 22.5 65.6 24.5 54.0
5 500 6.8 7.1 8.4 7.8 29.2 90.9 19.7 77.7
5 1000 5.9 6.5 5.9 6.4 38.8 99.5 20.2 95.1
5 2000 5.2 5.4 5.1 5.9 61.3 100.0 27.7 99.9
5 8000 4.0 5.8 4.0 5.3 99.3 100.0 60.5 100.0

6 100 18.3 20.5 31.1 20.3 33.9 58.0 43.4 53.9
6 200 11.2 12.0 19.1 13.7 31.4 76.1 31.8 61.8
6 500 7.4 8.0 9.5 9.5 40.0 96.9 26.8 84.7
6 1000 6.5 6.1 7.5 6.5 57.4 100.0 30.5 96.4
6 2000 4.8 5.5 5.5 6.3 82.1 100.0 42.3 100.0
6 8000 4.6 4.1 4.5 5.2 100.0 100.0 87.2 100.0

10 100 40.5 47.3 58.9 49.3 76.6 88.4 83.3 85.4
10 200 20.5 24.1 32.6 27.9 77.9 97.2 74.6 93.4
10 500 10.4 12.1 14.4 15.3 93.7 100.0 75.8 99.8
10 1000 8.3 9.6 8.8 11.3 99.4 100.0 88.8 100.0
10 2000 7.1 6.2 7.4 7.3 100.0 100.0 98.5 100.0
10 8000 5.3 5.2 5.0 5.9 100.0 100.0 100.0 100.0

See the notes to Table 2
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Figure 1: Rejection frequencies (at 5% nominal level) for AH and AAH estimators
when both Arellano and Bond (AB) and Blundell and Bond (BB) restrictions are

met

n = 1000, T = 4

φ0 = 0.4 φ0 = 0.8

n = 1000, T = 6

φ0 = 0.4 φ0 = 0.8

See the notes to Table 2.
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Table 4: Bias and RMSE of AAH and AAH-O estimators when both Arellano and
Bond (AB) and Blundell and Bond (BB) restrictions are met

Average number
Bias (×100) RMSE(×100) of moments

φ0 = 0.4 φ0 = 0.8 φ0 = 0.4 φ0 = 0.8 AAH-O
T n AAH AAH-O AAH AAH-O AAH AAH-O AAH AAH-O AAH φ0 = 0.4 φ0 = 0.8

10 100 0.48 0.12 0.22 -0.39 5.66 5.53 6.38 7.21 44 20 17
10 200 0.17 -0.05 -0.01 -0.56 3.03 3.12 3.92 4.29 44 23 18
10 500 -0.03 -0.07 -0.04 -0.25 1.82 1.90 2.32 2.57 44 28 22
10 1000 -0.03 -0.05 -0.12 -0.26 1.25 1.28 1.46 1.55 44 33 25
10 2000 -0.03 -0.05 -0.07 -0.14 0.84 0.85 0.98 1.02 44 39 29
10 8000 -0.01 -0.01 -0.03 -0.03 0.41 0.41 0.49 0.49 44 43 44

12 100 0.70 0.04 0.75 -0.20 5.34 4.79 6.39 6.76 65 25 22
12 200 0.19 -0.05 0.09 -0.52 2.95 2.98 3.71 4.38 65 29 23
12 500 0.00 -0.03 -0.06 -0.24 1.63 1.72 1.97 2.39 65 37 28
12 1000 -0.01 -0.03 -0.09 -0.21 1.10 1.15 1.20 1.61 65 45 34
12 2000 -0.02 -0.04 -0.04 -0.12 0.77 0.78 0.83 0.88 65 54 40
12 8000 0.00 -0.01 -0.01 -0.01 0.37 0.37 0.40 0.40 65 63 63

14 100 0.98 0.03 1.11 -0.23 6.68 4.26 7.59 6.25 90 30 26
14 200 0.22 -0.03 0.21 -0.51 2.81 2.73 3.55 4.19 90 35 28
14 500 -0.01 -0.07 -0.03 -0.26 1.52 1.60 1.68 2.24 90 47 34
14 1000 0.02 -0.01 -0.03 -0.18 1.01 1.06 1.06 1.22 90 57 43
14 2000 -0.01 -0.03 -0.03 -0.13 0.68 0.70 0.71 0.78 90 69 52
14 8000 0.00 -0.01 -0.01 -0.02 0.34 0.34 0.35 0.35 90 86 84

16 100 0.73 0.09 -0.59 -0.11 7.93 4.16 9.24 6.02 119 35 30
16 200 0.22 -0.12 0.42 -0.57 2.92 2.63 3.69 4.00 119 41 32
16 500 0.06 -0.02 0.04 -0.32 1.44 1.45 1.58 1.83 119 56 39
16 1000 0.03 0.00 -0.01 -0.20 0.93 0.97 0.96 1.15 119 71 51
16 2000 -0.03 -0.04 -0.05 -0.16 0.62 0.64 0.63 0.70 119 86 65
16 8000 0.00 0.00 0.00 -0.01 0.31 0.31 0.31 0.31 119 112 103

18 100 -0.33 -0.01 -5.41 -0.22 7.57 3.83 10.81 5.86 152 40 35
18 200 0.35 -0.08 0.77 -0.54 3.20 2.55 4.08 3.97 152 47 37
18 500 0.09 -0.03 0.11 -0.31 1.40 1.39 1.57 1.93 152 64 44
18 1000 0.03 0.00 0.01 -0.21 0.87 0.89 0.87 1.08 152 83 58
18 2000 -0.01 -0.02 -0.03 -0.14 0.59 0.61 0.58 0.64 152 103 79
18 8000 0.00 0.00 0.00 -0.01 0.29 0.29 0.28 0.29 152 141 121

20 100 -1.73 -0.06 -9.91 -0.34 8.22 3.73 14.22 5.72 189 45 39
20 200 0.55 -0.09 1.07 -0.67 4.63 2.39 5.32 3.51 189 53 41
20 500 0.07 -0.04 0.08 -0.36 1.38 1.33 1.46 1.86 189 72 49
20 1000 0.02 -0.01 0.00 -0.22 0.84 0.86 0.82 1.04 189 96 64
20 2000 0.00 -0.02 0.00 -0.12 0.55 0.57 0.53 0.60 189 121 92
20 8000 0.00 0.00 0.00 -0.02 0.27 0.27 0.25 0.26 189 171 139

Notes: See the notes to Table 2. "AAH-O" estimator is the two-step GMM estimator based on T − 2 quadratic moment
conditions (13) and a subset of (T − 2) (T − 1) /2 AAH moment conditions (7) selected by OCMT. See section 7 for a full
description of the MC experiments.
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Table 5: Size and power of AAH and AAH-O estimators when both Arellano and
Bond (AB) and Blundell and Bond (BB) restrictions are met

Size (5% level, ×100) Power (5% level, ×100, H1 : φ = φ0 + 0.02)
φ0 = 0.4 φ0 = 0.8 φ0 = 0.4 φ0 = 0.8

T n AAH AAH-O AAH AAH-O AAH AAH-O AAH AAH-O
10 100 47.3 25.6 49.3 29.6 49.5 32.6 52.3 36.3
10 200 24.1 15.4 27.9 18.7 31.6 25.0 36.4 28.5
10 500 12.1 10.7 15.3 14.6 34.8 30.5 34.2 33.0
10 1000 9.6 9.5 11.3 12.4 46.2 44.1 42.4 44.7
10 2000 6.2 7.0 7.3 8.8 71.0 71.2 61.4 64.9
10 8000 5.2 5.3 5.9 6.1 99.8 99.9 98.0 98.1

12 100 62.8 28.0 66.1 33.4 66.0 32.6 67.8 40.2
12 200 32.3 19.5 37.3 23.8 43.0 29.0 47.1 35.8
12 500 15.7 12.1 18.1 16.5 41.6 35.4 44.2 38.9
12 1000 9.9 8.9 11.4 13.1 56.7 51.5 54.6 56.6
12 2000 8.7 8.2 8.2 9.2 80.9 80.0 74.7 76.6
12 8000 6.1 6.0 5.5 5.7 100.0 100.0 99.9 99.9

14 100 89.2 32.2 88.0 39.0 87.2 38.3 88.4 45.4
14 200 42.8 19.5 46.3 27.4 53.2 33.4 58.4 38.7
14 500 18.6 13.4 23.6 18.8 51.2 42.1 52.0 44.8
14 1000 11.4 10.7 14.6 15.2 64.7 59.2 65.4 62.3
14 2000 7.9 7.2 8.9 9.9 87.5 85.6 86.5 86.8
14 8000 6.2 6.2 5.8 6.6 100.0 100.0 100.0 100.0

16 100 85.9 34.6 85.4 41.9 86.7 41.1 86.3 48.1
16 200 59.4 22.3 61.9 28.5 63.4 36.3 66.6 43.3
16 500 22.0 12.9 27.7 18.8 56.6 44.6 59.3 47.0
16 1000 13.8 10.8 16.1 16.0 71.8 66.3 74.7 69.5
16 2000 8.6 7.9 10.0 11.1 93.1 91.8 93.4 92.8
16 8000 5.7 5.8 6.2 7.2 100.0 100.0 100.0 100.0

18 100 74.5 38.0 78.1 44.3 75.0 42.9 80.2 53.1
18 200 72.0 24.4 74.4 30.8 76.7 39.0 77.9 45.9
18 500 28.1 14.0 31.7 20.6 62.8 49.7 67.3 51.0
18 1000 14.8 9.7 17.6 16.6 78.1 70.9 81.2 72.1
18 2000 9.7 8.7 10.9 11.5 95.7 94.1 96.8 95.6
18 8000 6.4 6.4 6.3 7.7 100.0 100.0 100.0 100.0

20 100 66.8 38.9 78.2 46.1 70.1 48.2 82.8 53.8
20 200 93.1 24.8 92.0 32.3 92.8 41.6 92.7 49.1
20 500 33.4 15.1 39.1 20.3 69.6 54.2 72.0 54.7
20 1000 18.7 11.2 20.8 15.9 82.5 75.7 87.0 75.7
20 2000 10.4 9.0 11.9 11.7 96.5 95.4 98.4 96.7
20 8000 7.3 6.8 6.4 7.5 100.0 100.0 100.0 100.0

See the notes to Tables 2 and 4.
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Figure 2: Rejection frequencies (at 5% nominal level) for AAH and AAH-O
estimators when both Arellano and Bond (AB) and Blundell and Bond (BB)

restrictions are met

n = 200, T = 10

φ0 = 0.4 φ0 = 0.8

n = 200, T = 20

φ0 = 0.4 φ0 = 0.8

See the notes to Tables 2 and 4.
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Table 6: Bias and RMSE of AAH, AB and BB estimators when both Arellano and
Bond (AB) and Blundell and Bond (BB) restrictions are met

Bias (×100) RMSE(×100)
φ0 = 0.4 φ0 = 0.8 φ0 = 0.4 φ0 = 0.8

T n AAH AB BB AAH AB BB AAH AB BB AAH AB BB
3 100 4.63 -8.77 2.41 4.98 -59.00 2.32 21.32 33.60 11.69 29.09 112.54 13.30
3 200 3.22 -4.27 1.48 4.88 -43.32 1.38 13.62 21.86 8.28 23.48 96.01 8.53
3 500 1.49 -1.48 0.67 2.18 -24.42 0.55 6.85 12.81 4.97 10.14 68.48 4.94
3 1000 0.65 -0.48 0.49 1.76 -9.78 0.45 4.25 8.74 3.46 7.40 46.31 3.61
3 2000 0.04 -0.18 0.15 0.52 -5.11 0.06 2.63 6.28 2.47 4.08 30.92 2.61
3 8000 -0.06 -0.18 -0.02 -0.06 -1.14 -0.01 1.23 3.07 1.19 1.68 15.11 1.30

4 100 1.22 -4.92 2.01 0.22 -45.29 2.44 12.05 20.08 9.84 14.56 73.89 11.16
4 200 0.36 -2.18 0.99 0.21 -29.61 1.10 7.44 13.84 6.57 10.65 55.67 7.64
4 500 -0.01 -0.85 0.40 -0.01 -14.09 0.25 4.05 8.65 4.07 6.40 32.95 4.55
4 1000 0.13 -0.41 0.32 0.13 -6.41 0.21 2.88 6.13 2.85 4.33 21.54 3.26
4 2000 -0.10 -0.26 0.01 -0.10 -3.46 -0.07 2.03 4.36 2.01 3.04 14.81 2.40
4 8000 -0.01 -0.03 0.02 -0.01 -0.55 -0.02 1.06 2.13 1.03 1.53 7.25 1.16

5 100 1.18 -4.25 1.06 -0.17 -29.96 1.93 10.74 15.00 7.60 10.77 46.23 8.33
5 200 0.59 -2.20 0.49 -0.28 -18.54 0.83 8.00 10.20 4.97 6.81 32.12 5.40
5 500 -0.02 -0.77 0.17 -0.23 -8.00 0.20 3.03 6.31 3.03 4.00 18.72 3.37
5 1000 -0.02 -0.18 0.08 -0.20 -3.74 0.04 2.09 4.25 2.09 2.72 12.37 2.35
5 2000 -0.09 -0.38 -0.05 -0.16 -2.45 -0.02 1.47 3.09 1.45 1.88 8.66 1.63
5 8000 -0.02 -0.07 -0.01 -0.04 -0.56 0.00 0.75 1.56 0.74 0.95 4.23 0.84

6 100 1.08 -4.36 1.00 0.14 -25.52 2.72 9.86 12.77 6.92 9.27 37.03 7.99
6 200 0.24 -2.00 0.44 -0.06 -15.32 1.31 6.08 8.56 4.44 6.51 25.24 5.49
6 500 -0.14 -0.83 0.04 -0.39 -6.53 0.26 2.64 5.16 2.68 3.70 14.21 3.24
6 1000 -0.01 -0.26 0.08 -0.14 -3.03 0.13 1.83 3.63 1.84 2.49 9.43 2.23
6 2000 -0.07 -0.16 -0.03 -0.14 -1.61 -0.03 1.32 2.47 1.31 1.75 6.25 1.54
6 8000 -0.02 -0.06 -0.01 -0.05 -0.36 -0.03 0.63 1.24 0.63 0.86 3.00 0.77

10 100 0.48 -3.14 0.65 0.22 -14.73 2.53 5.66 8.24 5.23 6.38 19.91 6.00
10 200 0.17 -1.44 0.32 -0.01 -7.79 1.40 3.03 5.02 3.04 3.92 11.92 3.84
10 500 -0.03 -0.62 0.03 -0.04 -2.97 0.33 1.82 3.04 1.83 2.32 6.11 2.16
10 1000 -0.03 -0.22 0.00 -0.12 -1.38 0.07 1.25 2.07 1.26 1.46 3.92 1.44
10 2000 -0.03 -0.14 -0.02 -0.07 -0.70 0.01 0.84 1.42 0.84 0.98 2.66 0.95
10 8000 -0.01 -0.04 -0.01 -0.03 -0.17 -0.01 0.41 0.70 0.41 0.49 1.26 0.46

Notes: See the notes to Table 2. "AB" is the 2-step GMM estimator based on the Arellano and Bond’s first-difference moment
conditions (8), and "BB" is the 2-step GMM estimator based on the Arellano and Bover’s and Blundell and Bond’s system
moment conditions (8)-(9).
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Table 7: Size and power of AAH, AB and BB estimators when both Arellano and
Bond (AB) and Blundell and Bond (BB) restrictions are met

Size (5% level, ×100) Power (5% level, ×100, H1 : φ = φ0 + 0.1)
φ0 = 0.4 φ0 = 0.8 φ0 = 0.4 φ0 = 0.8

T n AAH AB BB AAH AB BB AAH AB BB AAH AB BB
3 100 6.2 9.2 11.3 7.0 21.9 18.3 21.2 14.6 22.7 18.7 25.6 20.6
3 200 4.6 7.5 8.9 5.8 19.2 12.8 26.0 14.7 32.2 21.2 23.0 26.7
3 500 4.5 5.9 6.5 3.9 13.1 8.0 47.3 16.3 52.9 30.5 17.2 46.1
3 1000 4.6 4.8 5.3 4.5 8.9 5.9 73.4 23.5 77.2 45.4 13.8 72.3
3 2000 5.3 5.9 5.4 4.6 7.2 6.8 95.8 39.7 97.1 76.6 12.6 96.7
3 8000 5.0 5.5 4.9 4.6 5.8 4.9 100.0 91.0 100.0 99.9 16.0 100.0

4 100 10.2 12.0 15.9 12.7 30.1 28.7 35.0 21.4 32.5 30.6 36.5 32.4
4 200 7.4 9.0 10.3 9.5 21.0 19.8 45.6 21.5 43.5 34.0 27.3 39.0
4 500 6.1 6.5 7.0 6.6 12.0 10.9 71.7 27.9 71.1 47.6 19.8 65.1
4 1000 5.3 6.2 6.0 5.9 8.1 8.5 91.7 41.9 92.7 65.9 16.7 88.7
4 2000 5.3 5.9 5.1 5.8 6.5 7.6 99.5 67.2 99.6 88.1 18.8 99.5
4 8000 5.6 4.7 5.7 5.8 5.8 5.2 100.0 99.8 100.0 100.0 32.6 100.0

5 100 15.5 15.7 21.9 17.3 33.7 35.3 51.1 33.1 51.3 46.0 45.6 49.4
5 200 10.9 10.6 13.3 10.8 21.9 20.6 65.6 34.4 65.6 54.0 34.6 63.6
5 500 7.1 6.8 8.2 7.8 10.8 11.4 90.9 46.3 91.4 77.7 25.9 90.1
5 1000 6.5 4.5 6.7 6.4 6.9 8.7 99.5 66.4 99.6 95.1 24.7 99.4
5 2000 5.4 5.5 4.9 5.9 6.7 6.0 100.0 91.8 100.0 99.9 33.4 100.0
5 8000 5.8 4.9 5.6 5.3 4.8 5.6 100.0 100.0 100.0 100.0 70.9 100.0

6 100 20.5 21.1 27.8 20.3 41.2 46.1 58.0 45.9 61.8 53.9 56.2 56.3
6 200 12.0 14.0 16.5 13.7 25.9 30.1 76.1 44.8 76.5 61.8 43.8 68.2
6 500 8.0 7.9 9.2 9.5 13.4 14.8 96.9 62.6 96.9 84.7 35.3 94.6
6 1000 6.1 7.1 6.2 6.5 8.8 9.0 100.0 83.4 100.0 96.4 37.9 99.8
6 2000 5.5 5.2 6.0 6.3 5.8 7.5 100.0 97.7 100.0 100.0 50.1 100.0
6 8000 4.1 4.6 4.6 5.2 4.6 5.4 100.0 100.0 100.0 100.0 92.6 100.0

10 100 47.3 48.0 56.9 49.3 67.8 72.8 88.4 82.7 90.2 85.4 88.6 86.0
10 200 24.1 23.0 26.2 27.9 39.9 45.1 97.2 87.3 98.1 93.4 81.1 95.1
10 500 12.1 11.9 14.0 15.3 16.8 22.9 100.0 97.1 100.0 99.8 82.4 100.0
10 1000 9.6 8.5 10.3 11.3 10.2 13.7 100.0 100.0 100.0 100.0 91.5 100.0
10 2000 6.2 6.8 6.8 7.3 7.5 9.1 100.0 100.0 100.0 100.0 99.1 100.0
10 8000 5.2 5.3 5.2 5.9 5.3 5.4 100.0 100.0 100.0 100.0 100.0 100.0

See the notes to Tables 2 and 6.
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Figure 3: Rejection frequencies (at 5% nominal level) for AAH, AB, and BB
estimators when AB and BB restrictions are met

n = 1000, T = 4

φ0 = 0.4 φ0 = 0.8

n = 1000, T = 6

φ0 = 0.4 φ0 = 0.8

See notes to Tables 2 and 6.
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Table 8: Bias and RMSE of AAH, AB and BB estimators when Arellano and Bond
(AB) restrictions are met and Blundell and Bond (BB) restrictions are not met

Bias (×100) RMSE(×100)
φ0 = 0.4 φ0 = 0.8 φ0 = 0.4 φ0 = 0.8

T n AAH AB BB AAH AB BB AAH AB BB AAH AB BB
3 100 1.17 -1.35 26.32 2.70 -12.59 18.48 14.13 11.98 28.35 23.20 43.64 23.41
3 200 0.59 -0.83 26.88 2.85 -5.68 19.51 8.41 8.37 27.97 18.57 26.62 21.68
3 500 0.56 -0.21 27.48 1.56 -1.75 20.41 4.99 5.12 27.89 8.97 14.66 21.05
3 1000 0.47 -0.03 27.69 1.58 -0.70 20.83 3.45 3.64 27.90 6.14 10.27 21.10
3 2000 0.23 0.01 27.68 0.82 -0.31 20.86 2.42 2.58 27.78 4.01 7.17 20.98
3 8000 0.13 -0.06 27.71 0.19 -0.21 20.89 1.19 1.28 27.74 1.89 3.59 20.92

4 100 1.20 -0.80 23.34 0.54 -7.56 18.94 11.70 8.62 24.96 14.23 23.42 20.44
4 200 0.31 -0.33 23.96 0.32 -3.21 20.34 6.95 6.15 24.80 10.33 15.30 20.93
4 500 -0.02 -0.12 24.75 -0.02 -1.24 21.41 3.30 3.84 25.10 5.89 9.46 21.60
4 1000 0.06 -0.07 24.88 0.09 -0.75 21.82 2.36 2.76 25.05 4.03 6.81 21.91
4 2000 -0.08 -0.03 24.96 -0.10 -0.31 22.03 1.65 1.97 25.05 2.84 4.78 22.07
4 8000 -0.02 0.00 25.08 -0.02 -0.04 22.11 0.85 0.96 25.10 1.44 2.35 22.12

5 100 1.02 -1.28 15.44 -0.18 -8.38 15.66 9.96 7.72 17.31 10.03 19.41 17.39
5 200 0.39 -0.66 15.85 -0.29 -4.21 17.60 7.15 5.39 16.78 6.45 12.52 18.36
5 500 0.01 -0.14 16.37 -0.23 -1.39 19.06 2.58 3.28 16.77 3.75 7.18 19.32
5 1000 0.01 0.00 16.53 -0.18 -0.57 19.64 1.80 2.24 16.74 2.56 4.85 19.77
5 2000 -0.10 -0.13 16.55 -0.16 -0.55 19.87 1.26 1.61 16.66 1.77 3.49 19.94
5 8000 -0.02 -0.02 16.70 -0.05 -0.12 20.10 0.65 0.83 16.73 0.91 1.79 20.11

6 100 0.75 -1.41 12.91 0.50 -7.39 15.90 8.12 6.78 14.62 9.35 15.46 16.80
6 200 0.23 -0.57 13.12 0.10 -3.44 17.71 5.41 4.58 14.03 6.33 9.73 18.18
6 500 -0.08 -0.21 13.44 -0.36 -1.31 19.18 2.24 2.78 13.83 3.37 5.65 19.36
6 1000 0.02 -0.02 13.78 -0.11 -0.51 19.87 1.58 2.00 13.98 2.30 3.93 19.95
6 2000 -0.05 -0.04 13.76 -0.12 -0.29 20.14 1.12 1.35 13.86 1.63 2.66 20.18
6 8000 -0.02 -0.02 13.89 -0.05 -0.11 20.33 0.55 0.69 13.91 0.81 1.36 20.34

10 100 0.48 -1.68 6.17 0.54 -6.44 10.01 4.82 5.68 7.92 6.22 10.79 11.13
10 200 0.16 -0.72 6.11 0.08 -2.99 11.15 2.72 3.46 6.95 3.73 6.19 11.80
10 500 -0.02 -0.30 6.21 -0.07 -1.10 12.27 1.67 2.11 6.57 2.01 3.33 12.57
10 1000 -0.01 -0.09 6.30 -0.12 -0.49 12.54 1.13 1.44 6.49 1.36 2.27 12.71
10 2000 -0.02 -0.06 6.36 -0.07 -0.24 12.78 0.77 1.00 6.45 0.92 1.58 12.87
10 8000 -0.01 -0.02 6.46 -0.02 -0.06 12.94 0.38 0.49 6.48 0.45 0.76 12.96

See the notes to Tables 2 and 6.
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Table 9: Size and power of AAH, AB and BB estimators in experiments when
Arellano and Bond (AB) restrictions are met and Blundell and Bond (BB)

restrictions are not met

Size (5% level, ×100) Power (5% level, ×100, H1 : φ = φ0 + 0.1)
φ0 = 0.4 φ0 = 0.8 φ0 = 0.4 φ0 = 0.8

T n AAH AB BB AAH AB BB AAH AB BB AAH AB BB
3 100 5.4 7.0 93.2 7.4 11.0 72.6 24.4 21.4 81.6 19.3 16.5 41.7
3 200 5.3 6.3 98.7 6.2 7.7 86.0 32.0 29.5 90.1 22.2 14.3 56.4
3 500 4.2 5.1 100.0 3.7 5.5 98.1 54.6 52.5 99.4 32.5 15.5 84.9
3 1000 4.1 4.8 100.0 3.7 5.6 99.8 71.3 78.8 100.0 44.7 20.8 97.1
3 2000 4.4 4.5 100.0 4.1 4.9 100.0 82.3 97.4 100.0 69.2 32.8 100.0
3 8000 3.2 5.0 100.0 4.7 5.0 100.0 86.2 100.0 100.0 93.3 80.2 100.0

4 100 9.3 9.4 95.3 12.1 11.9 92.9 40.7 33.3 82.6 30.8 21.4 73.4
4 200 6.9 8.7 99.6 8.8 8.4 98.1 56.0 45.4 91.7 35.7 20.0 90.4
4 500 6.3 6.4 100.0 6.3 6.0 100.0 84.8 76.7 99.5 50.7 23.8 99.3
4 1000 5.2 5.4 100.0 5.3 5.8 100.0 98.0 96.1 100.0 69.7 38.0 100.0
4 2000 4.8 6.1 100.0 5.6 5.9 100.0 100.0 100.0 100.0 91.4 58.9 100.0
4 8000 5.6 5.1 100.0 5.5 4.8 100.0 100.0 100.0 100.0 100.0 98.7 100.0

5 100 14.3 13.2 89.3 16.5 17.0 91.1 57.3 46.5 65.2 48.3 33.9 72.9
5 200 10.7 9.5 98.2 10.8 11.3 97.1 75.6 61.3 68.4 57.1 32.5 84.6
5 500 6.8 5.8 100.0 6.5 6.7 100.0 96.8 88.4 86.0 81.4 40.1 96.4
5 1000 6.2 3.6 100.0 6.4 4.2 100.0 99.9 99.7 95.5 96.6 58.5 99.6
5 2000 4.8 4.9 100.0 5.7 5.2 100.0 100.0 100.0 99.7 100.0 85.6 99.9
5 8000 5.3 5.5 100.0 5.7 5.6 100.0 100.0 100.0 100.0 100.0 100.0 100.0

6 100 17.5 16.8 90.0 19.9 23.2 96.6 67.4 60.4 61.4 55.3 47.0 78.8
6 200 10.4 10.0 97.5 12.8 12.6 99.0 84.5 73.9 59.0 64.3 44.6 90.4
6 500 7.1 6.3 100.0 8.4 6.4 100.0 99.5 97.3 68.4 87.2 57.3 98.6
6 1000 6.4 6.0 100.0 5.9 5.6 100.0 100.0 99.8 81.9 98.2 78.5 100.0
6 2000 5.4 4.5 100.0 5.8 4.3 100.0 100.0 100.0 93.9 100.0 96.6 100.0
6 8000 4.1 4.6 100.0 4.9 5.1 100.0 100.0 100.0 100.0 100.0 100.0 100.0

10 100 46.1 44.1 84.8 48.1 53.3 95.3 90.4 90.5 77.6 85.0 87.5 77.7
10 200 22.1 21.4 89.4 26.4 26.5 98.8 98.8 97.5 76.7 95.3 88.9 72.1
10 500 12.9 10.7 98.6 14.0 10.9 100.0 100.0 100.0 86.6 99.7 97.8 72.8
10 1000 8.9 8.3 99.9 10.3 7.6 100.0 100.0 100.0 95.6 100.0 99.9 81.5
10 2000 6.7 6.6 100.0 7.1 6.3 100.0 100.0 100.0 99.5 100.0 100.0 91.9
10 8000 5.0 5.0 100.0 5.2 5.7 100.0 100.0 100.0 100.0 100.0 100.0 99.9

See the notes to Tables 2 and 6.
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Figure 4: Rejection frequencies (at 5% nominal level) for AAH and AB estimators
when AB restrictions are met and BB restrictions are not met

n = 1000, T = 4

φ0 = 0.4 φ0 = 0.8

n = 1000, T = 6

φ0 = 0.4 φ0 = 0.8

See the notes to Tables 2 and 6.
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Table 10: Bias and RMSE of AAH, AB and BB estimators when Arellano and Bond
(AB) restrictions are met and Blundell and Bond (BB) restrictions are not met

Bias (×100) RMSE(×100)
φ0 = 0.4 φ0 = 0.8 φ0 = 0.4 φ0 = 0.8

T n AAH AB BB AAH AB BB AAH AB BB AAH AB BB
3 100 1.17 -27.22 12.78 2.70 -82.80 7.92 14.13 30.67 16.15 23.20 108.71 21.86
3 200 0.59 -26.09 12.59 2.85 -74.35 8.66 8.41 27.98 14.48 18.57 88.08 16.75
3 500 0.56 -24.65 12.53 1.56 -68.10 9.24 4.99 25.58 13.36 8.97 75.64 11.54
3 1000 0.47 -24.05 12.47 1.58 -63.24 9.18 3.45 24.59 12.88 6.14 68.08 10.45
3 2000 0.23 -23.84 12.29 0.82 -62.46 9.06 2.42 24.13 12.52 4.01 64.99 9.79
3 8000 0.13 -23.48 12.30 0.19 -59.44 9.19 1.19 23.57 12.36 1.89 60.21 9.40

4 100 1.20 -13.32 14.81 0.54 -49.05 12.90 11.70 16.12 16.92 14.23 56.54 16.03
4 200 0.31 -11.97 14.90 0.32 -40.60 14.06 6.95 13.77 15.99 10.33 44.93 15.38
4 500 -0.02 -11.00 15.29 -0.02 -34.86 15.01 3.30 11.83 15.75 5.89 36.98 15.52
4 1000 0.06 -10.57 15.32 0.09 -32.28 15.43 2.36 11.07 15.55 4.03 33.64 15.66
4 2000 -0.08 -10.24 15.33 -0.10 -30.79 15.76 1.65 10.53 15.45 2.84 31.56 15.88
4 8000 -0.02 -9.99 15.42 -0.02 -29.56 15.93 0.85 10.07 15.45 1.44 29.78 15.95

5 100 1.02 -10.51 10.92 -0.18 -35.45 11.22 9.96 13.01 13.09 10.03 40.12 13.81
5 200 0.39 -9.59 11.07 -0.29 -30.79 12.01 7.15 11.02 12.10 6.45 33.16 13.26
5 500 0.01 -8.64 11.46 -0.23 -26.83 12.61 2.58 9.34 11.88 3.75 27.93 13.17
5 1000 0.01 -8.37 11.53 -0.18 -25.52 12.80 1.80 8.73 11.76 2.56 26.10 13.12
5 2000 -0.10 -8.20 11.53 -0.16 -24.67 12.89 1.26 8.41 11.65 1.77 25.00 13.06
5 8000 -0.02 -7.88 11.65 -0.05 -23.68 13.01 0.65 7.94 11.68 0.91 23.79 13.06

6 100 0.75 -7.79 9.94 0.50 -24.23 12.63 8.12 10.26 11.87 9.35 27.95 13.92
6 200 0.23 -6.59 10.05 0.10 -19.63 13.64 5.41 8.05 11.09 6.33 21.65 14.42
6 500 -0.08 -5.89 10.27 -0.36 -16.82 14.47 2.24 6.56 10.71 3.37 17.70 14.80
6 1000 0.02 -5.49 10.55 -0.11 -15.52 14.93 1.58 5.89 10.78 2.30 16.02 15.10
6 2000 -0.05 -5.42 10.54 -0.12 -15.08 15.08 1.12 5.63 10.65 1.63 15.35 15.16
6 8000 -0.02 -5.24 10.64 -0.05 -14.53 15.20 0.55 5.30 10.67 0.81 14.61 15.22

10 100 0.48 -3.18 5.53 0.54 -9.76 9.00 4.82 6.28 7.42 6.22 13.10 10.21
10 200 0.16 -2.28 5.52 0.08 -6.46 9.78 2.72 4.07 6.41 3.73 8.44 10.48
10 500 -0.02 -1.85 5.63 -0.07 -4.51 10.57 1.67 2.77 6.02 2.01 5.48 10.89
10 1000 -0.01 -1.62 5.74 -0.12 -3.88 10.69 1.13 2.15 5.94 1.36 4.43 10.87
10 2000 -0.02 -1.58 5.80 -0.07 -3.63 10.84 0.77 1.86 5.90 0.92 3.93 10.93
10 8000 -0.01 -1.53 5.91 -0.02 -3.44 10.93 0.38 1.60 5.93 0.45 3.52 10.96

See the notes to Tables 2 and 6.
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Table 11: Size and power of AAH, AB and BB estimators in experiments when AB
and BB restrictions are not met

Size (5% level, ×100) Power (5% level, ×100, H1 : φ = φ0 + 0.1)
φ0 = 0.4 φ0 = 0.8 φ0 = 0.4 φ0 = 0.8

T n AAH AB BB AAH AB BB AAH AB BB AAH AB BB
3 100 5.4 51.1 68.1 7.4 48.1 56.0 24.4 77.5 40.0 19.3 54.7 33.6
3 200 5.3 74.0 79.7 6.2 54.1 59.6 32.0 94.5 43.6 22.2 62.1 34.2
3 500 4.2 95.0 94.8 3.7 71.3 68.2 54.6 99.7 44.7 32.5 79.0 35.7
3 1000 4.1 99.3 99.8 3.7 84.2 79.1 71.3 99.9 49.4 44.7 91.0 38.7
3 2000 4.4 100.0 100.0 4.1 95.9 92.1 82.3 100.0 55.4 69.2 98.6 41.5
3 8000 3.2 100.0 100.0 4.7 100.0 100.0 86.2 100.0 83.7 93.3 100.0 44.8

4 100 9.3 36.0 84.6 12.1 59.3 81.2 40.7 75.3 55.1 30.8 73.0 50.8
4 200 6.9 46.4 93.8 8.8 63.5 89.3 56.0 89.4 58.3 35.7 79.5 58.7
4 500 6.3 71.5 99.7 6.3 80.7 97.9 84.8 99.7 73.9 50.7 94.3 70.7
4 1000 5.2 90.8 100.0 5.3 93.8 100.0 98.0 100.0 87.0 69.7 98.8 86.4
4 2000 4.8 99.2 100.0 5.6 99.3 100.0 100.0 100.0 96.7 91.4 100.0 96.0
4 8000 5.6 100.0 100.0 5.5 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

5 100 14.3 37.5 79.9 16.5 62.9 82.5 57.3 83.1 51.2 48.3 83.5 56.8
5 200 10.7 46.5 91.3 10.8 72.0 89.7 75.6 95.8 44.2 57.1 92.0 53.0
5 500 6.8 69.2 99.5 6.5 90.4 97.9 96.8 100.0 44.2 81.4 99.0 59.1
5 1000 6.2 90.8 100.0 6.4 98.5 99.8 99.9 100.0 49.5 96.6 100.0 68.2
5 2000 4.8 99.1 100.0 5.7 100.0 100.0 100.0 100.0 58.5 100.0 100.0 77.9
5 8000 5.3 100.0 100.0 5.7 100.0 100.0 100.0 100.0 87.7 100.0 100.0 97.3

6 100 17.5 34.9 83.0 19.9 60.8 91.5 67.4 87.3 53.9 55.3 85.6 66.0
6 200 10.4 37.3 91.4 12.8 62.6 95.3 84.5 96.6 49.6 64.3 92.3 71.3
6 500 7.1 53.7 99.4 8.4 82.8 99.5 99.5 100.0 45.5 87.2 99.6 81.4
6 1000 6.4 74.8 100.0 5.9 95.2 100.0 100.0 100.0 46.1 98.2 100.0 91.2
6 2000 5.4 94.0 100.0 5.8 99.6 100.0 100.0 100.0 45.5 100.0 100.0 97.7
6 8000 4.1 100.0 100.0 4.9 100.0 100.0 100.0 100.0 56.3 100.0 100.0 100.0

10 100 46.1 47.2 83.0 48.1 63.8 93.6 90.4 94.7 78.8 85.0 93.8 77.3
10 200 22.1 27.1 87.1 26.4 44.5 98.0 98.8 99.6 80.8 95.3 97.0 68.4
10 500 12.9 22.8 97.3 14.0 37.5 100.0 100.0 100.0 91.1 99.7 100.0 64.3
10 1000 8.9 24.8 99.9 10.3 46.4 100.0 100.0 100.0 98.0 100.0 100.0 65.1
10 2000 6.7 36.8 100.0 7.1 66.2 100.0 100.0 100.0 99.9 100.0 100.0 67.9
10 8000 5.0 86.9 100.0 5.2 99.6 100.0 100.0 100.0 100.0 100.0 100.0 79.8

See the notes to Tables 2 and 6.
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Table 12: Empirical size and power of Hausman test applied to the difference
between BB and AAH estimators at the 5% nominal level

Fraction of replications (×100)
where Hausman test was not applicable

Rejection rates (×100) due to V̂ ar
(
φ̂
aah
)
− V̂ ar

(
φ̂
bb
)
< 0

under H0 under H1 under H0 under H1
T n φ0 = 0.4 φ0 = 0.8 φ0 = 0.4 φ0 = 0.8 φ0 = 0.4 φ0 = 0.8 φ0 = 0.4 φ0 = 0.8

3 100 6.64 9.03 68.67 30.28 20.95 13.60 0.40 8.70
3 200 5.80 7.09 81.28 44.49 20.65 12.60 0.10 5.60
3 500 4.71 6.03 84.45 72.06 24.60 11.30 0.00 1.95
3 1000 6.60 6.17 89.75 78.79 23.45 7.65 0.00 0.30
3 2000 8.31 5.95 98.05 82.85 20.55 3.35 0.00 0.00
3 8000 7.22 6.05 100.00 93.25 7.15 0.00 0.00 0.00

4 100 15.27 17.60 93.54 54.08 28.60 11.65 0.10 2.65
4 200 9.92 13.08 99.65 70.67 28.95 11.70 0.00 0.95
4 500 9.41 8.91 100.00 93.25 27.20 9.05 0.00 0.05
4 1000 7.26 8.34 100.00 99.45 26.30 4.65 0.00 0.00
4 2000 8.88 7.28 100.00 100.00 22.30 2.45 0.00 0.00
4 8000 8.41 5.50 100.00 100.00 9.05 0.05 0.00 0.00

5 100 22.13 25.25 87.50 71.27 27.25 9.90 0.00 2.20
5 200 13.10 18.03 99.05 89.37 32.80 11.00 0.00 0.75
5 500 9.59 13.24 100.00 99.50 35.85 11.65 0.00 0.00
5 1000 8.40 10.73 100.00 100.00 36.90 7.70 0.00 0.00
5 2000 6.55 7.92 100.00 100.00 33.55 4.65 0.00 0.00
5 8000 8.26 7.01 100.00 100.00 26.75 0.15 0.00 0.00

6 100 23.32 33.62 88.25 77.15 25.40 6.30 0.00 0.45
6 200 18.06 23.41 98.70 92.80 30.80 7.95 0.00 0.00
6 500 9.90 15.79 100.00 99.85 36.90 9.75 0.00 0.00
6 1000 6.60 14.47 100.00 100.00 39.40 8.45 0.00 0.00
6 2000 6.38 9.78 100.00 100.00 36.55 3.35 0.00 0.00
6 8000 5.97 7.07 100.00 100.00 30.50 0.30 0.00 0.00

10 100 44.92 58.80 79.58 86.42 20.20 4.50 0.10 0.25
10 200 21.62 41.71 91.05 97.10 34.10 9.25 0.00 0.00
10 500 9.29 25.83 99.55 99.95 39.20 18.70 0.00 0.00
10 1000 5.65 20.95 100.00 100.00 45.10 22.90 0.00 0.00
10 2000 4.29 13.21 100.00 100.00 42.95 21.65 0.00 0.00
10 8000 3.63 11.40 100.00 100.00 44.90 14.45 0.00 0.00

Notes: Reported rejection rates under the null correspond to DGP with ρ = 0 and κ = 0, i.e. both AB and BB conditions
are met. Reported rejection rate under alternative correspond to DGP with ρ = 0 and κ 6= 0, i.e. BB conditions are not met,
whilst AB conditions still hold. See also the notes to Tables 2 and 4.
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A Appendix

This appendix is organized as follows. Section A.1 derives B̄3 given by (30) and (31). Section A.2 states

and proves a number of lemmas used in the rest of this appendix. Additional propositions and proofs are

given in Section A.3. Section A.4 provides derivation of conditional model for yit when zit = (yit,x
′
it)
′ is

generated from a panel VAR model with heteroskedastic errors.

A.1 Derivation of B̄3

Using (29), it readily follows that B̄3 = limn→∞ n−1
∑n
i=1E (Bi3), where

E (Bi3) = E
(
∆y2i1

)
+ E

(
∆y2i2

)
+ 2E (∆ui2∆yi1) . (A.1)

Also recall that ∆yi1 = ui1 − (1− φ) (yi0 − µi) , and ∆yi2 = φ∆yi1 + ∆ui2. Hence E (∆ui2∆yi1) = −σ2i1,

E
(
∆y2i1

)
= σ2i1 + (1− φ)

2
E (yi0 − µi)

2 − 2 (1− φ)E [ui1 (yi0 − µi)] ,

and

E
(
∆y2i2

)
= E

(
φ2∆y2i1 + ∆u2i2 + 2φ∆ui2∆yi1

)
= φ2E

(
∆y2i1

)
+ (1− 2φ)σ2i1 + σ2i2. (A.2)

Using the above results in (A.1) now yields:

E (Bi3) =
(
σ2i2 − σ2i1

)
+ (1− φ)

2
σ2i1 +

(
1 + φ2

){
(1− φ)

2
E (yi0 − µi)

2 − 2 (1− φ)E [ui1 (yi0 − µi)]
}
.

Hence, as required, we have

B̄3 = σ̄22 − σ̄21 + (1− φ)
2
σ̄21 +

(
1 + φ2

)
(1− φ)ψ0, (A.3)

where σ̄2t = limn→∞ n−1
∑n
i=1 σ

2
it, for t = 1, 2, and

ψ0 = (1− φ) lim
n→∞

1

n

n∑
i=1

E (yi0 − µi)
2 − 2 lim

n→∞

1

n

n∑
i=1

E [ui1 (yi0 − µi)] .

A.2 Lemmas

Lemma A.1 Suppose yit, for i = 1, 2, ..., n, and t = −mi + 1,−mi + 2, ..., 1, 2, ..., T , are generated by (1)

with starting values yi,−mi
. Let Assumptions 1-3 hold. Consider

Q̄nT =
1

n

n∑
i=1

QiT , and B̄nT =
1

n

n∑
i=1

(
QiT +Q+iT + 2HiT

)
,
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where QiT = (T − 2)
−1∑T−1

t=2 ∆y2i,t−1, Q
+
iT = (T − 2)

−1∑T−1
t=2 ∆y2it, and HiT = (T − 2)

−1∑T−1
t=2 ∆uit∆yi,t−1.

Suppose that T is fixed. Then, we have

Q̄nT = E
(
Q̄nT

)
+Op

(
n−1/2

)
, (A.4)

B̄nT = E
(
B̄nT

)
+Op

(
n−1/2

)
. (A.5)

Proof. Under Assumptions 1-3, the fourth moments of uit and bi are bounded, and hence, using Loève’s

inequality,19 for each i the fourth moment of ∆yit :

∆yit = φt−1

[
bi + ui1 − (1− φ)

mi−1∑
`=0

φ`ui,−`

]
+

t−2∑
`=0

φ`∆ui,t−`,

is also bounded, for all values of |φ| ≤ 1 and mi ≥ 0. Since T is fixed, it follows that the second

moment of QiT = (T − 2)
−1∑T−1

t=2 ∆y2i,t−1 must be bounded, and hence there must exist K such that

E [QiT − E (QiT )]
2
< K. Consider next the cross-sectional average ofQiT−E (QiT ). We have E [QiT − E (QiT )] =

0 by construction, and also QiT − E (QiT ) is independently distributed across i, since, under Assumptions

1-3, ∆yit is independently distributed across i. Hence,

V ar

{
n−1

n∑
i=1

[QiT − E (QiT )]

}
≤ n−2

n∑
i=1

E [QiT − E (QiT )]
2
<
K

n
,

and therefore n−1
∑n
i=1QiT − n−1

∑n
i=1E (QiT ) = Op

(
n−1/2

)
. This completes the proof of (A.4).

Result (A.5) is established similarly. Note that

B̄nT =
1

n

n∑
i=1

QiT +
1

n

n∑
i=1

Q+iT + 2
1

n

n∑
i=1

HiT = Q̄nT + Q̄+nT + 2H̄nT .

The order of Q̄nT −E
(
Q̄nT

)
is given by (A.4). Using the same arguments as in the proof of (A.4), we have

Q̄+nT − E
(
Q̄+nT

)
= Op

(
n−1/2

)
, and H̄nT − E

(
H̄nT

)
= Op

(
n−1/2

)
.

Hence, B̄nT −E
(
B̄nT

)
= Q̄nT −E

(
Q̄nT

)
+ Q̄+nT −E

(
Q̄+nT

)
+ 2

[
H̄nT − E

(
H̄nT

)]
= Op

(
n−1/2

)
, and result

(A.5) follows. This completes the proof.

Lemma A.2 Suppose yit, for i = 1, 2, ..., n, and t = −mi + 1,−mi + 2, ..., 1, 2, ..., T , are generated by (1)

with starting values yi,−mi
. Let Assumptions 1-3 hold. Consider

V̄nT =
1

n

n∑
i=1

ViT ,

19See equation (9.62) of Davidson (1994).
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where ViT = 1
T−2

∑T−1
t=2

(
∆uit∆yi,t−1 + ∆u2it + ∆ui,t+1∆yit

)
. Suppose that T is fixed. Then, we have

V̄nT = Op

(
n−1/2

)
. (A.6)

If, in addition, ST = limn→∞ n−1
∑n
i=1E

(
V 2iT
)
, and T is fixed as n→∞, then

√
nV̄nT →d N (0, ST ) . (A.7)

Proof. Under Assumptions 2 and 3, ViT is independently distributed of VjT for all i 6= j, i, j = 1, 2, ..., n.

In addition, (using (13))

E (ViT ) =
1

T − 2

T−1∑
t=2

E
(
∆uit∆yi,t−1 + ∆u2it + ∆ui,t+1∆yit

)
= 0. (A.8)

Also, by Assumptions 2 and 3, supi,tE |uit|
4+ε

< K, and supiE |bi|
4+ε

< K, for some ε > 0, and hence,

using Loève’s inequality,20 we have supi,tE |∆yit|
4+ε

< K. Using Loève’s inequality again, we have

E
∣∣∆uit∆yi,t−1 + ∆u2it + ∆ui,t+1∆yit

∣∣2+ε/2 ≤ K (E |∆uit∆yi,t−1|2+ε/2 + E
∣∣∆u2it∣∣2+ε/2 + E |∆ui,t+1∆yit|2+ε/2

)
.

But supitE
∣∣∆u2it∣∣2+ε/2 = supitE |∆uit|

4+ε
< K, as well as supi,tE |∆uit∆yi,t−1|

2+ε/2
< K, and

supi,tE |∆ui,t+1∆yit|
2+ε/2

< K. Hence, supitE
∣∣∆uit∆yi,t−1 + ∆u2it + ∆ui,t+1∆yit

∣∣2+ε/2 < K, and using

Loève’s inequality again, we have

sup
i
E
(
|ViT |2+ε/2

)
< K. (A.9)

It follows also that supiE
(
V 2iT
)
< K, and given that ViT is independently distributed over i, we have

E
(
V̄ 2nT

)
= n−2

n∑
i=1

n∑
j=1

E (ViTVjT ) = n−2
n∑
i=1

E
(
V 2iT
)
<
K

n
,

and result (A.6) follows. To establish (A.7), we note that (A.9) holds, and therefore the Lyapunov con-

dition holds (see Theorem 23.12 of Davidson, 1994). Hence, noting also that n−1
∑n
i=1E

(
V 2iT
)
→ ST by

assumption, we obtain
√
nV̄nT →d N (0, ST ), as required.

A.3 Propositions and Proofs

Theorem 1 is established in the main text. This section presents propositions for the consistency of Σ̂nT .

20See equation (9.62) of Davidson (1994).
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Proposition 1 Suppose conditions of Theorem 1 hold, and consider Σ̂nT defined by (34), namely

Σ̂nT = ̂̄B−2nT
(

1

n

n∑
i=1

V̂ 2i,nT

)
,

where ̂̄BnT = n−1
∑n
i=1

(
QiT +Q+iT + 2Ĥi,nT

)
, Ĥi,nT = (T − 2)

−1∑T−1
t=2 ∆ûit∆yi,t−1, ∆ûit = ∆yit −

φ̂nT∆yi,t−1,

V̂i,nT =
1

T − 2

T−1∑
t=2

(
∆ûit∆yi,t−1 + ∆û2it + ∆ûi,t+1∆yit

)
,

and φ̂nT is the
√
n-consistent BMM estimator given by (16). Let T be fixed as n→∞. Then,

Σ̂nT →p ΣT , (A.10)

where ΣT is defined in (32)

Proof. Using Theorem 1, we have φ̂nT = φ0 + Op
(
n−1/2

)
, and therefore ∆ûit = ∆yit − φ̂nT∆yi,t−1 is

consistent, namely ∆ûit − ∆uit = −
(
φ̂nT − φ0

)
∆yi,t−1 = Op

(
n−1/2

)
. This implies Ĥi,nT is consistent,

which in turn implies ̂̄BnT − B̄nT →p 0. But, using result (A.5) of Lemma A.1, we have B̄nT →p E
(
B̄nT

)
,

and E
(
B̄nT

)
→ BT . Therefore ̂̄BnT →p B̄T . Since B̄T > 0 by assumption, it follows that

̂̄B−2nT →p B̄
−2
T . (A.11)

Next consider n−1
∑n
i=1 V̂

2
i,nT , and note that

V̂ 2i,nT =
[(
V̂i,nT − ViT

)
+ ViT

]2
=
(
V̂i,nT − ViT

)2
+ 2

(
V̂i,nT − ViT

)
ViT + V 2iT ,

where ViT = (T − 2)
−1∑T−1

t=2

(
∆uit∆yi,t−1 + ∆u2it + ∆ui,t+1∆yit

)
. Using ∆ûn,it−∆un,it = Op

(
n−1/2

)
, we

have V̂i,nT − ViT = Op
(
n−1/2

)
. Noting also that ViT = Op (1), we then have

n−1
n∑
i=1

(
V̂i,nT − ViT

)2
→p 0, and n−1

n∑
i=1

(
V̂i,nT − ViT

)
ViT →p 0. (A.12)

Finally, to obtain the limiting property of n−1
∑n
i=1 V

2
iT , note that by assumption ViT is independently

distributed over i. Also, as established in (A.9), we have supiE |ViT |
2+ε/2

< K for some ε > 0. It follows

that n−1
∑n
i=1

[
V 2iT − E

(
V 2iT
)]
→p 0, and therefore (noting that n−1

∑n
i=1E

(
V 2iT
)
→ ST by assumption)

we have

n−1
n∑
i=1

V 2iT →p ST . (A.13)

Result (A.10) now follows from (A.11), (A.12), and (A.13).
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A.4 Derivation of conditional model for yit when zit = (yit,x
′
it)
′ is given by a

panel VAR model

Suppose zit = (yit,x
′
it)
′ is generated from panel VAR(1) model given by equation (42) in the paper. Indi-

vidual equations for yit and xit in (42) are

yit = αiy + φ11yi,t−1 + φ′yxxi,t−1 + uy,it, (A.14)

xit = αix + φxyyi,t−1 + Φxxxi,t−1 + ux,it, (A.15)

where αi = (αiy,α
′
ix)
′, uit =

(
uy,it,u

′
x,it

)′
, and Φ is partitioned as:

Φ =

 φ11 φ′yx

φxy Φxx

 .
Suppose that the errors, uit, are heteroskedastic over i and t, and let

E (uitu
′
it) = Ωit =

 ωyy,it ω′xy,it

ωxy,it Ωxx,it

 ,
for all i and t. Using linear projection of uy,it on ux,it, we have

uy,it = θ′itux,it + ηit, (A.16)

where θit = Ω−1xx,itωxy,it, and cov (ηit,ux,it) = 0. Then using (A.16) and (A.15) in (A.14), we have

yit = αiy + φ11yi,t−1 + φ′yxxi,t−1 + θ′it
(
xit −αix − φxyyi,t−1 −Φxxxi,t−1

)
+ ηit,

=
(
αiy − θ′itαix

)
+
(
φ11 − θ′itφxy

)
yi,t−1 +

(
φ′yx − θ′itΦxx

)
xi,t−1 + ηit, (A.17)

where cov (ηit,xis) = 0 for all i, t and s, and recall that ηit is serially uncorrelated. It is clear that the

conditional model (A.17) will have homogeneous slopes only if θit = Ω−1xx,itωxy,it = θ for all i and t.
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