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Abstract
This paper extends the Common Correlated Effects (CCE) approach developed by Pesaran
(2000) to heterogeneous panel data models with lagged dependent vatiable and/or weakly
exogenous regressors. We show that the CCE mean group estimator continues to be valid
but the following two conditions must be satisfied to deal with the dynamics: a sufficient
number of lags of cross section averages must be included in individual equations of the
panel, and the number of cross section averages must be at least as large as the number of
unobserved common factors. We establish consistency rates, derive the asymptotic
distribution, suggest using co-variates to deal with the effects of multiple unobserved
common factors, and consider jackknife and recursive de-meaning bias correction
procedures to mitigate the small sample time series bias. Theoretical findings are
accompanied by extensive Monte Carlo experiments, which show that the proposed
estimators perform well so long as the time series dimension of the panel is sufficiently large.
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1 Introduction

In a recent paper, Pesaran (2006) proposed the Common Correlated Effects (CCE) approach to
estimation of panel data models with multi-factor error structure, which has been further developed
by Kapetanios, Pesaran, and Yagamata (2011), Pesaran and Tosetti (2011), and Chudik, Pesaran,
and Tosetti (2011). The CCE method is shown to be robust to different types of cross section
dependence of errors, possible unit roots in factors, and slope heterogeneity. However, the CCE
approach as it was originally proposed does not cover the case where the panel includes a lagged
dependent variable and /or weakly exogenous variables as regressors.! This paper extends the CCE
approach to allow for such regressors. This extension is not straightforward because coefficient
heterogeneity in the lags of the dependent variable introduces infinite order lag polynomials in the
large N relationships between cross-sectional averages and the unobserved factors (Chudik and
Pesaran, 2013a). Our focus is on stationary heterogenous panels with weakly exogenous regressors
where the cross-sectional dimension (N) and the time series dimension (7') are sufficiently large.
We focus on estimation and inference of the mean coeflicients, and consider the application of bias
correction techniques to deal with the small T" bias of the estimators.

Recent literature on large dynamic panels focuses mostly on how to deal with cross-sectional
(CS) dependence assuming slope homogeneity. Estimation of panel data models with lagged de-
pendent variables and cross-sectionally dependent errors has been considered in Moon and Weidner
(2010a and 2010b), who propose a Gaussian quasi maximum likelihood estimator (QMLE).? Moon
and Weidner’s analysis assumes homogeneous coefficients, and therefore is not applicable to dynamic
panels with heterogenous coefficients.? Similarly, the interactive-effects estimator (IFE) developed
by Bai (2009) also allows for cross-sectionally dependent errors, but assumes homogeneous slopes.*
Song (2013) extends the analysis of Bai (2009) by allowing for a lagged dependent variable as well as
coefficient heterogeneity, but provides results on the estimation of cross-section specific coefficients

only. This paper provides an alternative CCE type estimation approach to Song’s extension of the

'See Everaert and Groote (2012) who derive asymptotic bias of CCE pooled estimators in the case of dynamic
homogeneous panels.

2See also Lee, Moon, and Weidner (2011) for an extension of this framework to panels with measurement errors.

3Pesaran and Smith (1995) show that in the presence of coefficient heterogeneity pooled estimators are inconsistent
in the case of panel data models with lagged dependent variables.

4Earlier literature on large panels typically ignores cross section dependence of errors, including pooled mean
group estimation proposed by Pesaran, Shin, and Smith (1999), fully modified OLS estimation by Pedroni (2000) or
the panel dynamic OLS estimation by Mark and Sul (2003). These papers can also handle panels with nonstationary
data. There is also a large literature on dynamic panels with large N but finite 7', which assumes homogeneous
slopes.



IFE estimator. In addition, we propose a mean group estimator of the mean coefficients, and show
that CCE types estimators once augmented with a sufficient number of lags and cross-sectional av-
erages perform well even in the case of dynamic models with weakly exogenous regressors. We also
show that the asymptotic distribution of the CCE estimators developed in the literature continue
to be applicable to the more general setting considered in this paper. Our method could extend to
Song’s IFE and we also investigate the performance of the mean group estimator based on Song’s
unit-specific coefficient estimates.

More specifically, in this paper we considered estimation of autoregressive distributed lagged
(ARDL) panel data models where the dependent variable of the i cross section unit at time t,
yit, 1s explained by its lagged values, current and lagged values of k weakly exogenous regressors,
x;¢, m unobserved (possibly serially correlated) common factors, f;, and a serially uncorrelated
idiosyncratic error. In addition to the regressors included in the panel ARDL model, following
Pesaran, Smith, and Yamagata (2013) we also assume that there exists a set of additional covariates,
g, that are affected by the same set of unobserved common factors, f;. This seems reasonable
considering that agents in making their decisions face a common set of factors such as technology,
institutional set ups and general economic conditions, which then get manifested in many variables,
whether included in the panel data model under consideration or not. Similar arguments also
underlie forecasting using a large number of regressors popularized recently in econometrics by
Stock and Watson (2002) and Forni et al. (2005).

A necessary condition for the CCE mean group (CCEMG) estimator to be valid in the case of
ARDL panel data models is that the number of cross-sectional averages based on x;; and g;; must
be at least as large as the number of unobserved common factors minus one (m — 1). In practice,
where the number of unobserved factors is unknown, it is sufficient to assume that the number of
available cross-sectional averages is at least mpax — 1, where mpyax denotes the assumed maximum
number of unobserved factors. In most economic applications mmayx is likely to be relatively small.?

We also report on the small sample properties of CCEMG estimators for panel ARDL models,
using a comprehensive set of Monte Carlo experiments. In particular, we investigate two bias
correction methods, namely the half-panel jackknife due to Dhaene and Jochmans, 2012, and the

recursive mean adjustment due to So and Shin, 1999. We find that the proposed estimators have

’Stock and Watson (2002), Giannone, Reichlin, and Sala (2005) conclude that only few, perhaps two, factors
explain much of the predictable variations, while Bai and Ng (2007) estimate four factors and Stock and Watson
(2005) estimate as many as seven factors.



satisfactory performance under different dynamic parameter configurations, and regardless of the
number of unobserved factors, so long as they do not exceed the number of cross-sectional averages,
and the time dimension is sufficiently large. We compare the performance of CCEMG with the
mean group estimator based on Song’s IFE, and also with Moon and Weidner’s QMLE, Bai’s IFE
estimators developed for slope homogeneous ARDL panels. We find that jackknife bias correction is
more effective in dealing with the small sample bias than the recursive mean adjustment procedure.
Also, the bias correction seems to be helpful only for the coefficients of the lagged dependent
variable. The uncorrected CCEMG estimators of the coefficients of the regressors, x;;, seem to
work fine even in the case of panels with a relatively small time dimension.

The remainder of the paper is organized as follows. Section 2 extends the multifactor residual
panel data model considered in Pesaran (2006) by introducing lagged dependent variables and
allowing the regressors to be weakly exogenous. Section 3 develops a dynamic version of the
CCEMG estimator for panel ARDL models. Section 4 discusses the jackknife and recursive de-
meaning bias correction procedures. Section 5 introduces the mean group estimator based on
Song’s individual estimates, describes the Monte Carlo experiments, and reports the small sample
results. Mathematical proofs are provided in the Appendix and additional Monte Carlo findings

are provided in a Supplement.

2 Panel ARDL Model with a Multifactor Error Structure

Suppose that the dependent variable, y;:, the regressors, x;:, and the covariates, g;;, are generated

according to the following linear covariance stationary dynamic heterogenous panel data model,

Yit = Cyi + OYii—1 + BoiXit + BriXi—1 + i, (1)
wit = Yif + et (2)
and
Xit ,
wit = = Cui + oy p—1 + iy + vy, (3)
it

fort =1,2,..,Nand t = 1,2,...,T, where ¢,; and c,; are individual fixed effects for unit 7, x;; is

k. x 1 vector of regressors specific to cross-section unit 7 at time ¢, g;; is k; X 1 vector of covariates



specific to unit ¢, k, + k; = k, f; is an m x 1 vector of unobserved common factors, ¢;; are the
idiosyncratic errors, I'; is an m x k matrix of factor loadings, «; is a k x 1 vector of unknown
coeflicients, and v;; is assumed to follow a general linear covariance stationary process distributed
independently of the idiosyncratic errors, &;;.

The process for the exogenous variables, (3), can also be written equivalently as a panel ARDL
model in w;;. But we have chosen to work with this particular specification as it allows us to distin-
guish between cases of strict and weak exogeneous regressors in terms of the feed-back coefficients,
a;. The case of strictly exogenous regressors, covered in Pesaran (2006), refers to the special case
when «; = kgl. As in the earlier literature, the above specification also allows the regressors to
be correlated with the unobserved common factors. Lags of x;; and g;; are not included in (3),
but they could be readily included. In order to keep the notations and exposition simple we also
abstract from observed common effects, additional lags of the dependent variable, and other deter-
ministic terms in (1) and (3). Such additional regressors can be readily accommodated at the cost
of further notational complexity.

In the above ARDL formulation, we specify the same lag orders for y; and x; because it is
desirable in empirical applications to start with a balanced lag order to avoid potential problems
connected with persistent regressors. It is also worth noting that a number of panel data models
investigated in the literature can be derived as special cases of (1)-(3). The analysis of Moon and
Weidner (2010a and 2010b) assumes that B, = By, B;1 = B; and ¢; = ¢. Bai (2009) assumes
Bio = Bo, Bi1 = B; and ¢; = 0. Under the restriction

Bii = —¢iBoi (4)
we have
Yit — 0ixit = cyi + &; (Yir—1 — O7Xie—1) + wit,
where 0; = —f3;1/¢;, which in turn can be written as (assuming that |¢;| < 1)
Yit = Cp; + 0;xir + ;' + <y, (5)
where ¢; = cyi/ (1—¢;), e, = (1 - ¢;L) ey is a serially correlated error term, and ff is a

new set of unobserved common factors. Estimation and inference in panel model (5) have been



studied by Pesaran (2006) who introduced the CCE approach. This approach has been shown
to be robust to an unknown number of unobserved common factors (Pesaran, 2006, and Chudik,
Pesaran, and Tosetti, 2011), possible unit roots in factors (Kapetanios, Pesaran, and Yagamata,
2011), serial correlation of unknown form in ¢}, (Pesaran, 2006), spatial or other forms of weak
cross-sectional dependence in €}, (Pesaran and Tosetti, 2011, and Chudik, Pesaran, and Tosetti,
2011). However, if the restrictions set out in (4) on 3y and B;; do not hold then the CCE
approach is no longer applicable and the standard CCE estimators could be seriously biased, even
asymptotically.® Our objective in this paper is to consider estimation and inference in the panel
ARDL model (1)-(3), where the parameter restrictions (4) do not necessarily hold, and the slope
coefficients 7; = (¢;, Bjo, ,6’21)1 are allowed to vary across units.

For future reference, partition matrix I'; = (I'y;, I'g;) into mxk, and mx k, matrices I';; and T'y;,

!/ !
vector oy = (a’ o ) into k, x 1 and k4 X 1 vectors a; and ag;, and similarly vy = (V;:m v’git)

i) gl

into k; X 1 and k4 x 1 vectors v and vgi.

3 Estimation
Let zi; = (yit, Xy, &))" and write (1)-(3) compactly as
Agizit = i + A1z 1 + Cify + ey, (6)

where ¢; = (cyi,c;i)/, Ci = (v;,Tv),

1 -8By O ; b
'BOZ 1xkg (bz 512 1xkg
Ay = 0 I 0 Ay = o 7% 0 0
0 ko X1 T haxky, |0 T kexks kaxky |
0 0 I Qg 0 0
kgx1  kgxka g U kgxke  kyxkg

and e;; = (g4, vgt)' is a serially correlated error process. Ay, is invertible (for any i) and multiply-
ing (6) by Aail, we obtain the following reduced form VAR(1) representation of z; with serially
correlated errors,

1
Zit = Czi + Aiziy 1 + Ay Cify + ey,

See Everaert and Groote (2012) for derivation of asymptotic bias of CCE pooled estimators in the case of dynamic
homogeneous panels.



-1 -1 -1
where c.; = Ay, c;, et = Ay e, and A; = Ay Ay,

We postulate the following assumptions for the estimation of the short-run coefficients.

ASSUMPTION 1 (Individual Specific Errors) The individual specific errors €; and vy are in-
dependently distributed for all i,7,t and t'. The vector of errors €; = (€11, €2t,...,Ent) s spatially
correlated according to

et = Rez, (7)

where the N x N matriz R has bounded row and column matriz norms, namely |R|,, < K
and ||R||; < K, respectively, for some constant K < oo, which does not depend on N, diagonal
elements of RR’ are bounded away from zero, Get = (Se1t, Seats -, Sent) |5 and Geit, fori=1,2,..., N
and t =1,2,..,T, are independently and identically distributed (IID) with mean 0, unit variances,
and finite fourth-order moments. For each i = 1,2,...,N, vy follows a linear stationary process

with absolute summable autocovariances (uniformly in i),

o0
Vi = Z SitSvii—e (8)
=0

where Syt 18 a k X 1 vector of IID random variables, with mean zero, variance matrix I, and finite

fourth-order moments. In particular,

> SuSh

(=0

[Var (vi)|| = < K < oo, (9)

fori=1,2,....N, where ||A|| is the spectral norm of the matriz A.

ASSUMPTION 2 (Common Effects) The m x 1 wvector of unobserved common factors, f; =
(f1t, foty -, fmt)/, 1§ covariance stationary with absolute summable autocovariances, distributed in-
dependently of the indwidual specific errors e, and vy for all i,t and t'. Fourth moments of f,

for £ =1,2,....m, are bounded.

ASSUMPTION 3 (Factor Loadings) The factor loadings ;, and T'; are independently and iden-
tically distributed across i, and of the common factors £y, for all © and t, with mean ~ and T,

respectively, and bounded second moments. In particular,

Yi =+ Nyis Ny ~ 11D <m(il,ﬂw> ,fori=1,2,..,N,

6



and

vec (T'y) = vec(T') + 0y, My ~ 11D <k 0 1,Qp> , fori=1,2,..,N,
mX

where Q2 and Qr are m x m and km x km symmetric nonnegative definite matrices, ||v| < K,

12,[] < K, P < K, and ||| < K.

ASSUMPTION 4 (Heterogenous Coefficients) (2k, + 1) x 1 dimensional vector of coefficients
i = (¢4, B, Bri) follows the random coefficient model

T, = T + Vg, vaIID( 0 ,QW>,f0ri:1,2,...,N, (10)
2kp+1x1

where ™ = (¢,B6,,@'1),, ||| < K, |92 < K, Qr is (2ky + 1) X (2ky + 1) symmetric nonnegative
definite matriz, and the random deviations vr; are independently distributed of v;, T'j, €jt, Vjt,
and f; for all i,5, and t. Furthermore, the support of ¢; lies strictly inside the unit circle, and

Ellci|| < K for alli.

ASSUMPTION 5 (Regressors and Covariates) Regressors and covariates in wi, = (X}, gl,) are
either strictly exogenous and generated according to the canonical factor model (3) with a; = k(x)l,
or weakly exogenous and generated according to (8) with o, fori =1,2,..,N, IID across i and
independently distributed of vrj,v;, T'j, €jt, Vjt, and §; for all i, j and t. In the case where the

regressors are weakly exogenous we also assume:

(i) the support of A1 (A;) lies strictly inside the unit circle, for i = 1,2,....N, where A; =

A&IAU, and A1 (A;) denotes the largest eigenvalue (in absolute value) of A;; and

(ii) the inverse of polynomial A (L) = 332 A¢L*, where A, = E (AfA;'), exists and has expo-

nentially decaying coefficients.

Let w = (w1, ws, ..., wy) be an N x 1 vector of non-stochastic (or pre-determined) weights that

satisfies the following ‘granularity’ conditions

_1
Iwl = o(N"%), (11)
w; 1
' = O(N2 uniformly in 4, 12
Tl (v73) (12)



and the normalization condition
N
> wi=1 (13)
i=1

The weights vector w depends on IV, but we suppress the subscript NV to simplify notations.
Next, we derive a large N representation for cross-sectional averages of z; following Chudik
and Pesaran (2013a). Since the support of the eigenvalues of A; is assumed to lie strictly inside

the unit circle, z;; is an invertible covariance stationary process and can be written as

o0
Zip = Z Al (czi + ACif o+ €i1-0)
=0

fori =1,2,..., N. Taking weighted cross-sectional averages of the above and making use of the fact
that under our assumptions the elements of e,;; are weakly cross-sectionally dependent, together

with the random coefficients Assumptions 3-5, we have
N oo
3 wile s = 0p (NV2).
i=1 /=0

Since (under Assumptions 3-5) A; and Ag; are independently distributed of C;, and A;, Ag; and

C, are independently distributed across ¢, we have

ivj iwiAanﬂ,lCift—f = iE (Aan;CZ) £+ 0, (N—l/z) 7
£=0

=1 ¢=0
= A(L)Cf +0, (N—1/2) ,

where C = E (C;) = (v,T)’. Thus, yielding the following large N representation
Zwt = A (L) CE, + O, <N_1/2> : (14)

where Z,¢ = Zyt — Cuw 18 k + 1 dimensional vector of de-trended cross section averages, Z,: =
! N . . . . —
(Guwts X, Brt) = D.joq WiZit is k + 1 dimensional vector of cross section averages, and €., =
N —1
Yo wi (Tp1 — Ag) ™ cz

Multiplying (14) by the inverse of A (L) now yields the following large N expression for a linear



combination of the unobserved common factors,
Cfy = A (L) Zut + O, (N*l/Q) . (15)

Consider now the special case where a; = k01’ and the regressors are strictly exogenous. In this

X
case the regressors are independently distributed of the coefficients in m; = (gbi, ﬁ{)’i, B,Li)/’ which
simplifies the derivation of the large N representation for z,,. In particular, (1 — ¢,L) is invertible

for any ¢ = 1,2, ..., N under Assumption 4, and multiplying (1) by (1 — gbiL)*l we have

o0 o0 o] oo o0
Yit = Z dicyi + Z &5 B0Xii— + Z 5B Xi—e-1 + Z OiYife—o + Z Giit—t- (16)

(=0 (=0 =0 £=0 =0
Taking weighted cross-sectional averages, under Assumptions 1-5, and assuming o; = k01, we
X
obtain
Gur = Cyw + 0 (L) YTy + a (L) (By + BIL) Rur + Op (N7/2) (17)
and
Wt = Cw + T'F, + O, (N—l/ 2) , (18)

where ¢y = SN wicyi (1= 6;) 7Y, Cow = S0 wicyi, and a (L) = Y202 agL with its elements
given by the moments of ¢;, namely ay = F (d)f), for £ =0,1,2,.... Note that under Assumption
4, which constraints the support of ¢, to lie strictly inside the unit circle, the rate of decay of the
coefficients in a (L) is exponential. This restriction on the support of ¢; also ensures the existence of
all moments of ¢;. The rate of decay of the coefficients of a (L) will not necessarily be exponential
if the support of ¢, covered 1, and depending on the properties of the distribution of ¢; in the
neighborhood of 1, a (L) need not be absolute summable, in which case ¥, could converge (in
a quadratic mean) to a long memory process as N — oo. Such possibilities are ruled out by
Assumption 4.

However, under Assumption 4 and By Lemma A.1 of Chudik and Pesaran (2013b), the inverse
of a (L) exists and has exponentially decaying coefficients. Pre-multiplying both sides of (17) by
b(L) = a~! (L), we obtain

YE = b (L) Fur = b (1) Gy — BFur — BiRu1+ 0y (N712). (19)



Stacking equations (18) and (19), we obtain (15) with A=! (L) reduced (in the strictly exogenous

case) to

b(L) —Bo-PL O

XRg

-1
= 0 I 0
A7) ko x1 ha kaxkg (20)
0 0 I
kgx1 kgxky kg

It follows from (15) that when rank (C) = m and regardless of whether the regressors are
weakly or strictly exogenous, de-trended cross section averages Z.; and their lags can be used as

proxies for the unobserved common factors, assuming that N is sufficiently large, namely we have
f; = G (L) Zus + 0, (N71/2), (21)

where

G (L) = (C'C) ' C'AT (L),

Note that the coefficients of the distributed lag function, G (L), decay at an exponential rate. In
particular, in the case of strictly exogenous regressors (where a; = k(x)l), the decay rate of the
coefficients in G (L) is given by the decay rate of the coefficients in b (L), see (20) and (23). As
established by Lemma A.1 of Chudik and Pesaran (2013b), the decay rate of the coefficients in b (L)
is exponential under Assumption 4, which confines the support of ¢; to lie strictly within the unit
circle. In the case of weakly exogenous regressors, an exponential rate of decay of the coefficients
in A=! (L) is ensured by Assumption 5-ii.

The full column rank of C ensures that C’C is invertible and this rank condition is required for
the estimation of unit-specific coefficients. In contrast, the rank condition is not always necessary

for estimation of the cross-sectional mean of the coeflicients, as we shall see below.
ASSUMPTION 6 (k+ 1) x m dimensional matriz C = (~v,T) has full column rank.

Substituting the large N representation for the unobserved common factors (21) into (1), we

obtain

Yit = Cpi + Gi¥it—1 + BoiXit + BriXit—1 + 0; (L) Zut + €1t + Oy (N_1/2> : (22)

10



where

5. (1) = 3 6ull = & (L), 23
£=0

and ¢; = cyi — 7 (1) Cou-

Consider now the following cross-sectionally augmented regressions, based on (22),

pT
Yit = i+ diie 1 + BoiXit + BliXir 1+ Y 8wt + ey, (24)
=0

where pr is the number of lags (assumed to be the same across units, for the simplicity of exposition).
The error term, ey, can be decomposed into three parts: an idiosyncratic term, e;, an error
component due to the truncation of possibly infinite polynomial distributed lag function, §; (L),

and an error component due to the approximation of unobserved common factors, namely

oo
Eyit = Eit + Z déezw’t_[ + Op (N71/2> .
{=pr+1
Note that the coefficients of the distributed lag function, d; (L) = v;G (L), decay at an exponential
rate.
~ ~ ~ !/
Let #t; = (qf)%,ﬁgz,ﬂ,h) be the least squares estimates of 7r; based on the cross-sectionally

augmented regression (24). Also consider the following data matrices

) / / =/ =/ . =/
Yipr Xipr+1 Xipr 1 Zw,pr+1 Zw,pr Zw,
. / / =/ =/ . =/
= — Yipr+1 Xiprio Xipri1 ~N 1 Zwpr+2  Zwpr+l Zyw,2 2
bl T 9 Qw - bl ( 5)
) / / =/ =/ 5
Yi,r—1 XiT XiT—1 L zZ,r 2y, T—1 Zyw, T—pr

and the projection matrix
_ A, = 4=
My =Ir—p, — Qu (Q;;Qw) qua

where Ip_,,. is a (T — pr) x (I'— pr) dimensional identity matrix, and A™ denotes the Moore-
Penrose generalized inverse of A. Matrices E;, Q,,, and 1\_/Iq depend also on ppr, N and T', but we
omit these subscripts to simplify notations. We summarize and introduce additional notations that

will be useful (for proofs) in Appendix A.1.

11



7t; can now be written as

quiv (26)

where yi = (Yipp+1: Yipr+2 ...,yi,T)'. The mean group estimator of w = F (m;) = (qﬁ,ﬂg,ﬁ’l)' is

given by
1 N
%MG:JVEQﬁL (27)
1=

In addition to Assumptions 1-6 above, we shall also require the following further assumption.

ASSUMPTION 7 (a) Denote the (t — pr)-th row of matriz Z; = MLE; by E;t = (Eﬂt,gigt, ....,Ez-,%ﬁ_l’t) ,
where My, is defined in the Appendiz by (A.4). Individual elements of Eit have uniformly
bounded fourth moments, namely there exists a positive constant K such that E (E?st) <K

foranyt=pr+1L,pr+2,..7T,i=1,2,.... N and s = 1,2, ..., 2k, + 1.

(b) There exists Ng and Ty such that for all N > Ny, T > Ty, (2k; + 1) x (2k, + 1) matrices
wol = (E'il\_/IqE.Z-/T)*1 exist for all i.

=

(¢) (2kz +1) x (2k; + 1) dimensional matriz ;¢ defined in (A.14) in the Appendix is invertible

for all i and HEEH < K < o0 for all .

This assumption plays a similar role as Assumption 4.6 in Chudik, Pesaran, and Tosetti (2011)
and ensures that 7;, /¢ and their asymptotic distributions are well defined.

First, we establish sufficient conditions for the consistency of unit-specific estimates.

Theorem 1 (Counsistency of 7;) Suppose yit, fori = 1,2,...N and t = 1,2,...,T is given by
the panel ARDL model (1)-(3), and Assumptions 1-7 hold. Then, as (N,T,pr) 4, 00, such that
P )T — 3, 0 < 3 < 00, we have

Ri—m> 0 (28)
2ks+1x1

~ Y -~/ / . .
where 7; = (qﬁi,ﬂm,ﬁli) is given by (26).
No restrictions on the relative expansion rates of N and T to infinity are required for the
consistency of 7; in the theorem above, but the number of lags needs to be restricted so that there
are sufficient degrees of freedom for consistent estimation (i.e. the number of lags is not too large,

in particular it is required that p2 /7" — 0) and the bias due to the truncation of (possibly) infinite

12



lag polynomials is sufficiently small (i.e. the number of lags is not too small, in our case /T pPT — 0
for some positive constant p < 1). Letting pg} JT — 5,0 < 2 < 00, as T — o0, ensures that these
conditions are met.” The rank condition in Assumption 6 is also necessary for the consistency of
7;. This is because the unobserved factors are allowed to be serially correlated as well as being

correlated with the regressors.

3.1 Consistency and asymptotic distribution of 7 g

Consistency of the unit-specific estimates 7; is not always necessary for the consistency of the mean

group estimator of 7w = E(mr;), which is established next.

Theorem 2 (Consistency of 7y;g) Suppose yir, fori=1,2,...N andt =1,2,...,T is given by
the panel data model (1)-(3), and Assumptions 1-5 and 7 hold, and (N,T,pr) EN 00, such that

p3)T — 5, 0 < 3 < 0o. Then,

(i) if Assumption 6 also holds,

~ p
— 0 29
MG =& = 2y t1x1’ (29)

-~/

~ - A/ / . .
where TG = <¢MG,,60MG751MG> is given by (27);

(i) if Assumption 6 does not hold but f; is serially uncorrelated, &y — m %> o 01 v
21X

Theorem 2 establishes that 7 /¢ is consistent (as N and T tend jointly to infinity at any rate),
regardless of the rank condition when factors are serially uncorrelated, although they can still be
correlated with the regressors. When the factors are serially correlated, then the rank condition
is required for the consistency of 7. As we have seen, full column rank of C is sufficient for
approximating the unobserved common factors arbitrarily well by cross section averages and their
lags. In this case, the serial correlation of factors and correlation of factors and regressors do not
pose any problems. When the rank condition does not hold, but factors are serially uncorrelated,
then 7r; could be inconsistent due to the correlation of x;; and f;, but the asymptotic bias of 7; — 7,
is cross-sectionally weakly dependent with zero mean and consequently the mean group estimator
is consistent.

The following theorem establishes the asymptotic distribution of 7 ys¢.

"See also a related discussion in Berk (1974), Chudik and Pesaran (2013b) and Said and Dickey (1984) on the
truncation of infinite polynomials in least squares regressions.
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Theorem 3 (Asymptotic distribution of 7/¢) Suppose yi, fori =1,2,...,N andt =1,2,...,T
are generated by the panel ARDL model (1)-(3), Assumptions 1-5 and 7 hold, and (N, T, pr) BRI

such that N/T — s and p3./T — 32, 0 < 301, 3¢9 < 00. Then,

(1) if Assumption 6 also holds, we have

x/ﬁ(?rMG—fr)iN< 0 QW>, (30)

ey t1x1’

(13) if Assumption 6 does not hold, but f; is serially uncorrelated, we have
JN(%MG—n)iN< 0 ,z:MG>, (31)
2k, +1x1

~ o~ ~ /
where Ty g = (¢;\4G,56Mg,BI1MG) is given by (27) and Xy is given by equation (A.84)

in the Appendiz.

In both cases, the asymptotic variance of Ty can be consistently estimated nonparametrically

by
1 N
~ 7 2 (i~ Fma) (i~ Fua) (32)

=1

YymG =

The convergence rate of Tyq is VN due to the heterogeneity of the coefficients. Theorem 3
shows that the asymptotic distribution of 7,/ differs depending on the rank of the matrix C in
Assumption 6. If C has full column rank, then the unit specific estimates 7; are consistent, X ;¢
reduces to €2, and the asymptotic variance of the mean group estimator is given by the variance
of 7r; alone. If, on the other hand, C does not have the full column rank and factors are serially
uncorrelated then the unit-specific estimates are inconsistent (since f; is correlated with x;;), but
T uc is consistent and asymptotically normal with variance that depends not only on €2, but also
on other parameters including the variance of factor loadings. Pesaran (2006) did not require any
restrictions on the relative rate of convergence of N and T for the asymptotic distribution of the
common correlated mean group estimator. This is no longer the case in our model due to O (T*I)
time series bias of 7; and 7 /¢ that arises from the presence of lagged values of the dependent
variable. This bias dates back to at least to Hurwicz (1950) and it has been well documented in

the literature. Theorem 3 requires N/T — 3¢ for the derivation of the asymptotic distribution of
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7y due to the time series bias, and it is therefore unsuitable for panels with 7" small relative to

N.

4 Bias-corrected CCEMG estimators

In this section we review the different procedures proposed in the literature for correcting the small
sample time series bias of estimators in dynamic panels and consider the possibility of developing
bias-corrected versions of CCEMG estimators for dynamic panels.

Existing literature focuses predominantly on homogeneous panels, where several different ways
to correct for O (T‘l) time series bias have been proposed. This literature can be divided into the
following broad categories: (i) analytical corrections based on an asymptotic bias formula (Bruno,
2005, Bun, 2003, Bun and Carree, 2005 and 2006, Bun and Kiviet, 2003, Hahn and Kuersteiner,
2002 and 2011, Hahn and Moon, 2006, Hahn and Newey, 2004, Kiviet, 1995 and 1999, and Newey
and Smith, 2004); (i7) bootstrap and simulation based bias corrections (Everaert and Ponzi, 2007,
Phillips and Sul, 2003 and 2007), and (iii) other methods, including jackknife bias corrections
(Hahn and Newey, 2004, and Dhaene and Jochmans, 2012) and the recursive mean adjustment
correction procedures (So and Shin, 1999).

In contrast, bias correction for dynamic panels with heterogenous coefficients have been consid-
ered only in few studies. Hsiao, Pesaran, and Tahmiscioglu (1999) investigate bias-corrected mean
group estimation, where Kiviet and Phillips (1993) bias correction is applied to the individual esti-
mates of short-run coefficients. Hsiao, Pesaran, and Tahmiscioglu (1999) propose also a Hierarchical
Bayesian estimation of short-run coefficients, which they find to have good small sample proper-
ties in their Monte Carlo study.® Pesaran and Zhao (1999) investigate bias correction methods in
estimating long-run coefficients and consider, in particular, two analytical corrections based on an
approximation of the asymptotic bias of long-run coefficients, a bootstrap bias-corrected estimator,
and a "naive" bias-corrected panel estimator computed from bias-corrected short-run coefficients

(using a result derived by Kiviet and Phillips, 1993).

8Zhang and Small (2006) further develops the hierarchical Bayesian approach of Hsiao, Pesaran, and Tahmiscioglu
(1999) by imposing a stationarity constraint on each of the cross section units and by considering different possibilities
for starting values. Bayesian approach has also been developed by Canova and Marcet (1999) to study income
convergence in a dynamic heterogenous panel of countries, and by Canova and Ciccarelli (2004 and 2009) to forecast
variables and turning points in a panel VAR. Forecasting with Bayesian shrinkage estimators have also been considered
by Garcia-Ferrer, Highfield, Palm, and Zellner (1987), Zellner and Hong (1989) and Zellner, Hong, and ki Min (1991).
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4.1 Bias corrected versions of 7

All the bias correction procedures reviewed above are developed for panel data models without
unobserved common factors, and are not directly applicable to ;. This applies to bootstrapped
based corrections, as well as the analytical corrections based on asymptotic bias formulae such as
the one derived by Kiviet and Phillips (1993). The development of analytical or bootstrapped bias
correction procedures for dynamic panel data models with a multifactor error structure is beyond
the scope of the present paper and deserve separate investigations of their own. Instead here we
consider the application of jackknife and recursive mean adjustment bias correction procedures to
7 v that do not require any knowledge of the error factor structure and are particularly simple

to implement.

4.1.1 Jackknife bias correction

Jackknife bias correction is popular due to its simplicity and wide applicability. Jackknife bias
correction can be applied to the panel mean group estimator, or at the level of unit-specific esti-
mates. Since the mean group estimator is a linear function of the unit-specific estimators, applying
the correction to Ty;¢ or to the unit-specific estimates, 7;, yields numerically identical results.
We consider the "half-panel jackknife" method discussed by Dhaene and Jochmans (2012), which

corrects for O (T_l) bias. Jackknife bias-corrected CCEMG estimators are constructed as:
TG = 2T MG — 3 (7?7\4(; + 7?(1)\40) ;

where 79;o denotes the CCEMG estimator computed from the first half of the available time
period, namely over the period ¢ = 1,2,...,[T/2], where [T'/2] denotes the integer part of T'/2,
and 74, is the CCEMG estimators computed using the observations over the period ¢ = [T/2] +
1,[T/2] +2,...,T.

4.1.2 Recursive mean adjustment

The second bias-correction is based on the recursive mean adjustment method proposed by So and

Shin (1999), who advocate demeaning variables using the partial mean based on observations up
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to the time period ¢ — 1. In particular, we let

=
Yit =Y = 77 Z}yis,
s=

and
t—1
~ 1
Wit = Wit — i—1 E Wis)
s=1

fori =1,2,..,N and t = 2,3,...,T, where w; = (x/;,g},)’. We then compute bias-adjusted CCE
mean group estimator based on the recursive demeaned variables g;; and w;; (with 7'— 1 available

time periods, t = 2,3,...,T).

5 Monte Carlo Experiments

Our main objective is to investigate the small sample properties of the CCEMG estimator and its
bias corrected versions in panel ARDL models under different assumptions concerning the parameter
values and the degree of cross-sectional dependence. We also examine the robustness of the quasi
maximum likelihood estimator (QMLE) developed by Moon and Weidner (2010a and 2010b) and
the interactive-effects estimator (IFE) proposed by Bai (2009) to coefficients heterogeneity, and
include an alternative MG estimator based on Song’s extension of Bai’s IFE approach (denoted as
i) and investigate its performance as well.

We start with the description of the data generating process in subsection 5.1, followed by a
summary account of the different estimators being considered in subsection 5.2, before providing a

summary of our main findings in the final subsection.

5.1 Data Generating Process

We set k, = kg =1 and write (1)-(3) as

Yit = Cyi + OYii—1 + Bosie + B1i®in—1 + wit, uir = Yife + €, (33)
and
/
Tit o s ' Vit
7 _ i n zi Vi1 + xi f, i (34)
git Cygi Qgi 7;i Vyit
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. . . /
The unobserved common factors in f; and the unit-specific components v = (v, Ugit> are gener-

ated as independent stationary AR(1) processes:

fie = ppefi—re+ s, Spre~IIDN (0,1 — P?fe) ; (35)

Vgit = PaiVait—1 + Sait, Seit ~ IIDN (0, Ugm) ) (36)
_ 2

Vgit = PyiVgit—1 + Sgit, Sgit ~ IIDN (0,0%,;) (37)

fori =1,2,..., N, £=1,2,..,m,and for t = —99,...,0,1,2, ..., T with the starting values fy _190 = 0,
and vgi,—100 = Vgi,—100 = 0. The first 100 time observations (¢ = —99,—48, ...,0) are discarded. We
generate p,; and p,;, fori = 1,2,....N as [1 DU [0.0.95], and consider two values for p,, representing

the case of serially uncorrelated factors, p;, = 0, for £ = 1,2,...,m, and the case of the serially

2

VXt

2

correlated factors py, = 0.6, for £ = 1,2,...,m. We set o vgi = 012)2- and allow o,; to be

correlated with 3y; and set o, = B;04/1 — [E (Pm')]2-

As before, we let z;; = (yit, Tit, git)', and write the data generating process for z; more compactly

= 0

as (see (6)),

Zit = Coi + Aiziz1 + Ay Cif + Aptein, (38)

!/
where c.; = (cyi + Bo;iCais Cai» Cgi)'

¢; + Boiowi B O 1 Bg; O
A= Ot 0 0 |.AM=]0 1 0/],Ci=0iveia)
ag; 0 0 0 0 1

and e;; = (g + Bowm,vm,vgn)/ is a serially correlated error vector. We generate z; for ¢ =
1,2,..,N, and t = —99,...,0,1,2,...,T based on (38) with the starting values z; 190 = 0, and
the first 100 time observations (¢ = —99,—48,...,0) are discarded as burn-in replications. The
fixed effects are generated as c;; ~ IIDN (1,1), cgi = Cyi + Sepis and cg; = ¢yi + Seyi, Where
SeyisSegi ~ ITIDN (0,1), thus allowing for dependence between (w4, gir)" and Cyi-

For each i the process {z; } is stationary if f; and e;; are stationary and the eigenvalues of A;
lie inside the unit circle. More specifically the parameter choices for |A1 (A;)| < 1 have to be such

that

1
5 161+ 0w £ /(64 + awifio)? + 48y,0m1| < 1
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Suppose now that we only consider positive values of ¢;, oz and fg;, such that ¢; + az;8y; < 2.

Then it is easily seen that sufficient stationary conditions are

(Boi + Bri) i < 1=y,

(B1i — Boi)awi < 1+ ;.

Accordingly, we set 81; = —0.5 for all 4, and generate Sy; as IIDU(0.5,1). When ay; > 0, we need
to generate ay; such that 0.5a,; < 1 — ¢;. We consider two possibilities for ¢,: Low values where
¢; are generated as IIDU(0,0.8) and «ag; as 11DU(0,0.35). High values where use the draws,
¢; ~ 1IDU(0.5,0.9) and ag; ~ I1DU(0,0.15). These choices ensure that the support of A\ (A;)
lies strictly inside the unit circle, as required by Assumption 5. Values of ay do not affect the
eigenvalues of A; and are generated as ag ~ I1DU(0,1).

The above DGP is more general than the other DGPs used in other MC experiments in the
literature and allows for weakly exogenous regressors. The factors and regressors are allowed to be
correlated and persistent, and correlated fixed effects are included.

All factor loadings are generated independently as

Yie = Yo+ Nines Mine ~ IIDN (0,02))
Veit = Yo+ Niyats Miyae ™ IIDN (07 U?yxﬂ) ’

Vgié = 'ng + ni,'ygé’ ni,'ygé ~ IIDN (O’ Ug/gf)

for £ = 1,2,..,m, and ¢ = 1,2,...,N. Also, without loss of generality, the factor loadings are
calibrated so that Var(vif)) = Var (v.,f) = Var <’y’gift) = 1. We also set Uif = U%M = U,%ge =
0.22, vy = /byt Yoo = Vlbze and gy = V(20 —1) by, for £ =1,2,...,m, where by, = 1/m — a?yé,
by =2/[m(m+1)] —2/(m+1)02, and by = 1/m? — age/m, for £ =1,2,...,m. This ensures that
the contribution of the unobserved factors to the variance of y;; does not rise with m. We consider
m = 1,2 or 3 unobserved common factors.

Finally, the idiosyncratic errors, €;, are generated to be heteroskedastic and weakly cross-
sectionally dependent. Specifically, we adopt the following spatial autoregressive model (SAR) to
generate € = (€14, €9, -..,ENt)":

€1 = a:Sc€1 + €eq, (39)

19



where the elements of e.; are drawn as IIDN (0, %0’?), with O'ZZ obtained as independent draws

from x2(2) distribution,

032 0 0 0
1
0 1 0 0
01 0
S. = )
0 0 1 0
1
1 0 3
00 - 0 3 O

and the spatial autoregressive parameter is set to a. = 0.4. Note that {e;} is cross-sectionally
weakly dependent for |ac| < 0.5.

In addition to these experiments, we also consider pure panel autoregressive experiments where
we set By; = B1; = 0, for all +. Table 1 summarizes the various parameter configurations of all the
different experiments. In total, we conducted 24 experiments covering the various cases: with or
without regressors in the equation for the dependent variable, low or high values of ¢ = F (¢,),
m = 1,2, or 3 common factors, and persistent or serially uncorrelated common factors. We consider
the following combinations of sample sizes: N, T € {40, 50,100, 150,200}, and set the number of

replications to R = 2000, in the case of all experiments.

5.2 Estimation techniques

The focus of the MC results will be on the estimates of the average parameter values ¢ = E (¢;) and
Bo = E (By;), in the case of experiments with regressors, x;;. But before presenting the outcomes

we briefly describe the computation of the alternative estimators being considered.’

5.2.1 Dynamic CCE mean group estimator

We base the CCE mean group estimator on the following cross-sectionally augmented unit-specific

regressions,
pr

Yit = Ciy + OYit—1 + BoiTit + BriTit—1 + Z 8igZt—0 + eyit, (40)
=0

9We are grateful to Jushan Bai, Hyungsik Roger Moon, and Martin Weidner for providing us with their Matlab
codes.
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fori =1,2,...,N, where z, = N~! Ef\il zit = (U, Tt,G:). We set pr equal to the integer part of
T3, denoted as pp = [Tl/?’]. This gives the values of pr = 3, 3,4, 5,5 for T' = 40, 50, 100, 150, 200,
respectively. The CCE mean group estimator of ¢ and 3 is then obtained by arithmetic averages
of the least squares estimates of ¢; and (,; based on (40).

We also computed bias-corrected versions of the CCEMG estimator using the half-panel jack-

knife and the recursive mean adjusted estimators as described in Section 4.1.

5.2.2 QMLE estimator by Moon and Weidner

We deal with fixed effects by de-meaning the variables before implementing the QMLE estimation

procedure. Denote the demeaned variables as

T T
Git =yt = T iy and dip = w = T~ Y i, (41)
t=1 t=1

for s = 1,2 and ¢ = 1,2,..., N. We compute the bias-corrected QMLE estimator defined in
Corollary 3.7 in Moon and Weidner (2010a) using y;: as the dependent variable and the vector
Zit = (yi,t,l,abit,abi,t,l)' as the vector of explanatory variables. Two options for the number of
unobserved factors are considered: the true number of factors and the maximum number, 3, of

unobserved factors.

5.2.3 Interactive-effects estimator by Bai

We deal with the fixed effects in the same way as before. In particular, we use the demeaned
variables ¥, and ;s for s = 1,2, to compute the interactive-effects estimator as the solution to

the following set of non-linear equations:
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arranged in decreasing order, ¥; = (¥i2, ¥i3, .-, ir)’ and

[1-
I

YiT—1 Tir Tir—1

The system of equations (42)-(43) is solved by an iterative method.

Bai (2009) does not allow for a lagged dependent variable in the derivation of the asymptotic
results for the interactive-effects estimator, but considers this possibility in Monte Carlo experiments
and concludes that parameters are well estimated also for the DGP with a lagged dependent
variable. As in the case of the QMLE estimator, we consider Bai’s estimates based on the true

number of factors, and on the maximum number of factors, namely 3.

5.2.4 Mean Group estimator based on Song’s extension of Bai’s IFE approach

Song (2013) extends Bai’s IFE approach by allowing for coefficient heterogeneity and lags of the
dependent variable. Song focuses on the estimates of individual coefficients obtained from the
solution to the following system of nonlinear equations, which as he shows minimizes the sum of

squared errors,

Similarly to Bai’s IFE procedure, we use demeaned observations to deal with the presence of
fixed effects and the system of equations (44)-(45) is solved numerically by an iterative method.
Song (2013) establishes v/T consistency rates of individual estimates #¢ under asymptotics N, T EX
oo such that T/N? — 0.

Given our random coefficient assumption on 7;, we adopt the following mean group estimator

based on Song’s individual estimates,
N
A8 _ 1 A8
™G T N s
=1
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and investigate the performance of 7, with its variance estimated nonparemetrically by

Note that since VT (75 — m;) = O, (1) (uniformly in i) as N, T 7, 56 such that T/N%? — 0 (see

Song, 2013, Theorem 2), it readily follows that (also see Assumption 4)
N
1 1
7o — T =— E Ui+ O, ()
NI vT

However, sufficient conditions for VN (7,5 — ) 4N (0,9;) as N,T % oo remains to be inves-

tigated and this is outside the scope of the present paper.

6 Monte Carlo findings

In this section we report some of the main findings, and direct the reader to an online Supplement
where the full set of results can be accessed.

Table 2 summarizes the results for the bias (x100) and root mean square error (RMSE, x100) in
the case of the experiment with regressors, ¢ = F (¢;) = 0.4, and one serially correlated unobserved
common factor (Experiment 14 in Table 1). The first panel of this table gives the results for the
fixed effects estimator (FE) which provides a benchmark against three sources of estimation bias:
the time series bias of order 77!, the bias from ignoring a serially correlated factor, and the bias
due to coefficient (slope) heterogeneity. The latter two biases are not diminishing in 7" and we see
that their combined effect remains substantial even for 7' = 200.

Next consider the QMLE estimator due to Moon and Weidner, which allows for unobserved
factors, but fails to account for coefficient heterogeneity. As can be seen, this estimator still suffers
from a substantial degree of heterogeneity bias which does not diminish in 7. This is in line with
the theoretical results derived in Pesaran and Smith (1995), where it is shown that in the presence
of slope heterogeneity pooled least squares estimators are inconsistent in the case of panel data
models with lagged dependent variables. This would have been the case even if the unobserved
factors could have been estimated without any sampling errors. Initially, for 7' = 40, negative time

series bias helps the performance of QMLE in our design, but as 1" increases, the time series bias
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diminishes and the positive coefficient heterogeneity bias dominates the outcomes. The bias for
T = 200 ranges between 0.07 to 0.10 which amounts to 20 — 25% of the true value. Inclusion of 3
as opposed to 1 unobserved common factor improves the performance but does not mitigated fully
the consequences of coefficient heterogeneity. Results for Bai’s IFE approach are similar to those
of QMLE and are therefore reported only in the online Supplement to save space.

In contrast the CCEMG estimator deals with the presence of persistent factors and coefficient
heterogeneity, but fails to adequately take account of the time series bias. As can be seen from the
results, the uncorrected CCEMG estimator suffers from the time series bias when T is small, with
the bias diminishing as 7" in increased. The sign of the bias is negative, which is in line with the
existing literature. Thee bias of the CCEMG estimator is around —0.12 for 7" = 40, and declines
to around —0.02 when T = 200.

Both bias correction methods considered are effective in reducing the time series bias of the
CCEMG estimator, but the jackknife bias correction method turns out to be more successful
overall. It is also interesting that the jackknife correction tends to slightly over-correct whereas
the RMA procedure tends to under-correct. Both bias-correction methods also reduced the overall
RMSE for all values of N and T considered.

The mean group estimator based on Song’s individual estimates performs slightly worse than
the jackknife bias-corrected CCEMG, but overall its performance (in terms of bias and RMSE)
seems to be satisfactory. The knowledge of the true number of factors, however, plays a very
important role in improving the performance of this estimator.

Table 3 reports findings for estimation of 3, in the same experiment. As before, the FE and
QMLE estimators continue to be biased even when T is large. The selection of the number factors
seems to be quite important for the bias of QMLE estimator (and also Bai’s IFE estimator reported
in the Supplement). The bias of CCEMG estimators is, in contrast, very small, between 0.0 to 0.02
for all values of N and T. Bias correction does not seem to matter for the CCEMG estimation of
By The small sample time series O (T _1) bias for the estimation of 3, is much smaller as compared
to the bias of the autoregressive coefficient. Bias correction seems therefore not so important for
the estimation of 3, and the uncorrected version of CCEMG estimator performs better in terms
of RMSE compared to its bias corrected versions. ;s also performs well although its RMSE is,

in the majority of cases, slightly worse than RMSE of the uncorrected CCEMG estimator.
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An important question is how robust are the various estimators to the number of unobserved
factors. The MC results with more than one factor are summarized in Tables 4-7, and show that
the CCEMG estimator continues to work well regardless of the number of factors and whether the
factors are serially correlated. For m = 2 or 3, the performance of the CCEMG estimator and
its bias-corrected versions is qualitatively similar to the case of m = 1 discussed above. Only a
slight deterioration in bias and RMSE is observed when m is increased to 3, most likely due to the
increased complexity encountered in approximating the space spanned by the unobserved common
factors.

To check the validity of the asymptotic distribution of the CCEMG and other estimators, we
now consider the size and power performance of the different estimators under consideration. We
compute the size (x100) at 5% nominal level and the power (x100) for the estimation of ¢ and j,,
with the alternatives Hy : ¢ = 0.5 and Hy : ¢ = 0.8, associated with the null values of ¢ = 0.4 and
0.7, respectively, and the alternative of H; : 8y = 0.85, associated with the null value of 3, = 0.75.
The results for size and power in the case of the Experiments 14, 16 and 18 are summarized in
Tables 8-13.

As can be seen the tests based on FE and QMLE estimators and Bai’s IFE (reported in the
Supplement) are grossly oversized irrespective of whether the parameter of interest is ¢ or f,. In
contrast the CCEMG estimator and the MG estimator based on Song’s individual estimates have
the correct size if one is interested in making inference about ,, but both estimators tend to be
over-sized if the aim is to make inference about ¢. These results are in line with our theoretical
findings and largely reflect the time series bias of order O (T *1) which is present in the MG type
estimators of ¢. The bias-corrected versions of the CCEMG estimator perform much better, with
the jackknife bias-correction method generally outperforming the RMA procedure. The condition
N/T — 31, 0 < 311 < 00, in Theorem 3 plays an important role in ensuring that the tests based on
the CCEMG estimator of ¢ have the correct size. In particular, the size worsens with an increase
in the ratio N/T, especially when T' = 40. Relatively good size (7%-9%) is achieved only when
T > 100.

As already noted, the size of the tests based on the CCEMG estimator of 3, (Tables 9, 11
and 12) is strikingly well behaved in all experiments and is very close to 5 percent for all values

of N and T, which is in line with low biases reported for this estimator. Similar results also hold

25



for 73, although there are some incidences of size distortions for this MG estimator when 7' is
relatively small (40 — 50).

Given the importance of the time series bias for the estimation of and inference on ¢, it is also
reasonable to check the robustness of our findings to higher values of ¢. The estimation bias is
likely to increase as ¢ is increased towards unity. The results for the experiments with ¢ set to 0.7
are reported in the online Supplement, and not surprisingly are generally worse than the results
reported in the tables below for ¢ = 0.4. Although, once again, the estimates of 3, tend not be
much affected by the choice of ¢.

The results of the experiments with purely autoregressive panel data models (reported in the
Supplement) are very similar to the ones discussed above, although the small sample performance
of CCEMG estimator of ¢ is slightly better as compared to the experiments with regressors.

Overall, our findings suggest that when 3, is the parameter of interest, the uncorrected CCEMG
estimator seems to be preferred (in terms of bias, RMSE, size, and power), whereas jackknife
corrected CCEMG estimator seems to be preferred for estimation of ¢, but the time dimension T’
needs to be relatively large in order to obtain a correct size for the tests of ¢ based on the CCEMG
type estimators of ¢, although some marginal improvements can be achieved if the jackknife bias-

corrected version of CCEMG is used.

7 Conclusion

This paper extends the Common Correlated Effects (CCE) approach to estimation and inference
in panel data models with a multi-factor error structure, originally proposed in Pesaran (2006),
by allowing for the inclusion of lagged values of the dependent variable and weakly exogenous
regressors in the panel data model. We show that the CCE mean group estimator continues
to be valid asymptotically but the following two conditions must be satisfied to deal with the
presence of lagged dependent variables amongst the regressors: a sufficient number of lags of cross-
sectional averages must be included in individual equations, and the number of cross-sectional
averages must be at least as large as the number of unobserved common factors. CCE mean
group estimator and its jackknife and recursive mean adjustment bias corrected versions are easily
implemented empirically. Results from an extensive set of Monte Carlo experiments show that the

homogeneous slope estimators proposed in the literature can be seriously biased in the presence of
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slope heterogeneity. In contrast the uncorrected CCEMG estimator proposed in the paper performs
well (in terms of bias, RMSE, size and power) if the parameter of interest is the average slope of
the regressors (8y), even if N and T are relatively small. But the situation is very different if the
parameter of interest is the mean coefficient of the lagged dependent variable (¢). In the case of
¢ the uncorrected CCEMG estimator suffers form the time series bias and tests based on it tend
to be over-sized, unless T is sufficiently large relative to N. The jackknife bias-corrected CCEMG
estimator, also proposed in the paper, does help in mitigating the time series bias, but it cannot
fully deal with the size distortion unless T is sufficiently large. Improving on the small sample
properties of the CCEMG estimators of ¢ in the heterogeneous panel data models still remains a

challenge to be taken on in the future.
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Table 1: Parameters of the Monte Carlo Design

Experiments without regressors Experiments with regressors
(ﬂoi =pBy = 0) (/801' ~ 1IDU [0.5,1], B = —0.5)
Exp. ¢=E(p) m Py Exp. ¢=E(¢) m Pr
1 0.4 1 0 13 0.4 1 0
2 0.4 1 0.6 14 0.4 1 0.6
3 0.4 2 0 15 0.4 2 0
4 0.4 2 0.6 16 0.4 2 0.6
5 0.4 3 0 17 0.4 3 0
6 0.4 3 0.6 18 0.4 3 0.6
7 0.7 1 0 19 0.7 1 0
8 0.7 1 0.6 20 0.7 1 0.6
9 0.7 2 0 21 0.7 2 0
10 0.7 2 0.6 22 0.7 2 0.6
11 0.7 3 0 23 0.7 3 0
12 0.7 3 0.6 24 0.7 3 0.6

Notes: The dependent variable, regressors and covariates are generated according to (33)-(34) with ¢, ~ IIDU [0, 0.8]
(low value of ¢ = E(¢;) = 0.4) or with ¢, ~ IIDU [0.5,0.9] (high value of ¢ = E(¢;,) = 0.7), with correlated
fixed effects, and with cross-sectionally weakly dependent heteroskedastic idiosyncratic innovations generated from a
SAR(1) model (39) with a. = 0.4. All experiments allow for feedback effects with a; ~ ITDU [0, 0.35] for high value
of ¢, agi ~ IIDU [0,0.15] for low value of ¢, and ag; ~ ITDU [0, 1] for both values of ¢.
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Table 2. Estimation of ¢ in experiments with regressors, ¢ = F (¢;) = 0.4, and m =1

correlated common factor. (Experiment 14)

Bias (x100) RMSE (x100)
(N,T) 40 50 100 150 200 40 50 100 150 200
Fixed Effects estimates

40 | 13.12 14.74 1783 18.80 19.61 | 1548 16.72 19.12 19.83 20.55

50 | 13.08 14.79 18.07 19.25 19.60 | 15.13 16.50 19.14 20.12 20.41
100 | 13.42 15.11 18.29 19.53 20.12 | 15.08 16.43 19.00 20.12 20.64
150 | 13.95 15.05 18.47 19.67 20.23 | 1547 16.20 19.09 20.09 20.61
200 | 13.47 1527 18.64 19.71 20.23 | 14.89 16.38 19.21 20.11 20.57
Dynamic CCEMG without bias correction

40 | -10.93 -8.25 -3.31 -198 -1.18 | 11.86 9.35 5.12 437  3.93

50 | -11.12 -834 -3.61 -2.02 -1.30 | 11.88 9.23 5.02 4.05 3.74
100 | -11.73 -9.04 -3.99 -241 -1.59 | 12.12 9.44 4.69 3.41 2.88
150 | -12.06 -9.25 -4.22 -2.60 -1.76 | 12.33 9.54 4.68 3.25  2.62
200 | -12.13 -9.37 -432 -2.68 -1.94| 1235 9.60 4.67 3.17  2.56
Dynamic CCEMG with RMA bias correction

40 | -8.58 -5.82 -220 -0.84 -0.50 | 10.23 7.63 4.66 398 3.91

50 | -855 -597 -2.14 -1.18 -0.57 | 9.92 747 424 377 3.44
100 | -9.08 -6.17 -2.36 -1.25 -0.80| 981 692 354 273  2.59
150 | -9.29 -6.55 -2.40 -148 -089 | 980 7.06 3.24 249 222
200 | -944 -6.75 -2.61 -1.47 -1.01| 988 7.13 324 228 2.03
Dynamic CCEMG with jackknife bias correction

40 3.82 264 174 121 085 996 7.18 491 441  4.09

50 4.02 266 159 119 077 ] 926 6.62 438 3.96 3.79
100 391 235 140 097 066 | 7.64 496 323 283 2.62
150 3.73 248 130 090 059 | 693 464 272 232 215
200 4.04 2.52 1.27 0.88 0.47 6.78 4.41 2.45 2.05 1.83
MG based on Song’s individual estimates with 3 factors

40 -9.15 -6.77 -2.74 -1.38 -0.90 | 10.91 8.58 5.11 4.12 4.03

50 | -948 -7.03 -2.76 -1.50 -0.95|10.81 838 452 384 3.54
100 | -10.20 -7.32 -2.85 -1.72 -1.21 | 1085 798 3.85 3.00 2.75
150 | -10.53 -7.56 -2.98 -1.79 -1.27 | 1099 8.02 3.69 2.74 2.33
200 | -10.85 -7.78 -3.05 -1.85 -1.36 | 11.21 813 3.58 2,55 221
MG based on Song with true number of factors (m = 1)

40 | -5.34 -395 -146 -040 -0.01 | 7.57 6.31 455 3.98  3.96

50 | -6.03 -458 -1.76 -0.79 -0.28 | 7.61 6.33 4.06 3.60 3.43
100 | -7.09 -5.47 -236 -140 -099 | 776 6.17 349 283  2.65
150 | -7.27 -5.70 -2.56 -1.59 -1.11| 771 6.17 333 260 224
200 | -743 -5.87 -2.67 -1.67 -124| 776 622 323 241 2.13

Moon and Weidner’s QMLE with 3 factors
40 | 267 094 573 730 773| 893 799 868 955 9.82
50 | -334 037 582 723 786 | 846 7.04 820 9.18 9.62
100 | -466 -0.57 565 728 799 | 7.58 521 7.06 834 8.96
150 | -5.74 -1.14 538 715 804 | 771 461 644 787 8.69
200 | -6.05 -1.70 535 705 781 | 765 431 6.18 7.64 8.32
Moon and Weidner’s QMLE with true number of factors (m = 1)
40 1.87 3.62 687 808 848 | 830 856 9.79 10.37 10.74
50 1.83 38 720 823 876 | 7.58 808 9.60 10.38 10.77
100 1.99 382 745 867 918 | 592 645 879 9.79 10.21
150 224 400 747 866 931 | 512 583 846 9.42 10.02
200 236 410 7.72 883 932 | 500 568 846 9.44 987

Notes: See notes to Table 1. CCEMG is based on (40) which features cross section averages of z;; = (yit,wit,git),.
QMLE estimator and MG estimator based on Song’s individual estimates are computed from demeaned variables ¥;:
and &;; defined in (41).
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Table 3. Estimation of (3, in experiments with regressors, ¢ = FE (¢;) = 0.4, and m =1

correlated common factor. (Experiment 14)

Bias (x100) RMSE (x100)
(N,T) 40 50 100 150 200 40 50 100 150 200
Fixed Effects estimates
40 | 51.52 51.31 51.66 51.37 5149 | 51.96 51.68 51.88 51.54 51.64
50 | 50.96 51.08 51.27 51.25 51.33 | 51.37 51.42 51.47 51.40 51.46
100 | 51.07 51.13 51.36 51.13 51.35 | 51.40 51.39 5H1.52 51.24 51.43
150 | 51.22 51.11 51.25 51.22 51.32 | 51.54 51.36 51.38 51.32 51.39
200 | 50.99 51.28 51.20 51.09 51.20 | 51.27 51.51 51.32 51.17 51.27
Dynamic CCEMG without bias correction
40 | 137 114 0.69 045 0.18 | 592 528 3.70 3.30 3.08
50| 1.05 082 048 028 027 | 548 459 337 293 284
100 1.11 0.92 0.58 0.30 0.23 3.92 3.37 2.45 2.15 1.93
150 | 123 1.05 046 026 028 | 334 288 198 177 1.61
200 | 124 097 050 033 026| 297 251 177 152 137
Dynamic CCEMG with RMA bias correction
40 | 1.34 091 0.60 0.60 036 | 6.84 581 4.06 343 3.12
50| 1.31 111 055 039 049 | 6.06 499 356 3.02 279
100 | 122 099 066 044 0.24 | 450 350 253 224 194
150 | 1.13 096 056 041 037 | 3.59 312 214 181 1.69
200 | 1.10 097 053 044 032 | 327 271 1.84 1.64 1.41
Dynamic CCEMG with jackknife bias correction
40 | 1.60 098 0.36 0.20 0.03 | 12.04 825 442 3.69 3.29
50 0.85 0.34 0.07 0.11 0.14 | 11.21 7.32 4.11 3.32 3.03
100 | 058 070 022 0.00 0.01]| 771 542 298 236 2.07
150 | 097 055 0.08 -0.06 0.07| 649 432 238 199 1.71
200 | 0.84 052 0.08 003 0.02] 565 3.88 2.08 1.68 144
MG based on Song’s individual estimates with 3 factors
40 0.10 0.51 0.42 0.44 0.49 8.13 6.45 4.12 3.60 3.50
50| 029 054 031 038 032] 681 540 3.69 312 290
100 | 049 042 030 035 029 | 421 358 251 222 195
150 | 056 044 035 027 021 | 334 281 202 173 1.59
200 | 0.62 056 037 032 022| 281 242 1.72 153 141
MG based on Song with true number of factors (m =1)
40 | -2.76  -2.08 -1.58 -1.51 -141 | 858 7.78 5.09 442 4.15
50 | -1.67 -1.33 -1.09 -085 -095| 7.50 5.61 4.09 336 3.25
100 | 0.09 0.04 -0.01 0.03 0.04| 364 326 240 217 1.89
150 | 044 030 022 0.13 0.09| 3.04 257 195 170 1.56
200 | 057 052 030 025 015 | 266 226 169 150 1.39
Moon and Weidner’s QMLE with 3 factors
40 | 809 742 6.25 551 520 | 1050 956 < T7.87  6.95  6.68
50 | 740 6.63 523 487 475 | 946 846 6.68 6.14 592
100 | 6.26 559 455 412 4.05| 7.32 658 529 483 4.69
150 | 6.02 547 434 4.08 4.04 | 6.82 6.12 487 456 4.49
200 | 595 538 439 409 397 | 656 589 479 445 4.31
Moon and Weidner’s QMLE with true number of factors (m = 1)
40 | 17.09 16.70 16.36 16.08 16.28 | 19.93 19.20 18.18 17.75 17.80
50 | 16.84 16.37 16.16 16.34 16.40 | 19.40 1858 17.76 17.69 17.66
100 | 17.19 17.03 16.86 16.75 17.00 | 18.88 18.45 17.88 17.62 17.75
150 | 17.86 17.24 17.25 17.31 17.36 | 19.34 1847 18.07 17.93 17.89
200 | 17.27 17.55 17.32 17.32 1741 | 18.60 18.65 18.02 17.85 17.87

Notes: See notes to Table 1. CCEMG is based on (40) which features cross section averages of z;; = (yit,wit,git),.
QMLE estimator and MG estimator based on Song’s individual estimates are computed from demeaned variables ¥;:

and &;; defined in (41).
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Table 4. Estimation of ¢ in experiments with regressors, ¢ = E (¢;) = 0.4, and m = 2

correlated common factors. (Experiment 16)

Bias (x100) RMSE (x100)
(N,T) 40 50 100 150 200 40 50 100 150 200
Fixed Effects estimates

40 | 21.98 23.35 26.19 27.41 2795 | 23.66 24.63 26.98 28.00 28.45

50 | 21.59 2337 26.36 27.44 27.89 | 23.10 24.61 27.01 2795 28.36
100 | 22.44 23.76 26.67 27.65 28.34 | 23.74 2481 27.24 28.03 28.65
150 | 22.51 23.77 26.68 27.98 28.26 | 23.76 24.81 27.16 28.31 28.53
200 | 22.16 23.63 26.77 27.83 28.42 | 23.37 24.61 27.22 28.13 28.68
Dynamic CCEMG without bias correction

40 | -10.66 -7.93 -3.13 -1.58 -0.68 | 11.66 9.15  5.12 421  3.93

50 | -10.83 -8.07 -3.23 -1.66 -0.87 | 11.64 9.02 482 384 3.64
100 | -11.18 -8.31 -3.43 -1.94 -1.20 | 11.61 8.79 4.28 3.14 2.66
150 | -11.45 -8.67 -3.67 -2.02 -1.37 | 11.74 899 423 287 240
200 | -11.64 -887 -3.78 -2.23 -142|11.86 9.11 419 285 2.23
Dynamic CCEMG with RMA bias correction

40 | -8.72 -5.77 -198 -0.89 -0.14 | 1040 7.66 4.65 4.08  3.89

50 | -877 -588 -2.10 -0.97 -0.38 |10.11 737 429 3.65 3.57
100 | -9.14 -6.11 -230 -1.28 -0.75| 989 694 351 283 2.53
150 | -9.33 -6.42 -245 -1.33 -088 | 989 697 3.28 248 218
200 | -949 -6.56 -2.53 -148 -087| 992 7.00 3.17 233 1.95
Dynamic CCEMG with jackknife bias correction

40 3.94 297 193 154 1.40 | 10.00 726 501 445 4.24

50 4.11 2.86 1.79 1.50 1.14 9.39 6.51 4.50 4.02 3.82
100 396 283 163 117 079 | 7.73 533 339 292 260
150 410 259 145 111 063 ] 7.18 469 280 246 217
200 4.12 2.70 1.46 0.99 0.64 6.88 4.53 2.55 2.12 1.89
MG based on Song’s individual estimates with 3 factors

40 | -9.08 -6.33 -2.04 -0.82 -0.32 | 10.77 8.02 456 411 3.94

50 | -9.02 -641 -191 -094 -0.36 |10.26 780 4.12 3.61 3.54
100 | -9.46 -6.79 -2.29 -1.01 -0.61 | 10.10 7.49 348 2.69  2.56
150 | -9.83 -6.89 -2.39 -1.25 -0.75| 1028 737 3.21 242 215
200 | -10.30 -7.19 -2.61 -1.37 -0.85| 10.64 754 321 224 1.97
MG based on Song with true number of factors (m = 2)

40 | -7.57 -541 -1.76 -0.62 -0.14 | 9.20 7.18 4.39 4.04  3.88

50 | -7.54 -548 -1.62 -0.79 -0.22 | 880 690 397 3.57 3.52
100 | -7.86 -5.87 -2.04 -0.85 -047 | 849 6.57 331 262 251
150 | -8.13 -591 -2.12 -1.09 -0.61| 855 641 3.00 235 2.09
200 | -839 -6.08 -232 -1.19 -0.71| 872 644 297 213 1.90

Moon and Weidner’s QMLE with 3 factors
40 | -027 331 840 994 1080 | 895 883 10.68 11.76 12.41
50 | -140 226 769 931 996 | 847 7.59 9.65 1086 11.44
100 | -423 0.15 646 816 9.04 | 752 554 777 911 9.80
150 | -5.76 -1.28 577 7.80 849 | 7.56 473 6.79 853 9.12
200 | -6.44 -1.76 541 732 823 | 7.76 423 6.19 790 874
Moon and Weidner’s QMLE with true number of factors (m = 2)
40 289 533 9.61 1097 11.66 | 899 932 11.73 12.80 13.26
50 209 449 885 10.26 10.79 | 8.15 842 10.77 11.77 12.27
100 023 314 760 896 9.77 | 546 582 870 9.83 10.50
150 | -0.15 259 753 915 977 | 449 482 829 9.75 10.30
200 | -037 264 756 913 985 | 391 439 814 959 10.28

Notes: See notes to Table 1. CCEMG is based on (40) which features cross section averages of z;; = (yit,wit,git),.
QMLE estimator and MG estimator based on Song’s individual estimates are computed from demeaned variables ¥;:
and &;; defined in (41).
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Table 5. Estimation of (3, in experiments with regressors, ¢ = E (¢;) = 0.4, and m = 2

correlated common factors. (Experiment 16)

Bias (x100) RMSE (x100)
(N,T) 40 50 100 150 200 40 50 100 150 200
Fixed Effects estimates
40 9.94 949 9.66 9.61 9.70 | 14.19 13.18 11.72 11.26 11.02
50 | 9.95 943 9.53 987 992 | 1387 12.86 11.48 11.28 11.12
100 | 985 9.83 9.85 9.80 9.46 | 13.47 12.63 11.49 11.02 10.45
150 | 10.15 9.75 9.86 9.86 9.74 | 13.56 12.58 11.28 10.89 10.59
200 | 9.62 981 9.87 995 9.60 | 13.04 1249 11.35 10.92 10.40
Dynamic CCEMG without bias correction
40 | 1.00 0.71 043 0.09 0.13 | 57 510 3.82 3.31 3.08
50| 0.79 0.76 0.24 024 0.16 | 523 457 338 3.00 2.77
100 | 095 0.73 0.30 0.15 -0.01 | 3.78 3.32 240 2.10 1.93
150 | 1.06 0.61 0.28 0.23 007 ] 326 275 198 1.78 1.58
200 | 098 0.75 0.29 0.17 008 | 280 234 171 148 1.37
Dynamic CCEMG with RMA bias correction
40 | 1.12 0.80 0.58 0.24 027 | 659 565 4.00 3.44 3.12
50| 0.82 0.73 042 041 033 | 589 495 359 3.10 2.81
100 | 099 0.73 045 033 0.18 | 425 3,58 250 218 1.98
150 | 1.07 068 041 040 024 | 3.66 3.02 2.09 1.84 1.63
200 | 098 0.79 043 030 0.23]| 312 254 1.83 1.56 1.43
Dynamic CCEMG with jackknife bias correction
40 | 142 054 020 0.01 0.06 | 1235 824 462 3.73 3.28
50| 094 045 0.12 0.15 0.12 | 10.68 740 4.05 3.35 2.93
100 | 0.89 0.52 0.09 0.10 -0.03| 7.61 517 289 240 2.09
150 | 1.22 044 0.10 0.11 0.03| 6.44 442 242 197 1.70
200 | 095 0.67 0.08 001 003]| 572 373 210 1.68 1.49
MG based on Song’s individual estimates with 3 factors
40 | 098 0.52 040 0.39 0.18 | 745 595 394  3.55 3.33
50 | 0.77 059 038 038 032| 631 535 3.65 3.15 3.00
100 | 0.77 0.77 043 039 033 | 417 358 264 234 2.21
150 | 091 0.70 040 041 039 | 341 293 222 197 1.88
200 | 096 0.75 054 044 035| 292 250 192 1.74 1.78
MG based on Song with true number of factors (m = 2)
40 | 0.87 0.69 054 043 027 | 6.71 558 389  3.50 3.25
50 | 0.82 0.67 035 043 034 | 568 496 3.52 3.10 2.92
100 | 090 0.84 051 040 041 | 3.88 343 254 226 2.16
150 | 094 0.78 045 043 043 | 327 288 212 1.90 1.79
200 | 1.00 0.77 058 045 034| 283 241 1.8 1.68 1.70
Moon and Weidner’s QMLE with 3 factors
40 | 521 483 453 420 423 | 788 745 643 5381 5.89
50 | 5.06 4.95 4.47 457 449 | 755 708 6.04 594 5.78
100 | 554 514 481 453 447 | 6.83 6.29 566  5.27 5.18
150 | 562 5.15 4.66 457 443 | 6.54 595 525 5.1 4.91
200 5.68 5.21 4.56 4.45 4.31 6.36 5.81 5.04 4.84 4.69
Moon and Weidner’s QMLE with true number of factors (m = 2)
40 | 494 468 432 395 4.05| 794 752 641  5.77 5.86
50 | 491 4.83 433 443 433 | 762 708 6.04 596 5.74
100 | 543 5.18 491 465 464 | 6.89 647 582 545 5.39
150 | 559 5.33 498 496 483 | 6.68 6.27 564 551 5.34
200 | 5.75 540 5.02 500 490| 6.64 6.16 555 5.43 5.31

Notes: See notes to Table 1. CCEMG is based on (40) which features cross section averages of z;; = (yit,wit,git),.
QMLE estimator and MG estimator based on Song’s individual estimates are computed from demeaned variables ¥;:
and &;; defined in (41).
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Table 6. Estimation of ¢ in experiments with regressors, ¢ = E (¢;) = 0.4, and m = 3

correlated common factors. (Experiment 18)

Bias (x100) RMSE (x100)
(N,T) 40 50 100 150 200 40 50 100 150 200
Fixed Effects estimates

40 | 25.74 27.09 30.09 31.21 31.58 | 27.09 28.16 30.68 31.67 31.98

50 | 25.86 27.55 30.06 31.22 31.77 | 27.17 2850 30.60 31.65 32.12
100 | 26.31 27.72 30.40 31.34 31.70 | 27.37 28.58 30.84 31.65 31.95
150 | 26.16 27.50 30.46 31.58 31.94 | 27.14 28.36 30.87 31.87 32.15
200 | 26.26 27.65 30.51 31.62 32.21 | 27.26 28.40 30.89 31.88 32.42
Dynamic CCEMG without bias correction

40 | -11.29 -8.46 -3.08 -1.41 -0.61 | 12.26 9.53 5.06 4.12 4.04

50 | -11.36 -8.38 -3.3¢4 -1.61 -0.72 | 12.16 9.26 488 3.84 3.56
100 | -11.59 -8.71 -3.50 -1.74 -1.09 | 12.00 9.14 4.32 3.02 2.66
150 | -11.64 -8.76 -3.53 -1.88 -1.13 | 11.94 9.07r 4.09 2.75 2.29
200 | -11.64 -8.81 -3.62 -193 ~-1.13 | 118 9.05 4.03 261 2.07
Dynamic CCEMG with RMA bias correction

40 | -9.99 -6.82 -232 -1.04 -0.42 | 11.45 841 478 4.04 4.04

50 | -10.02 -6.86 -2.59 -1.32 -0.58 | 11.26 818 4.52 3.79  3.56
100 | -10.44 -7.26 -2.84 -1.53 -1.03 | 11.13 7.94 3.88 297 2.66
150 | -10.56 -7.34 -293 -1.72 -1.09 | 11.08 7.84 3.62 2.67 2.29
200 | -10.56 -7.37 -3.03 -1.77 -1.15| 1095 777 3.56 251  2.09
Dynamic CCEMG with jackknife bias correction

40 425 299 217 1.78 1.37 | 10.26  7.47  5.08 447 4.34

50 4.49 3.12 1.90 1.56 1.21 9.65 6.91 4.52 4.05 3.79
100 3.714 277 171 1.30  0.73 | 759 535 336 296 261
150 399 278 158 110 067 | 719 492 283 241 215
200 4.24 2.60 1.50 1.05 0.62 6.99 4.49 2.54 2.14 1.90
MG based on Song with true number of factors (m = 3)

40 -7.94 -488 -0.14 0.96 1.54 9.72 6.96 4.17 3.95 4.10

50 | -786 -5.05 -038 0.76 132 | 935 6.75 377 3.66 3.70
100 | -8.79 -5.82 -0.95 028 073 | 958 6.65 283 251 267
150 | -9.28 -6.28 -1.51 -0.30 0.19| 978 6.84 2.69 218 2.03
200 | -986 -6.76 -1.96 -0.70 -0.21 | 10.23 7.19 278 1.97 1.80

Moon and Weidner’s QMLE with true number of factors (m = 3)
40 221 583 11.43 1287 1318 | 9.75 10.12 13.26 14.43 14.64
50 0.88 4.70 10.13 11.66 1249 | 875 896 11.79 1299 13.71

100 | -320 099 793 991 1064 | 7.18 548 9.02 10.72 11.33

150 | -5.01 -042 691 9.05 988 | 7.07 454 7.7 9.65 10.39

200 | -5.70 -1.20 6.25 849 954 | 7.01 400 694 897 997

Notes: See notes to Table 1. CCEMG is based on (40) which features cross section averages of z;; = (yit,xit,git)/.
QMLE estimator and MG estimator based on Song’s individual estimates are computed from demeaned variables 3;;
and ;+ defined in (41).
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Table 7. Estimation of 3, in experiments with regressors, ¢ = E (¢;) = 0.4, and m =3

correlated common factors. (Experiment 18)

Bias (x100) RMSE (x100)
(N,T) 40 50 100 150 200 40 50 100 150 200
Fixed Effects estimates
40 | -18.62 -18.43 -18.70 -18.50 -18.38 | 21.16 20.51 19.99 19.45 19.25
50 | -18.31 -18.45 -18.29 -18.80 -18.64 | 20.83 20.42 1947 19.70 19.41
100 | -18.20 -18.56 -18.40 -18.29 -18.42 | 2042 20.29 19.32 18.98 18.98
150 | -18.10 -18.24 -18.43 -18.45 -18.32 | 20.18 19.91 19.33 19.04 18.82
200 | -17.87 -18.42 -18.44 -18.73 -18.54 | 19.90 20.08 19.23 19.31 18.99
Dynamic CCEMG without bias correction
40 0.98 0.84 0.47 0.38 027 6.12 522 376 331 3.12
50 0.93 0.73 0.53 0.34 0.06 | 530 4.67 343 296 2.71
100 0.92 0.66 0.32 0.18 0.10 | 3.78 339 242 207 194
150 0.83 0.65 0.40 0.12 0.15| 323 276 194 1.72 161
200 0.90 0.73 0.29 0.13 011 | 281 247 167 149 1.36
Dynamic CCEMG with RMA bias correction
40 1.01 0.86 0.52 0.46 0.35| 691 563 392 342 3.8
50 0.73 0.67 0.59 0.45 0.16 | 6.00 5.15 3.61 3.04 2.72
100 0.93 0.62 0.41 0.28 0.20 | 430 3.63 253 213 1.99
150 0.81 0.58 0.48 0.24 027 361 3.03 206 180 1.65
200 0.87 0.67 0.38 0.25 0.22 | 3.17 267 175 156  1.40
Dynamic CCEMG with jackknife bias correction
40 1.02 0.93 0.22 0.19 0.15 | 12.39 852 456 3.76  3.36
50 1.05 0.68 0.29 0.19 -0.06 | 10.94 7.73 421 334 2091
100 1.39 0.45 0.10  -0.01 0.02| 799 534 291 233 210
150 1.01 0.54 0.17  -0.03 0.09 | 652 444 232 195 1.72
200 1.00 0.58 0.03  -0.01 0.056| 572 388 201 1.69 1.47
MG based on Song with true number of factors (m = 3)

40 0.49 0.24 -021  -0.08 0.01 | 773 6.23 420 3.77 3.59
50 0.20 0.29 0.02 -0.08 -0.09| 6.71 555 391 334 3.12
100 0.38 0.26 -0.02 -0.30 -0.19 | 4.28 3.67 278 252 244
150 0.27 028 -0.12 -0.25 -0.20 | 3.29 288 232 212 210
200 0.35 0.22 -0.07 -0.22 -022| 284 247 195 182 1.80
Moon and Weidner’s QMLE with true number of factors (m = 3)

40 4.18 4.51 4.13 4.24 412 719 715  6.10 594 574
50 4.67 4.75 4.36 4.17 4.08 | 696 6.75 592 556 545
100 5.17 4.88 4.61 4.48 446 | 6.36 597 538 517 5.10
150 5.19 5.01 4.75 4.44 4.57 | 6.10 579 524 493 5.03
200 5.28 5.15 4.67 4.44 441 594 575 507 482 477

Notes: See notes to Table 1. CCEMG is based on (40) which features cross section averages of z;; = (yit,xit,git)/.
QMLE estimator and MG estimator based on Song’s individual estimates are computed from demeaned variables 3;;
and ;+ defined in (41).
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Table 8. Size and Power of estimating ¢ in Experiment 14 (with regressors, ¢ = 0.4, m = 1 and

Size (x100) Power (x100)
(N,T) 40 50 100 150 200 40 50 100 150 200
Fixed Effects estimates
40 | 88.00 91.70  98.10 99.65 99.80 | 60.85 68.50 83.66 89.45  92.10
50 | 88.75 94.15 99.30 99.90 99.85 | 63.25 70.20 85.65  92.00  93.80
100 | 94.85 98.10 99.90 100.00 100.00 | 71.35 7595 91.90 96.20 97.80
150 | 96.70 99.05 100.00 100.00 100.00 | 77.30 81.00 95.60 98.65  99.45
200 | 97.15 99.35 100.00 100.00 100.00 | 78.40  83.15 96.45 99.15  99.65
Dynamic CCEMG without bias correction
40 | 7275 53.85  16.00  10.80 8.90 | 99.80 99.35 94.15  90.15  88.25
50 | 80.95 60.75 21.45 12.90 10.00 | 100.00  99.90  98.00  95.20  92.40
100 | 98.30 92.60 38.80 19.80  11.90 | 100.00 100.00 100.00  99.90  99.90
150 | 99.95 98.60 57.45 2850  16.75 | 100.00 100.00 100.00 100.00 100.00
200 | 100.00 99.70  70.85  37.15  22.10 | 100.00 100.00 100.00 100.00 100.00
Dynamic CCEMG with RMA bias correction
40 | 42.65 27.85 10.15 6.20 6.90 | 9490 9240 86.25 80.70  78.80
50 | 49.65 32.65 10.55 8.25 6.35 | 97.65 96.65 91.90 89.25  89.05
100 | 79.50 57.80  17.20 8.30 7.20 | 100.00 100.00  99.85  99.70  99.55
150 | 91.80 77.40  22.70 11.75 9.20 | 100.00 100.00 100.00 100.00 100.00
200 | 95.60 88.95 3240 14.55  10.55 | 100.00 100.00 100.00 100.00 100.00
Dynamic CCEMG with jackknife bias correction
40 | 14.15 12.20 9.85 8.65 790 | 20.65 30.10 49.60 59.90  65.00
50 | 1540 12.60 9.05 8.15 8.95 | 21.20 33.70  59.80 69.20  75.00
100 | 21.70 16.05  10.80 7.80 7.65 | 34.06 5495 86.80 93.80 96.25
150 | 26.85 20.35 10.95 8.65 7.05 | 4220 66.00 96.55 99.15  99.50
200 | 31.90 25.85 11.95 8.60 6.95 | 48.15 74.15  99.00 99.85  99.95
MG based on Song’s individual estimates with 3 factors
40 | 51.50 36.20 13.75 7.95 7151 95.60 94.10 88.20 84.55  81.55
50 | 62.00 45.45 13.15 9.05 7.05 | 98.45 98.50 95.65 91.90 89.50
100 | 90.30 75.70  23.00 11.35 8.95 | 100.00 100.00 99.95 99.70  99.70
150 | 97.35 89.50  33.45 16.70  10.60 | 100.00 100.00 100.00 100.00 100.00
200 | 99.50 96.20 4295 20.80 13.60 | 100.00 100.00 100.00 100.00 100.00
MG based on Song with true number of factors (m =1)
40 | 3045 2090  10.35 6.55 745 1 9145  89.00  81.55  76.70  74.85
50 | 39.85 27.70  10.50 7.15 6.75 | 96.45 95.85 91.70  88.70  86.00
100 | 72.45 56.80 17.60  10.45 8.30 | 100.00 100.00 99.90 99.60  99.55
150 | 88.60 74.85  26.75  15.10 9.15 | 100.00 100.00 100.00 100.00 100.00
200 | 9545 87.60 34.80 17.10 11.70 | 99.95 100.00 100.00 100.00 100.00
Moon and Weidner’s QMLE with 3 factors
40 | 51.95 52,55 71.60 80.20 84.90 | 81.85 74.10 66.30 67.80  70.55
50 | 55.15 51.30 7435 83.35 87.85 | 85.05 79.20 67.45 69.60 72.35
100 | 63.80 50.15 81.35 91.85 9490 | 96.50 91.50 73.20 70.80  73.05
150 | 73.00 53.45 84.25 96.10 9855 | 99.10 96.55 80.40 74.40  70.95
200 | 79.65 57.00 89.15 97.60 99.05 | 99.55 98.80 84.85 77.95 75.15
Moon and Weidner’s QMLE with true number of factors (m = 1)
40 | 46.30 53.35 7250 81.15 8555 | 67.95 63.15 63.80 65.95  68.25
50 | 46.15 53.50 76.90 83.45 88.70 | 69.80 67.05 65.35 68.06  72.60
100 | 49.60 57.30 88.10 94.60 96.45 | 80.85 76.50 66.55  67.90  70.05
150 | 50.65 64.35 93.10 98.50 9895 | 86.30 80.85 70.95 68.85  70.60
200 | 54.20 70.75 96.85  99.30 99.55 | 88.40 84.10 69.30 68.80  71.75

Notes: See notes to Table 1. CCEMG is based on (40) which features cross section averages of z;; = (yit,wit,git)'.
QMLE estimator and MG estimator based on Song’s individual estimates are computed from demeaned variables ¥
and z;; defined in (41).
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Table 9. Size and Power of estimating (3, in Experiment 14 (with regressors, ¢ = 0.4, m =1 and

Size (x100) Power (x100)
(N,T) 40 50 100 150 200 40 50 100 150 200
Fixed Effects estimates
40 | 100.00 100.00 100.00 100.00 100.00 | 100.00 100.00 100.00 100.00 100.00
50 | 100.00 100.00 100.00 100.00 100.00 | 100.00 100.00 100.00 100.00 100.00
100 | 100.00 100.00 100.00 100.00 100.00 | 100.00 100.00 100.00 100.00 100.00
150 | 100.00 100.00 100.00 100.00 100.00 | 100.00 100.00 100.00 100.00 100.00
200 | 100.00 100.00 100.00 100.00 100.00 | 100.00 100.00 100.00 100.00 100.00
Dynamic CCEMG without bias correction
40 6.75 7.15 6.85 7.10 6.60 | 33.35 41.45 7480 85.20 91.10
50 7.00 6.25 5.05 5.95 7.20 | 4255  54.15  82.70 9245  94.60
100 6.95 6.45 6.10 5.65 510 | 67.056 80.30 98.10  99.65 100.00
150 7.90 7.40 6.30 6.10 5.85 | 81.55 92.60 99.85  99.95 100.00
200 8.65 7.45 7.00 5.80 5.65 | 90.80 97.30  99.95 100.00 100.00
Dynamic CCEMG with RMA bias correction
40 6.35 7.65 7.25 6.70 6.45 | 28.06 40.55  69.55  81.90  90.00
50 6.55 6.25 6.40 6.45 6.55 | 33.45 4495 7875 90.40  94.40
100 7.40 5.80 6.80 7.15 4.70 | 56.40 74.60 97.45  99.65 100.00
150 7.10 7.95 6.35 6.85 6.50 | 74.45 88.10  99.80 100.00 100.00
200 8.05 7.25 6.30 7.20 5.50 | 84.15 94.70 100.00 100.00 100.00
Dynamic CCEMG with jackknife bias correction
40 5.55 6.40 5.55 6.55 6.50 | 62.10 87.15  99.70  99.95 100.00
50 6.40 4.85 5.65 6.45 6.90 | 68.45  92.00 100.00 100.00 100.00
100 5.00 6.70 6.00 5.20 5.10 | 90.00  99.75 100.00 100.00 100.00
150 5.85 5.45 4.95 6.45 5.60 | 97.60 100.00 100.00 100.00 100.00
200 6.20 5.95 5.40 5.00 4.30 | 99.45 100.00 100.00 100.00 100.00
MG based on Song’s individual estimates with 3 factors
40 4.30 5.15 4.20 4.60 420 30.15 3745 61.55 71.90  75.50
50 5.20 4.50 4.45 4.30 3.75 | 36.60 48.30 75.50 84.00  87.60
100 5.45 6.00 5.80 5.85 4.85 | 68.15 79.75 97.05  99.50  99.75
150 6.30 5.55 5.95 5.05 5.20 | 85.80 93.70 99.70  99.80 100.00
200 6.50 6.80 6.00 6.00 5.85 | 93.15 98.30 100.00 100.00 100.00
MG based on Song with true number of factors (m = 1)
40 8.30 9.05 5.80 6.25 6.45 | 51.45 56.15 7815  85.10  88.20
50 8.60 6.75 6.55 4.95 490 | 55.60 66.10 85.55  92.25  95.00
100 5.55 6.45 5.25 5.75 490 | 80.80 89.25  98.10 99.60  99.95
150 7.25 6.25 5.60 5.65 4.85 | 92.30 96.65  99.95 100.00 100.00
200 7.00 6.55 6.15 6.15 5.70 | 97.20 99.35 99.95 100.00 100.00
Moon and Weidner’s QMLE with 3 factors
40 | 52.70  54.60 6220 66.15 69.35 | 29.50 31.20 4830 59.40  69.50
50 | 54.00 54.10 5790 64.80 68.90 | 30.65 35.05 5890 70.00 74.65
100 | 63.15 62.25 69.60 73.15 76.80 | 3790 50.40 80.10 90.55  94.10
150 | 69.85 73.65 76.25 83.15 86.45 | 4830 62.05 91.05 97.10 98.15
200 | 79.70 81.05 86.30 89.55 92.15 | 56.20 71.60 95.30 99.15  99.60
Moon and Weidner’s QMLE with true number of factors (m = 1)
40 | 79.80 84.10 9340 9540 97.75 | 49.40 52.15 60.55  65.20  67.85
50 | 83.70 86.20 9535 9790 98.60 | 51.40 52.65 60.85  68.15 7245
100 | 93.75  96.50 99.30 99.55 99.90 | 63.55 66.20 76.05  80.00 84.20
150 | 96.80 98.35 99.75 100.00 100.00 | 72.75 73.35 81.90 87.20  90.80
200 | 97.85 99.35 99.95 100.00 100.00 | 74.70  78.50  85.85  90.60  93.80

Notes: See notes to Table 1. CCEMG is based on (40) which features cross section averages of z;; = (yit,xit,git)'.
QMLE estimator and MG estimator based on Song’s individual estimates are computed from demeaned variables ¥;:
and &;; defined in (41).
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Table 10. Size and Power of estimating ¢ in Experiment 16 (with regressors, ¢ = 0.4, m = 2 and

Size (x100) Power (x100)
(N,T) 40 50 100 150 200 40 50 100 150 200
Fixed Effects estimates
40 | 9730 99.45  99.95 100.00 100.00 | 84.35 90.30 97.70  99.60  99.80
50 | 98.50 99.30 100.00 100.00 100.00 | 85.85 9240 99.00 99.85  99.90
100 | 99.50 99.85 100.00 100.00 100.00 | 92.05 95.50 99.75 100.00 100.00
150 | 99.85 99.95 100.00 100.00 100.00 | 93.95 96.05 99.75 100.00 100.00
200 | 99.95 99.95 100.00 100.00 100.00 | 94.15 97.40  99.95 100.00 100.00
Dynamic CCEMG without bias correction
40 | 69.65 50.75 1830  10.70 9.85 | 99.60 9890 93.70  89.20 84.45
50 | 79.70 59.65 19.80  10.90 9.80 | 99.90 99.90 98.05 95.05  91.70
100 | 97.25 87.40 3295 16.45 10.25 | 100.00 100.00  99.95 100.00  99.75
150 | 99.656 97.85 48.65  22.35 13.00 | 100.00 100.00 100.00 100.00 100.00
200 | 100.00 99.70  61.80  30.95  17.10 | 100.00 100.00 100.00 100.00 100.00
Dynamic CCEMG with RMA bias correction
40 | 44.25 2690 10.15 7.10 6.95 | 95.35 9215 84.05 79.70  76.55
50 | 51.00 33.25 10.80 6.80 720 | 98.25 96.60 91.85 88.55  86.10
100 | 78.85 57.10  16.00 8.85 6.35 | 99.85 99.90 99.60 99.65  99.35
150 | 90.40 75.45 2285 11.45 7.45 | 100.00 100.00  99.95 100.00 100.00
200 | 96.85 86.00 30.55  14.40 8.30 | 100.00 100.00 100.00 100.00 100.00
Dynamic CCEMG with jackknife bias correction
40 | 14.30 1235 11.20 8.60 9.15 | 19.55  27.65 4830 56.45  62.45
50 | 15.85 11.50 10.75 8.95 8.00 | 21.80 32.15 56.20 65.90 72.20
100 | 22.15 17.95 11.90 9.25 6.45 | 33.70 49.60 85.30 92.65  96.35
150 | 29.05 21.40 12.10 10.30 8.00 | 39.85 64.95 96.00 98.60  99.65
200 | 34.00 26.40 14.25 10.40 7.30 | 46.35 72.00 98.85  99.80 100.00
MG based on Song’s individual estimates with 3 factors
40 | 53.25 34.75 9.40 8.40 6.85 | 95.95 9520 86.30 80.10  78.55
50 | 59.95 40.95 10.05 7.75 740 | 99.00 98.25 92.10 89.50  86.20
100 | 88.60 70.25  17.50 9.40 6.90 | 99.90 99.95 99.75  99.60  99.05
150 | 96.60 83.85 23.60 11.15 8.05 | 100.00 100.00 100.00 100.00 100.00
200 | 99.35 9420 3280  14.00 8.85 | 100.00 100.00 100.00 100.00 100.00
MG based on Song with true number of factors (m = 2)
40 | 44.00 28.40 8.30 7.65 6.50 | 95.90 94.30 85.15 7880  77.25
50 | 50.15 34.35 9.10 8.20 745 | 98.65 97.95 91.50 89.20 85.15
100 | 79.15 60.35  15.20 8.55 6.65 | 99.95 100.00 99.65 99.30  99.15
150 | 92.00 76.05 20.75  10.30 7.55 | 100.00 100.00 100.00  99.90 100.00
200 | 97.45 88.45 2815 12.35 8.25 | 100.00 100.00 100.00 100.00 100.00
Moon and Weidner’s QMLE with 3 factors
40 | 53.00 56.05  79.60 89.30 92.00 | 7450  68.70  61.50  65.70  71.45
50 | 56.40 54.65 80.35 90.55  92.65 | 80.40 72.25 62.35 67.15  70.50
100 | 64.95 55.06 84.35 9430 97.85 | 9490 89.20 69.90 69.10  68.20
150 | 76.20 53.65 86.15  96.70  98.40 | 99.25 96.65 78.60  70.70  72.00
200 | 8290 56.15 89.50 9855 99.20 | 99.70 98.85 85.75  76.00  73.20
Moon and Weidner’s QMLE with true number of factors (m = 2)
40 | 51.55 59.30 84.60 90.25 9430 | 64.75  59.10 61.95 67.70  70.95
50 | 52.10 57.55 83.95 92.05 93.50 | 69.95 63.20 6240 64.70  70.05
100 | 45.70 55.20 89.10 96.20 9845 | 87.25 7835 63.25 63.10 66.15
150 | 45.35 56.55 9440 98.65  99.65 | 93.35 88.25 64.35 64.40 67.20
200 | 46.50 59.80 97.60 99.75 99.85 | 97.05 92.85 67.70 67.40  70.10

Notes: See notes to Table 1. CCEMG is based on (40) which features cross section averages of z;; = (yit,xit,git)'.
QMLE estimator and MG estimator based on Song’s individual estimates are computed from demeaned variables ¥;:
and &;; defined in (41).
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Table 11. Size and Power of estimating (3, in Experiment 16 (with regressors, ¢ = 0.4, m = 2

and p; = 0.6).
Size (x100) Power (x100)
(N,T) 40 50 100 150 200 40 50 100 150 200
Fixed Effects estimates
40 | 67.90 68.90 81.40 85.25 90.30 | 48.70  49.65 4870 54.70  55.25
50 | 70.35 72.50 8270 89.40 92.85 | 53.45 51.55  54.60 54.95  57.30
100 | 79.35 82.80 90.55 94.85 95.55 | 62.10 60.90 64.05 66.15  66.25
150 | 8245 84.30 92.80 95.75 97.95| 70.70  68.80 68.30 68.80  71.50
200 | 85.55 87.80 9440 96.80 97.60 | 71.15  73.10 69.40 73.75  73.15
Dynamic CCEMG without bias correction
40 | 6.00 585 6.50 6.65 6.25 | 35.55  46.10 73.80 87.35  90.75
50 | 5.60 590 575 680 630 | 43.25 5430 83.70 9225  95.70
100 | 540 6.85 545 550 5.70 | 69.00 81.85 98.65  99.85  99.95
150 | 720 550 570 6.60 495 | 85.00 9530 99.95 100.00 100.00
200 | 730 6.35 630 520 4959325 98.05 100.00 100.00 100.00
Dynamic CCEMG with RMA bias correction
40 | 5.80 6.15 6.50 6.65  6.50 | 29.25  40.05  68.95  84.30  89.55
50 | 575 630 725 650 6.80 | 35.50 47.60 80.00 90.15  94.85
100 | 540 570 555 6.05 6.40 | 58.50  76.15 97.65  99.65  99.85
150 | 745 555 690 6.80 545 | 74.05 89.85  99.90 100.00  99.95
200 | 6.60 6.00 6.50 595 570 | 86.75  96.45 100.00 100.00 100.00
Dynamic CCEMG with jackknife bias correction
40 | 5.80 545 570 6.00 7.00 | 61.70 86.45  99.85 100.00 100.00
50 | 530 565 640 6.05 540 | 68.20 92,55 100.00 100.00 100.00
100 | 425 560 535 530 545 | 91.70 99.70 100.00 100.00 100.00
150 | 5.656 520 560 5.85 530 | 98.25 99.95 100.00 100.00 100.00
200 | 6.75 540 560 490 5.60 | 99.50 100.00 100.00 100.00 100.00
MG based on Song’s individual estimates with 3 factors
40 | 9.75  9.10 6.50 570 4.80 | 43.95 51.75 T1.55 7875  83.50
50 | 995 865 715 550 3.75 | 50.50 60.25  80.45  86.30  90.30
100 | 935 940 565 550 4.65 | 75.75  85.30 96.20 98.30  98.25
150 | 11.25 935 750 5.60 3.75 | 88.15 94.10 98.95 9855  98.15
200 | 11.75 10.15 7.80 5.15 460 | 9440 97.15 99.35 98.85  98.45
MG based on Song with true number of factors (m = 2)
40 | 11.05  9.95 6.55 590 540 | 4850 55.85 7215  80.45  84.00
50 | 11.40 10.70 720 6.10 4.75 | 56.15 64.75 82.85  88.10 91.20
100 | 11.70 11.00 6.70 5.80 5.30 | 80.65  87.85  96.90 99.20  98.85
150 | 13.15 10.80 7.95 5.85 4.10 | 91.00  95.35  99.15  99.20  98.85
200 | 13.00 10.35 790 540 5.15 | 95.85 9825 9940 99.35  98.70
Moon and Weidner’s QMLE with 3 factors
40 | 39.00 41.70 51.75 5H7.60 61.90 | 37.10 41.60 5860  70.20  75.20
50 | 40.95 44.35 53.40 62.00 67.10 | 41.20 45.70 64.80 70.50  77.15
100 | 56.90 5840 71.95 76.85 80.30 | 46.80  56.70  76.40  86.80  90.15
150 | 67.05 70.40 80.15 86.05 89.30 | 54.20  66.55  87.60  93.10  95.80
200 | 77.05 78.50 86.30 91.25 93.00 | 59.70  73.85  93.25  97.80  98.40
Moon and Weidner’s QMLE with true number of factors (m = 2)
40 | 36.25 39.50 47.90 5255 59.75 | 36.95 39.80 5790 69.95  74.85
50 | 38.35 42.80 50.10 60.15 64.30 | 39.40 43.70 63.75 69.75  77.00
100 | 53.20 56.70 70.45 76.20 80.95 | 47.65  55.20 73.65  84.40  87.40
150 | 65.85 69.30 81.55 87.65 90.85 | 53.85 62.65 81.70 88.60  92.80
200 | 73.55 75.55 88.00 92.80 94.85 | 59.10 68.30 87.70  93.00  95.90

Notes: See notes to Table 1. CCEMG is based on (40) which features cross section averages of z;; = (yit,xit,git)'.
QMLE estimator and MG estimator based on Song’s individual estimates are computed from demeaned variables ¥;:
and &;; defined in (41).
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Table 12. Size and Power of estimating ¢ in Experiment 18 (with regressors, ¢ = 0.4, m = 3 and

Size (x100) Power (x100)
(N,T) 40 50 100 150 200 40 50 100 150 200
Fixed Effects estimates
40 | 99.40  99.85 100.00 100.00 100.00 | 91.55  95.75  99.70  99.95  99.90
50 | 99.60 100.00 100.00 100.00 100.00 | 93.80 97.35 99.85 100.00 100.00
100 | 100.00 100.00 100.00 100.00 100.00 | 97.25  98.40 100.00 100.00 100.00
150 | 99.90 100.00 100.00 100.00 100.00 | 98.05  99.25 100.00 100.00 100.00
200 | 100.00 100.00 100.00 100.00 100.00 | 97.75  99.35 100.00 100.00 100.00
Dynamic CCEMG without bias correction
40 | 73.90 56.55 1720 10.80  10.25 | 99.75  99.45 94.00 88.60  82.80
50 | 82.90 64.40 2045 11.65 9.45 | 100.00 99.85 97.80 94.35 91.70
100 | 98.35 91.30 35.00 14.40  11.10 | 100.00 100.00 100.00  99.90  99.90
150 | 99.90 97.75 47.65 2030  13.05 | 100.00 100.00 100.00 100.00 100.00
200 | 100.00  99.75  59.45  26.15  14.70 | 100.00 100.00 100.00 100.00 100.00
Dynamic CCEMG with RMA bias correction
40 | 5275  34.05  11.00 6.95 7.60 | 96.45 9540 86.00 81.85  76.65
50 | 61.30 40.35 12.55 8.05 6.85 | 99.00 97.95 93.35 89.80 87.20
100 | 86.60 69.35 21.35  10.00 8.55 | 100.00 100.00 99.95 99.75  99.85
150 | 95.00 83.40 29.15 13.70 9.45 | 100.00 100.00 100.00 100.00 100.00
200 | 98.05 91.25 40.15 17.70  10.70 | 100.00 100.00 100.00 100.00 100.00
Dynamic CCEMG with jackknife bias correction
40 | 1545 13.15 11.15 9.05 9.35 | 18.70  27.20 4570  55.00  60.05
50 | 17.65 14.55 10.30 9.45 8.30 | 20.056 31.05 56.05 66.20 71.30
100 | 21.45 17.30 12.00 10.50 6.70 | 32.40 4935 84.20 91.75  96.55
150 | 28.00 21.90 11.40 8.85 6.85 | 41.35 61.00 9590 98.80  99.50
200 | 34.60 2530 13.85  10.20 7.80 | 4550 71.90 98.65  99.70  99.95
MG based on Song with true number of factors (m = 3)
40 | 44.45  24.95 7.50 6.40 790 | 94.50 90.75  73.55  65.95  62.80
50 | 50.00 32.45 7.90 7.80 850 | 97.50 95.85 83.20 7770  73.90
100 | 82.40  58.70 9.55 6.45 8.65 | 99.95 99.85 9895 97.80  96.60
150 | 94.10 77.90 15.10 8.55 6.60 | 100.00 100.00 99.90 99.85  99.85
200 | 98.65 90.05 24.25 9.50 7.20 | 100.00 100.00 100.00 100.00 100.00
Moon and Weidner’s QMLE with true number of factors (m = 3)
40 | 57.25 63.35 90.10 95.00 96.05 | 68.15 61.75  63.30 70.90  74.35
50 | 58.10 62.10 88.65 9490 96.60 | T73.00 67.20 62.75 69.60 73.35
100 | 61.80 51.50 91.30 98.00 9890 | 93.30 86.70 63.20 62.75  68.15
150 | 74.65 53.20 9235 9840 99.70 | 98.35 95.60 71.35 66.20  66.05
200 | 79.80 54.85 93.85 99.60 99.90 | 99.60 98.30 79.85 68.90  68.60

Notes: See notes to Table 1. CCEMG is based on (40) which features cross section averages of z;; = (yit,xit,git)/.
QMLE estimator and MG estimator based on Song’s individual estimates are computed from demeaned variables 9;;
and ;+ defined in (41).

39



Table 13. Size and Power of estimating (3, in Experiment 18 (with regressors, ¢ = 0.4, m = 3

and p; = 0.6).
Size (x100) Power (x100)
(N,T) 40 50 100 150 200 40 50 100 150 200
Fixed Effects estimates
40 | 88.05 91.30 97.50  99.45  99.50 | 98.35  99.15 100.00 100.00 100.00
50 | 89.30 92.90 9855 99.50  99.95 | 98.55  99.65 100.00 100.00 100.00
100 | 93.90 96.20 99.65 100.00 100.00 | 99.35  99.75 100.00 100.00 100.00
150 | 94.65 96.65 99.65 100.00 100.00 | 99.80  99.95 100.00 100.00 100.00
200 | 95.85 98.10 99.95 100.00 100.00 | 99.75 100.00 100.00 100.00 100.00
Dynamic CCEMG without bias correction
40 | 7.20  6.75  6.25 6.00 7.20 | 36.15 4580 73.95 84.75  90.35
50 | 6.50 535 7.2 7.10 5.15 | 4245  55.15 8240  91.75  96.10
100 | 5.75 6.60 6.65 5.80 540 | 68.75  82.30 98.45 99.90 99.95
150 | 7.05 6.15 5.15 5.75 6.00 | 85.45 94.85  99.90 100.00 100.00
200 | 6.35 7.35 545 5.20 5.40 | 93.70  97.80 100.00 100.00 100.00
Dynamic CCEMG with RMA bias correction
40 | 7.15 6.80  6.10 6.50 6.85 | 2890  38.55  69.70  81.06  89.05
50 | 6.06 715 6.40 7.05 5.15 | 35.55  48.80  77.60  90.25  95.65
100 | 6.50 6.50 6.70 6.05 5.60 | 58.10  76.55  97.75  99.70  99.80
150 | 6.55  6.15  5.55 5.75 5.90 | 76.20  90.00  99.70 100.00 100.00
200 | 6.75 7.15  5.35 5.50 5.30 | 86.30  95.65  99.95 100.00 100.00
Dynamic CCEMG with jackknife bias correction
40 | 590 6.20 5.55 6.50 6.90 | 59.95 85.85  99.85 100.00 100.00
50 | 5.10 6.85 5.70 6.85 5.50 | 66.95  90.30 100.00 100.00 100.00
100 | 5.75 540 545 5.30 5.75 1 91.30  99.30 100.00 100.00 100.00
150 | 5.06 530 5.00 5.35 5.85 | 97.50  99.95 100.00 100.00 100.00
200 | 5.55 590  4.95 5.30 5.45 | 99.45 100.00 100.00 100.00 100.00
MG based on Song with true number of factors (m = 3)
40 | 8.45 855  5.15 4.90 5.06 | 41.95  50.75  72.65  79.20  80.80
50 | 820 9.10 6.85 5.00 4.50 | 52.00  59.00  79.50  86.95  89.75
100 | 9.35 855 7.0 5.55 4.85 | 76.70  84.20 95.65 97.85  97.25
150 | 870 825 6.05 5.40 4.75 1 90.15  94.65 98.30 98.45  97.90
200 | 9.45 830 6.65 4.55 4.05 |1 9520 97.60 98.60 98.90  98.05
Moon and Weidner’s QMLE with true number of factors (m = 3)
40 | 33.45 39.20 48.30  58.06  63.25 | 41.35  44.25  61.60 6850  75.90
50 | 37.15 43.06 53.85 60.50  65.60 | 40.65 44.90 64.75 7535  80.60
100 | 54.05 56.30 70.35 77.85  83.05 | 49.60 59.00 80.15  88.40  90.95
150 | 63.35 68.80 83.45 85.70 90.35 | 59.10 68.40 88.90 94.95 95.45
200 | 73.65 78.75 88.80 91.30 93.75 | 67.30  74.70 94.05 97.55  98.70

Notes: See notes to Table 1. CCEMG is based on (40) which features cross section averages of z;; = (yit,xit,git)/.
QMLE estimator and MG estimator based on Song’s individual estimates are computed from demeaned variables 9;;
and ;+ defined in (41).
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A Mathematical Appendix

A.1 Notations and Definitions

We begin by briefly summarizing the notations used in the paper, and introduce new notations which will
prove useful in the proofs provided below. All vectors are represented by bold lower case letters and matrices
are represented by bold upper case letters. We use (a,b) = a’b to denote the inner product (corresponding

to the Euclidean norm) of vectors a and b. ||Al]; = nax > izt laij|, and Al = max 377, |a;| denote
<j<n

1<i<n
the maximum absolute column and row sum norms of A € M"*" respectively, where M"*™ is the space
of real-valued n x n matrices. ||A] = /o (A’A) is the spectral norm of A, p(A) = max {|\i (A)|} is the
sNn

spectral radius of A, and |A1(A)| > [A2(A)| > ... > |\, (A)| are the eigenvalues of A. Col (A) denotes the
space spanned by the column vectors of A. Note that |lal| = y/0(a’a) = va’a corresponds to the Euclidean
length of vector a.

Let
/ /
Yipr+1 Yipr Xipr+1 Xipp
/ /
Yi,pr+2 Yi,pr+1 X pr+2 Xipr+1
yi = ) y Yi-1 = . , Xy o= . , X1 = i ,
T—prx1 : T—prx1 : T—prxks : T—pr Xkg
/ !
YiT Yi,T—1 X XiT—1

— /s o ;o /
Tr—pr= (1,1,...,1) is T — pp x 1 vector of ones, §;, = (yi,t,hxmxi’t_l) ,

! /
€i,pT+1 pr+1 Ei,pr+1
& £ €i,pr+2
—_ i,pr+2 pr+2 i,pr
E; = ) =(yi-1, X, X;-1), F = ) ,and g; = )
T—prx2ke+1 : T—prxm
/ /
&r £ &iT

Using the above notations, model (1) can be written as
Yi = CyiTr—pr+¢;¥i,—1 + XifBo; + Xi—181; + Fv; + &,

or more compactly as

Yy, = CyiTT_pT—FEiTl'i + F7i + &4, (Al)

i 1 — — — N
for:=1,2,...,N, where ; = (d)i,ﬁgi,,@’h-) . Let also z;; = (yit,wgt)', Zwt = (Yut, @) = Y oiiq WiZit,

5/ =/ =/ 00 ! =
1 Zypr+1 Zy.pr Zya ZZ:pT-i-l itZw,pr+1—¢
=/ =/ =/ o0 ! =
— 1 Zw,pT+2 Zw,pTJrl e Zw,2 Zl:pT+1 6iZZw’PT+2*€
Qw = . . . . ’ and n; = .
T—prx(k+1)pr+1 : : : : T—prx1
=/ =/ =/ S ;=
1 Zw,T Zw,r—1 U Zw,Tpr Zl:pTJrl 6iézw,T*€

Model (A.1) can be equivalently written as (see also (22)),

yi=5m + Qud; +&; +m, + 9, (A.2)

/

where d; = (¢},;, 05, 651, .., 6 )l, 8; (L) is given by &; (L) = G/ (L) v; = |7, (C'C) ' C'A~1 (L)| , see (23),

T 7
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7 _
Cyi = Cyi — 0; (1) C2w, and

v, = Cyi T + F’Yz’ - dez -,
= Fv,— zw‘si (L) >

in which
=/
Zw7PT+1

~ Z,

7 7 w,pr+2
2y =12, — TT—prC Z, = .

/
zw?

=/
Zw,T

(A.3)

N
“1
; and €y = Zwi (Tp41 — Ag) e
i—1

Note that the individual elements of ¥; = (Ui pp41, Yiprt2s .., 0ir) areO, (N~1/2) uniformly across all 4

and t.

Define also the following projection matrices

P, =H,H,H, H, and M,
T—pr xT—pr T—pr xT—pr
in which
1 h;UaPTJrl h'/pr
H - 1 h:UJ)T-i-? hiﬂvPT"rl
TprX(kil)pTJrl :
1 hIw,T h;qul
and h,; = ¥, (L) f; + c.y, where
N

-1, - H, (H,H,) H,, (A4)

h/

wl

h/

w2

w,T—pr

W, (L) =Y w; (Tp1 — AL) " A Ci.

i=1

Furthermore, let V,, = Q,, — H,,, and note that

—/ —1/ =/
0 Vowpr+1 Vowpr e L1
0o v 724 e 174
= w,pr+2 w,pr+1 w2 _
Vw = . . y Vwt
—1/ —1/ =1/
0 VwT Vw,Tfl o Vw,Tpr
and H,= FA,,, where
/ /
1 fPT+1 fPT
1 f f/
= pr+2 pr+1
F =1 . : :
T—pr X1+mpr :
/ /
1 fT fT*l
/ / /
1 CZ’LU Czw CZUJ
0 A (L
mx1 w ( ) mxk+1 mxk+1
~ / L) 0
Ay = m0><1 0 Au) (
mXxk+1 mxk+1
(prm~+1)x[pr (k+1)+1] .
/
0o 0 AL (L)

mx1 mxk+1 mxk+1
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i=1

N
yand Ay (L) =Y wi (1 — A;L) ™ Ag1C.
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We also define

1 0
1xk, 1xky
S - 0 0 I, A5
(142K ) X (142ks) kox1  koXke ’ (A-5)
0 I, 0
ko X1 ko Xky

* / 7 \/ e = _ = = __ * * * \/
& = (yi,t—lvxi,tflaxit) , and note that £, = S’§;;, and E; = E}S, where B} = (fz‘,pT+17£i,pT+2a --~;€¢T) .
Individual elements of &;, are also denoted as &

éist is

s for s =1,2,...2k 4+ 1, and the vector of observations on

Si,s;PT‘H

. €is- 1 = .
—prX
£isT

Recall that the panel data model (1)-(3) can be written as the VAR model (6) in zy = (yir, X}y, &) -
Hence we have

[e.e]
zit = Y AL (Coi + Ay Cifi s+ Agleird)

=0
and
Yijt—1 S gz .
* 9 i,t—
=1 %1 | = vt =ceri + Wei (L) (Cify + ),
szit
Xit
where
1 1 Ok 1 Ok
s = xks  1xkg s’ :(0 Iy, 0)
Yy ] x X X b
kot 1x k41 k-z0><1 I, kzgkg ko X k41 Fa 1 ke X hg

CE*i = \1151' (L) (Syx, Sz)l Czi, and

0 S Iy —AL)'L
e (L) = | Retlektl JAGt 4 (0 v (L —1) Ayt (A.6)
(142k0) x (k1) S/ S, [(Ik+1 -AL) - Ik+1:|

A.2 Statement of Lemmas

Lemma A.1 Let A =(aj,as,...,a5y) and B = (b, ba,...bs, )be ry X sy random matrices, and ry and
sy are deterministic sequences nondecreasing in N. Suppose also that ||ag] = Op <r11\,/2) and |[be|| =
Op (rjl\,/QN’l/2>, uniformly in €, for £ = 1,2,...,sy. Then for any oa 1,42 € Col (A) for which there
exist vectors ¢i and cy such that aea ) = Acy, aqp = Acy, |ci| < K and ||ca||, < K, where the constant

K < oo does not depend on N, we have

S T
IMasnanl =0, (24N ). (A7)

and

82 T
(Maypoa1, Maypaas) =y Maypaas =0, ( ]?VN) (A.8)

where M oy g is orthogonal projection matriz that projects onto the orthogonal complement of Col (A + B).
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Lemma A.2 Suppose Assumptions 1-5 and 7 hold and (N, T, pr) I, 0. Then

T
1
T Z Yit—1Eit 20, uniformly in i (A.9)
t=1
1 I
T Z Wi t—sEit 2 k(x)l,umformly n i, (A.10)
t=1

and, if also p3./T — 3 for some constant 0 < 3 < oo,

T

1

T Zhw,t—qut =0, (Tﬁl/z) , uniformly in i and q, (A.11)
t=1

fori=1,2,..N,q=1,2,...pr, and s =0,1. The same results hold when e is replaced by n;, and V;;.

Lemma A.3 Suppose Assumptions 1-5 and 7 hold and (N, T, pr) I, 00 such that 3 )T — 3, 0 < 3 < 0.
Then

EMLE; » , .

‘T — 3¢ uniformly in i, (A.12)
and =M. F

% RN Q. uniformly in i, (A.13)

where ;¢ is positive definite and given by

Bie = Quei + Qi (A.14)
and
Qis = cov[S' ¥y, (L) Cif,, CIf). (A.15)
in which
Q\Ilgi =Var [S/‘I’Ei (L) eit] , in =Var [S/‘I’gi (L) Crft] B (A16)

C: = M.C;, M, = I, — CC™T is orthogonal projector onto the orthogonal complement of Col (C),
U (L) =2, \IJ&ZLL’ is defined in (A.6), selection matriz S is defined in (A.5) and e;; = (Eit,vgt)'. When
factors are serially uncorrelated, then Qg = 37, S Wi (C;QrCY') Oy, S and Qip = 8" Wi (C2;CY),
where Q; = Var ().

Lemma A.4 Suppose Assumptions 1-5 and 7 hold and (N,T,pr) 9, o such that 3 /T — 3 for some

constant 0 < 3¢ < co. Then,
E,’L-Mhél‘ D

T 2]%91“, uniformly in i, (A.17)
EMun; » . o
—F 21%91“, uniformly in 1, (A.18)
and =M, 0
= VpUi p . o
— . Al
T 2lcm4(-)1x1’ uniformly in (A.19)

Lemma A.5 Suppose Assumptions 1-5 hold and unobserved common factors are serially uncorrelated.

Then, as (N, T, pr) L 50, we have

N

1 =M,F

— ) Yppl il il . A2

N Z; i€ —p i 2k1.-'91><1 (A.20)
1=
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Lemma A.6 Suppose Assumptions 1-5 hold and (N, T, pr) 9, 00 such that and p2/T — 0. Then,

Y B ZMLE; »
VN N ' n i A21
T T = zkm+192k1+1 uniformly in i, ( )
=M €; EMye; p
N=— N ) n g A.22
T T 2k'$-91><1 uniformly in i, ( )
=M, F =M, F , ‘ .
N T~ N T 2k:+01><m uniformly in i. (A.23)
E/-l\_/IqT],- =My, p . o
3 7 _ 1 1 A.24
T T 2km91x1’ uniformly in i, ( )
and ) )
=M, EMpd, ) .
¢7i _ZihTiB g , uniformly in 1. (A.25)

T T 2k, +1x1

Lemma A.7 Suppose Assumptions 1-5 hold and (N, T, pr) 9, 00 such that N/T — 3, for some 0 < 3 < 00,
and p%/T — 0. Then,

—
=
—

N
1 IMpe; p
VN ; T 2k191x1' (4.26)

A.3 Proofs of Lemmas

Proof of Lemma A.1. Hilbert projection theorem (see Rudin, 1987) implies

[Maypoa| < ||C¥A,1 —Batsl> (A.27)
for any vector B4, 5 € Col (A + B). Consider the following choice of B4, g,
SN
BA+B = Z Pae+bzafcléa (A28)
(=1

where Pg,1p, is orthogonal projector onto Col (a; + by), and c1¢, for £ = 1,2, ..., sy are elements of vector

1. Using aq1 = Aci=> ;Y aecre, (A.27) with B4, p given by (A.28) can be written as

SN SN
g aecw—g Py, tv.a0cie

IMaypoanl <

£=1 (=1
Using now the triangle inequality, we obtain
SN
IMarpaasll < > llaer — Poyppacci
=1
SN
< Z lere] lae — Pa,tp a0l (A.29)
r=1

Next, we establish an upper bound to |la; — Py, 4p,a¢||. Consider the triangle given by a;, P,,1p,a¢ and
ay + by. Hilbert projection theorem (see Rudin, 1987) implies

lag — Paoyrp,acll < |lag — (ar +be) 7|l
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for any scalar v and setting v = 1 we have

lae = Poqpaell < [lag—ap+ by,
bl
O, <r]1\,/2N*1/2) .

IN

Using this result in (A.29) and noting that |c1¢] < K by assumption, it follows that

SN’I"l/2
Maypoaal =0y <]V'1]/V2> :

as desired.
Consider now the inner product of vectors M g4 poa,1 and Mgy pos 2. Using Cauchy-Schwarz inequal-

ity, we obtain
lay \Maspaas| = |(Maypaai) Maypaas)| < [Marpaar| |[Maspaasl|.

But (A.7) implies that both |[Maypoaa 1| and [Maypoa 2| are O, (SN\/W/\/N> These results establish
(A.8), as desired. m

Proof of Lemma A.2. Note that all processes, €;;, 7;;, Pit, Yit, wir and hy,, are stationary with absolutely
summable autocovariances and their cross products are ergodic in mean. Lemma A.2 can be established in
the same way as Lemma 1 in Chudik and Pesaran (2011) by applying a mixingale weak law. m

Proof of Lemma A.3. Lemma (A.3) can be established in a similar way as Lemma A.5 in Chudik,
Pesaran, and Tosetti (2011) and by observing that M, is asymptotically the orthogonal complement of the
space spanned by Cf;. m

Proof of Lemma A.4. Let us denote the individual columns of E; as §,,., for s = 1,2,...,2k + 1, and
define the scaled vectors €5, = T-1/2¢,, and € = T~'/?¢;. Since the individual elements of &,, and
g; are uniformly O, (1), we have ||€ O, (T*?), |lei|| = O, (T*/?) and therefore ||£5,.|| = O, (1) and

@8- H - i5-

<&

lle?]l = Oy (1). Now consider the inner product

<Mh£;‘>s-v Mh5§> = <£;‘>s-ﬂ E;’)> + <Ph£;‘>s-v Ph€§> ’ (A?’O)

where (a,b) = a’b denotes the inner product of vectors a and b, and P, = H, (H,H,)" H/, is the
orthogonal projection matrix that projects onto the column space of H,,. Consider the probability limits of
the elements in (A.30) as (N, T,pr) 2 oo such that p3./T — 5 for some constant 0 < » < co. (A.9) and
(A.10) of Lemma A.2 establish that

€. .e) o, fors=1,2,..,2k + 1. (A.31)
Consider the Euclidean norm of the second term of (A.30). Using Cauchy-Schwarz inequality we obtain the

following upper bound,

[(Pr&ls.. Pred) | = [IPr& | [IPreT] (A.32)
where (by Pythagoras’ theorem)!?
IPr€l ]l < 11€5.1 = Op (1) (A.33)

et My, = (Ir—py — Py) and note that €5, = Mp€2, + Pr€2,. Vectors Mp£2, and P,&2,. are orthogonal and
therefore [ML€2, + Pags, | = M2, I + [P€s, 5 Tt now follows that /€5, 2 = [IMuES | + [Pe2, I, but
since | Mn&5,.||* > 0, we obtain [|€5,.1* > || P&, ||*.
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Now we will establish convergence of ||Pref| in probability. By spectral theorem there exists a unitary
matrix V such that

AV H, H, V= b Tc;DT+1><((13+1—7"c)PT (A.34)

T 0 0
(k+1=re)pr Xrepr+1  (k+1l—=rc)pr X (k+1—7c)pT
where D is r.pr + 1 dimensional diagonal matrix with strictly positive diagonal elements and r. = rank (C).
Also by assumption f; is a stationary process with absolute summable autocovariances, and so is h,,;. Further-
more, H,, H,,/T = O, (1) as well as the diagonal elements of D have nonzero (and finite) probability limits.
Partition unitary matrix V = (V1,Vy) so that T7-'V,H/, H, V; = D and define U; = T~'/?H,V,D~1/2,

Note that U; is orthonormal basis of the space spanned by the column vectors of H,,, namely

 H/ H, _
UU, = D—l/Qvlele 1/2

— D—l/QDD—l/Q
= ITcpTJFl'
Scaled matrix T~'/2H,, can now be written as 7~*/?H,, = U;D'/?V/. Consider

JH e ,
D*l/Qvli;ez = D2V, V,D'/2U e = U'e?,

where we have used that V/lVl is an identity matrix since V7 is unitary. Using now the submultiplicative

property of matrix norms and (A.11) of Lemma A.2, we obtain

_ /H;UEi
Uil = |pevi
H e,
< Dfl/QH AV w1
< o ivin ||
- 0, (T*W),

where HD_l/ QHOO = O, (1) since the diagonal elements of the diagonal matrix D have positive probability
limits, and ||[V/]|, = Op (1) since V; is unitary. This establishes that the individual elements of the vector

(&% are (uniformly) O, (T~%/2). Consider next Pj,e?, which is an orthogonal projection of € on the space
spanned by the column vectors of H,,. Since Uj is an orthonormal basis of this space, we can write Ppef

as the following linear combination of basis vectors,'!

(re+1)pr+1
Pre; = Z (7, u1;) wyy, (A.35)

i=1

where uy, for j = 1,2, ..., rcpr+1, denote the individual columns of U;. But we have shown that [(e7,uy;)| =

"'The column vectors in U are orthogonal and therefore for any vector a € Col (U) we have a =

yrepTHL (am1)

e >u1j. But (ui;,u1;) = 1 since each of the column vectors contained in U have unit length (or-
upj,ug;

thonormality) and we obtain a = Z;C:’}TH (a,u1;) u;. (A.35) now follows by letting a = Pref and noting that
<P}L€§,U1j> = <€?,u1j> since Phul]' = uij;.
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O, (T7Y/?) and |luy;|| = 1 (orthonormality), and therefore

Pt =0, (2L). (A.36)

Using (A.33) and (A.36) in (A.32) yields

|(Pr2, Pl | = O, (5;) ,

for s =1,2,...,2k + 1, and using this result together with (A.31) in (A.30) we obtain

(M€, Mped)ll. 0,
as desired. This completes the proof of (A.17)

(A.18) and (A.19) can be established in a similar way by noting that Lemma A.2 implies |7~ '&/n), HOO it
Oand |[(n?, T~V?H,)|| _ = O, (T~'/?) (required to establish (A.18)) and also [T~ E]d;|| _ 5 0, [|[(97,T~V/?H,)||_ =
O, (T~1/?) (required for (A.19)). m

Proof of Lemma A.5. Define
=EM,F

T

$ir = 2%1 7771'7

and consider the cross section average pp = N~} Zf\il @, Note that

Blpm)=, 0 (A37)
and
E (soiTQO;T) = 2kx+192km+1 for i 7& j7 Z»J = 1,27 "'7Na (A38)

since the unobserved common factors are serially uncorrelated and independently distributed of n.,;, and n.,;
is independently distributed across i. Next, we show that the individual elements of E (¢, ) ) are bounded
in N. 3¢ defined in Lemma A.3 is invertible under Assumption 7 and in particular HE;&I ‘ < K < o0. Using

Cauchy-Schwarz inequality, we obtain

E |:(Eistf2tn'yil) 2] < \/E (gjst) E <f?t77ii€) =0(1),

fors=1,2,...,2k+ 1, and £ = 1,2, ...,m, where Eist are the individual elements of E;Mjy, ;,,has uniformly
bounded 4-th moments under Assumption 7, and E ( féniiz) =E(f})E (niZ[) is also uniformly bounded
under Assumptions 2 and 3. It follows that there exists a constant K < oo, which does not depend on N
and such that

| E (pirpir)ll < K. (A.39)

Using now (A.38)-(A.39), we obtain
IVar (@) =0 (N7). (A.40)

(A.37) and (A.40) imply @, = 0, as desired. m

Proof of Lemma A.6. Denote the individual columns of E; by &,.., s =1,2,...,2k + 1 and consider

159

é{is-l\_/[qgi& - E;s-MhEis‘ = Hl\_/‘[qusHQ - ||Mh£zs||2 ) (A41)
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for s =1,2,...,2k + 1. Hilbert projection theorem (see Rudin, 1987) implies

IM& || < 1€, — @l

for any vector oy € Col (Qw) Choose oy = P1§;,. — 1\_/Ith£Z-SA, where P, is orthogonal projector matrix
onto Col (Qw), and note that o, = (IT_pT — 1\7Iq) P&, € Col (Qw) Hence,

||Mq£7e H2 < HSZG - Phgis- + MQP}LéiS‘ ||2
< [IMigi + M P |
< ||Mh£zs||2 + ||Mth£is- H2 +2 <Mh£is-a Mth6i5-> ) (A42)
where we used My, = Iy_,, — P}, to obtain the second inequality, and we used [a+b||* = |ja||> + ||b||* +

2 (a,b), for any vectors a and b, to obtain the third inequality. Similarly, we obtain the following upper
bound on |[M&;,.||°,

HM}LE'L'S‘HQ < ||€is~ —Py. + M,LquisMQ
< ||Mq£is~ +M,P.¢,.. H2
<ML |7+ [IMPE ||+ 2 (MLE,, MAPE,) (A.43)

Using (A.42) and (A.43) in (A.41) yields the following lower and upper bounds,

et < Moo |” = IMaE|® < eonrs (A.44)
where
€1,NT = HMth‘Eis- ||2 +2 <Mq£is~a Mhlsqﬁis-> ) (A'45)
and
eont = |MyPr&i ||” +2 (Mg, MPAE,,) - (A.46)

Note that P&, belongs to Col (Q.) and ||P&,..|| < [1€;..Il = Op (VT — pr) since the individual elements
of §;,. are uniformly O, (1). Also, Q. = H, + V,,, where elements of V,, are uniformly Op (N*1/2),
whereas the elements of H,, are O, (1). Using Lemma A.1 (by setting A = H,, + V,,, B = —V,, and

as1 =PyE,,.), we obtain

(A.47)

IMLBE, || = O, (pT VT—W) _

VN

Similarly, Lemma A.1 can be used again (by setting A = H,,, B =V, and a1 =Ppg,,.) to show that

T pr).
VN

Now consider the inner product on the right side of (A.45). Using Cauchy-Schwarz inequality, we have

H]‘\_/’[QEMH ||Mh]~3q£i5. {7

o, (W) (A.49)

where ||1\_/Iq£is_H <||&;s.]l = Op (\/T —pT), and ||th’q§is_H =0, (pTN’l/Q\/T —pT) by (A.47). Similarly,

|M£@A=%( (A4S)

IN

| <1\_/Iq§is-7 MthSis. > ‘
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using [Mp&,..|| < [1€:5.1l = Op (VT = pr), (A.48) and the Cauchy-Schwarz inequality, we obtain

| <Mh€is~a Mthéis' > |

IN

IMRE;, || [ MPrE, |

- 0, (W} (A.50)

Using (A.47)-(A.50) in (A.45) and (A.46) we obtain

2 (T —pr)? T —
conr =0, <1>T<NPT>> ‘o, <pT(mpT)> for - 1.2

and using this result in (A.44) yields

M, P || Mg, | T T_
\/N(H"T _H’} ) _ O”<p2T(T2 z;\z;))+0p(?T<T2pT>>,
P
N 0,

for s =1,2,...,2k + 1, as (N, T,pr) — oo such that p5/T — 0. This establishes that the diagonal elements
of

=M, E; EMLE;
N q=" N ?
VN T VN T

tend to 0 in probability uniformly in 7.

Now consider the off-diagonal elements. Convergence of individual terms

" M E, L MuE,
\/]VEZS' qulé" — \/Néw' Thgw', fors#4{,s,4=1,2, ... k+1,
can be established following the same arguments as above, but using (A.8) instead of (A.7) of Lemma A.1.
This completes the proof of (A.21). (A.22)-(A.25) can be established in the same way. m

Proof of Lemma A.7. Using the identity Mj, = Ir_,, — P, where P}, is orthogonal projection matrix
that projects onto Col (H,,), we write the expression on the left side of (A.26) as:

N N
1 EMe; 1 e 1 =P e
= = = . A51
N “ T VN~ T /N T (A.51)

=1

=

First we establish convergence of the first term on the right side of (A.51). Let Ty = T(N) and py =
pr [T (N)] be any non-decreasing integer-valued functions of N such that limy .o, T = 0o and limy .o p5/T =
0. The first term on the right side of (A.51) can be written as

N — T

=y sy

- KNt,
N = Tn t=pr+1
where

N

L_y¢

KNt = it

TnVN

Let {{CNt}fi—oo}?:l be two-dimensional array of constants and set cy; = ﬁ for allt € Z and N € N.

&, and ¢, are independently distributed for any 4, j and ¢, and we have: E (kn¢) = 0, and the elements of



covariance matrix of ky+/cyt are bounded, in particular

/
KNt KNtK

Var () = (2 Nt
CNt CNt

N
ZE ztﬁ]tsltgjt) ’

=1

N
Z (IEIAPACTIN]

&

)

I
=
M) =

@
Il

—
Q.

I
=
M) =

@
Il

—
Q.

-

Noting that F (ﬁit£;t) is bounded in 4, j and ¢, and E (g;e}) = RR’ under Assumption 1, we obtain

N N

H (:JJ\JVZ)H % ;;E(Eitfjt) ,

~ 17 E (eer) 7,

IN

IN

IN

K
~ I HIRIR 7]l -

But ||7%y| = [[T~] = VN and |R|| < /[R][, |R]., < K, where |R||, and ||R|_, are postulated to be
bounded by Assumption 1, and therefore

HVar <"m) H =0(1). (A.52)

CNt

(A.52) implies uniform integrability of {kn:/cn:} and the array ky¢ is uniformly integrable L;-mixingale
array with respect to the constant array cy:. Using a mixingale weak law yields (Davidson, 1994, Theorem
19.11)
5w Y ke
t=pr+1 Iy ‘Ft =pr+1i=1 s, Pt

Convergence in L; norm implies convergence in probability. This establishes

’:/
'_'7,

1
\Fz_: 2k+1><1

(A.53)

as (N, T, pr) 7, 50 and p%/T — 0.
Next consider the second term on the right hand side of (A.51), and note that

EPne; 1 EH, <H’H >+H;Uei
T VT T T VT '
1
- \/»G;T'ﬁma
where
,  EH, (H,H,\"
T T T )
and




Define also
G, = ®§Z®hh,

i wt—pr ) denotes the individual rows of H,,, is 2k, +

in which @, = E (&tﬁ’wt), B, = (1, b, , ..}

1 x (k+1)pr + 1 dimensional matrix, and @, = E (hwthwt> is (k+1)pr +1x (k+1)pr + 1 matrix.
Elements of ©@¢; and ©y), are uniformly bounded and in particular

(I

il = , 1@¢ill, = O (1) and [|Ogf, =0 (1), (A.54)
because Yoo |E (&;gphwrat—e)] < K and >, | E (R, rythw,rt—e)| < K for any ri,ro = 1,2,...,k + 1 and
s =1,2,..k+ 1, where hy ¢ for 1 = 1,2, ...,k + 1 denotes individual elements of hy,; = ¥, (L) f; + ¢,y

and &, for s =1,2,...k 4+ 1 denotes individual elements of §;,. Using these notations, we can now write the
second term on the right side of (A.51) as

1 << EPre;, [N 1&
w1~ VT y G
N N
= 3\ = T (N E G’l?sl N :E 61) (A55)

Consider the first term inside the brackets on the right side of (A.55), and note that

!

1 N 1 N N N
El=NaGuv.||=) G, — E (9:9.;) G;. (A.56)
(viee) (yee) - miyerwae

Since g; is independently distributed of hwt and the stochastic processes in I bt are covariance stationary we
also have

1
E ('1951"19;]‘) = TE (H;UEZ‘ES»HU,) = Uij@hha (A.57)

where 0;; = E (i4€;51). Using (A.57) in (A.56) and applying the submultiplicative property of matrix norm
yields

1 N N
BNE] > 0iGi®mG

s 1=1j5=1 oo

1 N N
72 22 2 0l 1G] o 1@l 11Gl o

i=1 j=1

1Y 1Y /
(N i=1 ) (N i=1 >

where [|©4]|, = O (1), [Gill = 1©¢iOnnll, < [O¢ill €]l = O (1), and |Gyl = [[(O¢;On)|, =
1©¢;Onnll; < 11Ogjll, [1®nnll; = O (1), see (A.54). Using these results and noting that N ! vazl Zj\;l loii|l =
O (1) under Assumption 1, we obtain

1 1 /
E{=S"Gw.|[=Y G

INA
\w

N N
322 Lol
i=1 j=1

o0

zl= =

IN

(A.58)
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which in turn implies that
\/ﬁ.lig{g‘& 0 (A.59)
T N& 7T akix '

as (N, T,pr) 7, 00 such that N/T — 3z, for some 0 < 311 < 00.
Now consider the second term inside the brackets on the right side of (A.55). Using submultiplicative
property of matrix norms, we have

N

Z - G)Y

N
1
< 5 2 NIGir = Gill 19l - (A.60)
i=1

Note that 9¢; has zero mean and Var (9.;) = E (9:97;) = 04O, see (A.57), where 0;; and the elements
of ®y;, are uniformly bounded. It therefore follows that

9zl .. = Op (1) uniformly in ¢ and pr. (A.61)

Consider now the term VT [|G/, — G4||_, and first note that

=H, (H,H,\"
Gir -G = T <T> - @Ei@Zh
E'H, H, =/H,
= [ } l( > -0, [ T 962} CHA
H/ H,\"
+®51 ( T ) @;i_h‘| .
Hence
=H H H,\" =H
/ / = w w w g w
Gt -Gl < (3R -eq)| [|(Fe) -en| +|ZF-eq| lenl.
oo 0o oo

1196l (4.62)

+
(H;Hw> B @+]
T hh

Individual elements of Z/H,, /T — ©¢; can be written as ZthpT+1§

oo

7, th’;ﬂ st E (gi,r th;u s t) for r =
2,..,k+1and s = 1,2,...,(k+1)pr + 1, where ¢, , , and E;U,s)t are the elements of &;, and hy:. The

stochastic processes §; ., and h;, ; , are covariance stationary with absolute summable autocovariances and

we have Z?:pT+1 §i7r7ti~1;},s7t ({7 vt P s t) = O, (T~'/?) uniformly in i and py. This implies

EM o) =0, (2L uniformly in i (A.63)
T &i . =Up \/T unirormily 1 2. .

Lemmas A.7 and A.8 of Chudik and Pesaran (2013b) establish that in the full column rank case where
rank (C) =m and k + 1 = m, we have

H H,\ pr
(%) o) -0 (%),

VMMe@M::EOMJ%Jis%+1MT+1x(k+DpT+1mmﬂgﬂmanxﬁnmemﬂmanmmk
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case with k + 1 = m). Using generalized inverse instead of inverse, the diagonalization of H! H,,/T in
(A.34) and similar arguments as in Lemmas A.7 and A.8 of Chudik and Pesaran (2013b), the same result
can be established for the more general case when C does not necessarily have full column rank or when
rank (C) = m but k + 1 > m, namely:

) o
T hh

Using (A.54) and (A.63)-(A.64) in (A.62), we obtain

— 0, <pT> (A.64)

Gl — Gill., = O, (5%) , uniformly in 7. (A.65)

Using now (A.61) together with (A.65) in (A.60) yield

2

1
N <

K2

Y el P
< ( T Gz) 79574 - ka91X17 (A66)

as (N, T,pr) EX o0, and p2./T — 0. Finally, using (A.59) and (A.66) in (A.55), we obtain

1 i E;PhEi p 0 (A 67)
- 2, )
VN= T 2k +1x1’

when (N, T, pr) 7, 50 such that N/T — 3, for some 0 < 5 < 0o, and p%/T — 0. This completes the proof.
[

A.4 Proofs of Theorems and Propositions

Proof of Theorem 1. Equation (24), for t = pp + 1,pr + 2,...,T, can be written as (see (A.2))
yi=52m + Qud; +&; +m; + 9, (A.68)
where d; = (CZZ—, t0, 001, ...,5;pT)/, € = (Sipr+1,€ipr+2, e &ir) 1, is T — pr x 1 vector with its elements
given by Zszﬂ 8:¢Zwi—0, for t =pr + 1,pr +2,..,T, and 9; is T — pr x 1 vector defined in (A.3) with
its elements uniformly bounded by O, (N~1/2). Substituting (A.68) into the definition of #; in (26) and

) — 1 e .
noting that (E;MqE;) E/M,E,;m; = m;, we obtain

7—m = (EM,E) T EM, (Qud; + & + 1, + ;) . (A.69)
Note that M;Qu = Qu — Qu (Q’wa)+ Q,Q,=Qu—Qu = 0 and (A.69) reduces to
T—pr X (k+1)pr+1
:(Mq:( -1 ':/,Mq
w—m = | = i ;+ i A.
- ( T > T (ei+m; +9:) (A.70)

Consider the asymptotics (N, T, pr) EX o0, such that p3./T — s, for some constant 0 < 3¢ < co. (A.12) of
Lemma A.3 and (A.21) of Lemma A.6 show that 7~ 1E.M,E. converges in probability to a full rank matrix

=M=\
<Tq) =0, (1). (A.71)

and therefore
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Moreover, Lemmas A.4 and A.6 establish

m

— ) = v =/ \/ .
=Me s, EMyn; and =01 » (A.72)

0 - 0 - 0o .
2y t1x1 T 2y +1x1’ T 2y +1x1

Using (A.71)-(A.72) in (A.70) establish (28), as desired. m
Proof of Theorem 2. First suppose that the rank condition stated in Assumption 6 holds and consider
the asymptotics (N, T, pr) 2 0, such that p3. /T — 3, for some constant 0 < » < co. Using Theorem 1

and the definition of the mean group estimator 7ysg in (27), we have

N

~ 1 P
TVMG — N Zlﬂ'i — 2k191><1. (A73)

Assumption 4 postulates that w; = w + v,;, where v; ~ [ID (Qk 01 X QW> and the norms of 7w and Q,
2 t1X

are bounded. It follows that ||Var (N~ 52X, vy

] — ||€2:/N|| — 0 as N — o and

N
1
N;m—ﬂ': va - +1><1 ,as N — oo. (A.74)

(A.73) and (A.74) establish (29), as desired.
Now suppose that the rank condition does not hold. Using model (1)-(2), vector of observations on the

dependent variable, ¥; = (Yipr+1; Yipr+2s ...,yi,T)', can be written as (see (A.1))

where ¢y; = ¢yiTr—p, and F = (f1, 5, ..., £,,) with fo = (foprv1, foprt2s ...,fg,T)/ for £ =1,2,...,m. Substi-
tuting (A.75) into the definition of 7F; in (26) and noting that M,c,,; = Tq?Txl and (E]M,E]) ! EM,E;m; =
7;, we obtain the following expression for the mean group estimator,

N
-y Eneiis

[11

— N -
'M,e B E;M Fv,
Y, S (A76)

i Mz
[I]I

where \TIE’Z-T is defined in Assumption 7. Consider the asymptotics (N, T, pr) EN oo, such that p3./T — s,
for some constant 0 < 3¢ < oo. The probability limit of the first term in (A.76) is established in (A.74). As
before (see (A.71)), @5,12'T = O, (1) uniformly in ¢ and using also (A.17) and (A.22) of Lemmas A.4 and A.6,

respectively, we obtain
N —
1 ~ =Mye;
=Nl (Tttt} B o A.
N Z EiT ( T ) - 2k, +1x1 (A.77)

Finally, consider the last term on the right side of (A.76). Since ¥;¢ is nonsingular, (A.12) of Lemma A.3
and (A.21) of Lemma A.6 establish that \/I\’ElzT 2 2;51, and together with (A.23) of Lemma A.6 we have

N -
1 XL, EMF IH'MhF »
NZQEZT T iT NZ i_>2l<;z-',(-)1><1.

Note that v; = n,,; + (71” — ﬁww). F (ﬁw — ﬁyw) does not necessarily belong to the linear space spanned by
the column vectors of Q due to the truncation lag pr and, in particular, we have T-'M;F7,, = O, (pP7),
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T-'M,F7,,, = O, (N~1/2pP7), and T E]M,Fy, = T'EM,Fn., + O, (N~'/2pP7) + O, (p"), where
Myw = Op (N’l/z), lp| < 1 and function p?, for £ = 1,2, ..., is an upper bound on the exponential decay of
coefficients in the polynomial A,, (L) = Zf\;l w; (Tgy1 — A,-L)_1 A&%Ci in the definition of Q,,. Now, when

unobserved common factors are serially uncorrelated, we can use Lemma A.5 to obtain

N —
1 ., [EM,F\
N Z Peir ( T ) T o (A.78)

Note that when factors are serially correlated and the rank condition does not hold then T_lEQManw» does

not converge to o 21 . and as a result equation (A.78) would not hold. Using (A.74), (A.77) and (A.78) in
x X

(A.76) establish 7wy ¢ — =, when (N, T, pr) 7, 0 such that p% /T — 5 for some constant 0 < 3 < oo, as
desired. m
Proof of Theorem 3. Multiplying (A.76) by v/N and substituting m; = 7 + v,; we obtain

N N :.M
VN (g ) = o a0y, S

[I] I

N — N
=M F.
Z 1771 (A.79)

ﬂ\
ﬂ\
3\

where ‘/I\’E7iT is defined in Assumption 7. Consider the asymptotics (N, T, pr) 7, 00 such that N/T —
and p3./T — 3z, for some constants 0 < 3¢, 75 < co. We establish convergence of the individual elements
on the right side of (A.79) below.

It follows from (A.21) of Lemma A.6 and (A.12) of Lemma A.3 that

\i'E)iT — e = 0p (N_l/Q) uniformly in 3. (A.80)

(A.80), (A.22) of Lemma A.6, and (A.26) of Lemma A.7 imply

ﬂ\

N EMge;
Z: =TT kaglxl' (A.81)
As in the proof of Theorem 2, v, = n.,; + (7,” — ﬁ,yw), F (iw — ﬁ,yw) does not necessarily belong to the
linear space spanned by the column vectors of Q due to the truncation lag pr and, in particular, we have
T'EM;Fy, = T'EM,Fn.,; + O, (NV2pPT) + O, (pP7), where 7, = O, (N"1/2), |p| < 1 and
function p?, for ¢ = 1,2, ..., is an upper bound on the exponential decay of coefficients in the polynomial
Ay, (L) = vazl wi (Tjr — ALY Ag}Ci in the definition of Q. Using now (A.21) and (A.23) of Lemma
A.6 and noting that v/ NpPT — 0 yields

N — TN N = —1 =
_ :4M 1 iMLE; EM,F P
mpp—— t ; 0 . A.82
Z = T VN Zl < ) T kg1 ( )

ﬂ\

Using (A.81)-(A.82) in (A.79), we obtain

where

N N _
1 1 HMhEZ) ='M,F
Ui = —F—= Y U+ —— : : A.83

and recall that v; and n,,; are independently distributed across i. It now follows that VN (Rye — ) —
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N ( 0 ,E]v[g), where
2k, +1x1
1 N
_ . -1, / s—1
Yua = Qr + 1\}1_{110 N E_ :Eig QZvaQifEig ) (A.84)

in which Q, = Var(m;) = Var (vx), @y = Var(y,) = Var (n,,), and Z;e = plimT'E]M,E; and
Qir = plimT'E.M,F are defined by (A.12) and (A.13) of Lemma A.3, respectively. When the rank

condition stated in Assumption 6 hold then Q;; = o 01 and X ¢ reduces to g = Q.
z+1xXm

Consider now the non-parametric variance estimator (32) and the same assumptions on the divergence
of (N, T, pr). We have

~ ~ ~

T, —Tyme = (T — 7))+ (7 —Tma),

where VN (7 — 7 p¢) 4N <2k 01 v EMg) with || Zp¢|| < K. It therefore follows that
+1x

N N

=~ = =~ = I ]- =, = ! 71/2
ﬁ;(ﬂ'l Tva) (7 ﬂ-MG)_iN—l;(ﬂ-l ) (7; 7T)-|—Op(N )

Consider now 7r; — 7. As before, using the definition of 7; in (26) and substituting 7; = 7 + v; we obtain

L XN: =EM,E\ CEMF, (EMF\ (EM,E\
N 14 T T hii\ T T

1
= Z ’Uﬂ'Z'UTM + Z 21&' sznwrlszfzzg + Op (]')

where ¥, = plimT'EM,E; and Q;y = plimT'E/M,F are defined by by (A.12) and (A.13) of
Lemma A.3, respectively. Note that v,; and 7., are independently distributed across i and therefore

ﬁ Zfil (7 —m) (7 —7) — Bye 2 0 and 6 2 B, as required. ®

57



References

Bai, J. (2009). Panel data models with interactive fixed effects. Econometrica 77, 1229-1279.

Bai, J. and S. Ng (2007). Determining the number of primitive shocks in factor models. Journal of Business
and Economic Statistics 25, 52-60.

Berk, K. N. (1974). Consistent autoregressive spectral estimates. The Annals of Statistics 2, 489-502.

Bruno, G. S. (2005). Approximating the bias of the LSDV estimator for dynamic unbalanced panel data
models. Economics Letters 87, 361-366.

Bun, M. J. G. (2003). Bias correction in the dynamic panel data model with a nonscalar disturbance
covariance matrix. Econometric Reviews 22, 29-58.

Bun, M. J. G. and M. A. Carree (2005). Bias-corrected estimation in dynamic panel data models. Journal
of Business and FEconomic Statistics 23, 200-210.

Bun, M. J. G. and M. A. Carree (2006). Bias-corrected estimation in dynamic panel data models with
heteroscedasticity. Economics Letters 92, 220-227.

Bun, M. J. G. and J. Kiviet (2003). On the diminishing returns of higher order terms in asymptotic
expansions of bias. Fconomic Letters 19, 145-152.

Canova, F. and M. Ciccarelli (2004). Forecasting and turning point predictions in a Bayesian panel VAR
model. Journal of Econometrics 120, 327-359.

Canova, F. and M. Ciccarelli (2009). Estimating multicountry VAR models. International Economic Re-
view 50, 929-959.

Canova, F. and A. Marcet (1999). The poor stay poor: Non-convergence across countries and regions.
Mimeo, June 1999.

Chudik, A. and M. H. Pesaran (2011). Infinite dimensional VARs and factor models. Journal of Econo-
metrics 163, 4-22.

Chudik, A. and M. H. Pesaran (2013a). Aggregation in large dynamic panels. forthcoming in Journal of
Econometrics.

Chudik, A. and M. H. Pesaran (2013b). Econometric analysis of high dimensional VARs featuring a
dominant unit. Fconometric Reviews 32, 592-649.

Chudik, A., M. H. Pesaran, and E. Tosetti (2011). Weak and strong cross section dependence and estima-
tion of large panels. Fconometrics Journal 14, C45—C90.

Davidson, J. (1994). Stochastic Limit Theory. Oxford University Press.

Dhaene, G. and K. Jochmans (2012). Split-panel jackknife estimation of fixed-effect models. Mimeo, 21
July 2012.

Everaert, G. and T. D. Groote (2012). Common correlated effects estimation of dynamic panels with
cross-sectional dependence. Mimeo, 9 November 2012.

Everaert, G. and L. Ponzi (2007). Bootstrap-based bias correction for dynamic panels. Journal of Economic
Dynamics and Control 31, 1160-1184.

Forni, M., M. Hallin, M. Lippi, and L. Reichlin (2005). The generalized dynamic factor model: One-sided
estimation and forecasting. Journal of the American Statistical Association 100, 830-840.

Garcia-Ferrer, A., R. A. Highfield, F. Palm, and A. Zellner (1987). Macroeconomic forecasting using

pooled international data. Journal of Business and Economic Statistics 5, 53-67.

58



Giannone, D.; L. Reichlin, and L. Sala (2005). Monetary policy in real time. In M. Gertler and K. Rogoff
(Eds.), NBER Macroeconomics Annual 2004, Volume 19, pp. 161-200. MIT Press.

Hahn, J. and G. Kuersteiner (2002). Asymptotically unbiased inference for a dynamic panel model with
fixed effects when both N and T are large. Econometrica 70, 1639-1657.

Hahn, J. and G. Kuersteiner (2011). Bias reduction for dynamic nonlinear panel models with fixed effects.
Econometric Theory 27, 1152-1191.

Hahn, J. and H. Moon (2006). Reducing bias of MLE in a dynamic panel model. Econometric Theory 22,
499-512.

Hahn, J. and W. Newey (2004). Jackknife and analytical bias reduction for nonlinear panel models.
Econometrica 72, 1295-1319.

Hsiao, C., M. H. Pesaran, and A. K. Tahmiscioglu (1999). Bayes estimation of short-run coefficients in
dynamic panel data models. In C. Hsiao, K. Lahiri, L.-F. Lee, and M. H. Pesaran (Eds.), Analysis of
Panels and Limited Dependent Variables: A Volume in Honour of G. S. Maddala, Chapter 11, pp.
268-296. Cambridge University Press.

Hurwicz, L. (1950). Least squares bias in time series. In T. C. Koopman (Ed.), Statistical Inference in
Dynamic Economic Models, pp. 365-383. New York: Wiley.

Kapetanios, G., M. H. Pesaran, and T. Yagamata (2011). Panels with nonstationary multifactor error
structures. Journal of Econometrics 160, 326-348.

Kiviet, J. F. (1995). On bias, inconsistency, and efficiency of various estimators in dynamic panel data
models. Journal of Econometrics 68, 53-78.

Kiviet, J. F. (1999). Expectations of expansions for estimators in a dynamic panel data model; some
results for weakly-exogenous regressors. In C. Hsiao, K. Lahiri, L.-F. Lee, and M. H. Pesaran (Eds.),
Analysis of Panel Data and Limited Dependent Variables. Cambridge University Press, Cambridge.

Kiviet, J. F. and G. D. A. Phillips (1993). Alternative bias approximations in regressions with a lagged-
dependent variable. Econometric Theory 9, 62-80.

Lee, N., H. R. Moon, and M. Weidner (2011). Analysis of interactive fixed effects dynamic linear panel
regression with measurement error. Cemmap working paper CWP37/11.

Mark, N. C. and D. Sul (2003). Cointegration vector estimation by panel DOLS and long-run money
demand. Ozford Bulletin of Economics and Statistics 65, 655-680.

Moon, H. R. and M. Weidner (2010a). Dynamic linear panel regression models with interactive fixed
effects. Mimeo, July 2010.

Moon, H. R. and M. Weidner (2010b). Linear regression for panel with unknown number of factors as
interactive fixed effects. Mimeo, July 2010.

Newey, W. K. and R.. J. Smith (2004). Higher order properties of GMM and generalized empirical likelihood
estimators. Econometrica 72, 219-255.

Pedroni, P. (2000). Fully modified OLS for heterogeneous cointegrated panels. Advances in Economet-
rics 15, 93-130.

Pesaran, M. H. (2006). Estimation and inference in large heterogenous panels with multifactor error
structure. Econometrica 74, 967-1012.

Pesaran, M. H., Y. Shin, and R. P. Smith (1999). Pooled mean group estimation of dynamic heterogeneous
panels. Journal of the American Statistical Association 94, 621-634.

Pesaran, M. H., L. V. Smith, and T. Yamagata (2013). A panel unit root test in the presence of a

multifactor error structure. forthcoming in Journal of Econometrics.

59



Pesaran, M. H. and R. Smith (1995). Estimating long-run relationships from dynamic heterogeneous
panels. Journal of Econometrics 68, 79-113.

Pesaran, M. H. and E. Tosetti (2011). Large panels with common factors and spatial correlations. Journal
of Econometrics 161, 182-202.

Pesaran, M. H. and Z. Zhao (1999). Bias reduction in estimating long-run relationships from dynamic
heterogenous panels. In C. Hsiao, K. Lahiri, L.-F. Lee, and M. H. Pesaran (Eds.), Analysis of Panels
and Limited Dependent Variables: A Volume in Honour of G. S. Maddala, Chapter 12, pp. 297-322.
Cambridge University Press.

Phillips, P. C. B. and D. Sul (2003). Dynamic panel estimation and homogeneity testing under cross
section dependence. Econometrics Journal 6, 217-259.

Phillips, P. C. B. and D. Sul (2007). Bias in dynamic panel estimation with fixed effects, incidental trends

and cross section dependence. Journal of Econometrics 137, 162—188.
Rudin, W. (1987). Real and Complex Analysis. McGraw-Hill.

Said, E. and D. A. Dickey (1984). Testing for unit roots in autoregressive-moving average models of
unknown order. Biometrika 71, 599-607.

So, B. S. and D. W. Shin (1999). Recursive mean adjustment in time series inferences. Statistics &
Probability Letters 483, 65-73.

Song, M. (2013). Asymptotic theory for dynamic heterogeneous panels with cross-sectional dependence
and its applications. Mimeo, January 2013.

Stock, J. H. and M. W. Watson (2002). Macroeconomic forecasting using diffusion indexes. Journal of
Business and Economic Statistics 20, 147-162.

Stock, J. H. and M. W. Watson (2005). Implications of dynamic factor models for VAR analysis. NBER
Working Paper No. 11467.

Zellner, A. and C. Hong (1989). Forecasting international growth rates using Bayesian shrinkage and other

procedures. Journal of Econometrics 40, 183-202.

Zellner, A.,; C. Hong, and C. ki Min (1991). Forecasting turning points in international output growth
rates using Bayesian exponentially weighted autoregression, time-varying parameter, and pooling tech-

niques. Journal of Econometrics 49, 275-304.

Zhang, P. and D. Small (2006). Bayesian inference for random coefficient dynamic panel data models.
Mimeo, 20 February 2006.

60



