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Abstract
This paper develops a cross-sectionally augmented distributed lag (CS-DL) approach to the
estimation of long-run effects in large dynamic heterogeneous panel data models with cross-
sectionally dependent errors. The asymptotic distribution of the CS-DL estimator is derived
under coefficient heterogeneity in the case where the time dimension (T) and the cross-
section dimension (N) are both large. The CS-DL approach is compared with more standard
panel data estimators that are based on autoregressive distributed lag (ARDL) specifications.
It is shown that unlike the ARDL type estimator, the CS-DL estimator is robust to
misspecification of dynamics and error serial correlation. The theoretical results are
illustrated with small sample evidence obtained by means of Monte Carlo simulations, which
suggest that the performance of the CS-DL approach is often superior to the alternative

panel ARDL estimates particularly when T is not too large and lies in the range of
30=<T<100.
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1 Introduction

Estimation of long-run effects, or level relationships, is of great importance in economics.
The concept of "long-run relations" is typically associated with the steady-state solution of
a structural macroeconomic model. Often the same long-run relations can also be obtained
from arbitrage conditions within and across markets. As a result, many long-run relationships
in economics are free of particular model assumptions; examples being purchasing power
parity, uncovered interest parity and the Fisher inflation parity. Other long-run relations,
such as those between macroeconomic aggregates like consumption and income, output and
investment, and technological progress and real wages, are less grounded in arbitrage and
hence are more controversial, but still form a major part of what is generally agreed-upon in
empirical macroeconomic modelling. This is in contrast to the analysis of short-run effects,
which are model specific and subject to identification problems.

This paper is concerned with the estimation and inference of long-run effects using panel
data models where the time dimension (7) and the cross-section dimension (N) are both
large. Such panels are becoming increasingly available and cover countries, counties, re-
gions, industries and firms, and typically feature dynamics in the form of lagged depen-
dent variables, slope heterogeneity (at least in the case of short-run coefficients), as well as
cross-sectionally dependent innovations. These three key features complicate estimation and
inference.

Earlier literature on the estimation of long-run effects using panel data, including the
pooled mean group approach (Pesaran, Shin, and Smith 1999), the panel dynamic OLS
approach (Mark and Sul 2003) and the panel fully modified OLS approach (Pedroni 2001),
allows for lagged dependent variables and heterogeneity of short-run dynamics, but it does
not allow for error cross-section dependence. Wrongly assuming that errors are independently
distributed leads to incorrect inference and in some cases inconsistent estimates, depending
on the nature of error cross-section dependence. For example, when cross-section dependence
is due to the presence of unobserved common factors, parameter inconsistency arises if the
factors and the regressors are correlated.

The problem of error cross-section dependence has been addressed in the literature pri-
marily in the context of panel data models without lagged dependent variables. See, for
example, the common correlated effects (CCE) approach of Pesaran (2006), the interac-
tive fixed effects estimator (IFE) of Bai (2009), or the quasi-maximum likelihood estimator
(QMLE) of Moon and Weidner (2010). A survey of the recent literature is provided by
Chudik and Pesaran (2014b). Two exceptions are Song (2013) who extends Bai’s approach
to allow for coefficient heterogeneity, and Chudik and Pesaran (2014a), who extend the CCE



approach to allow for weakly exogenous regressors (including lagged dependent variables).
Both approaches rely on the estimation of unit-specific ARDL specifications, appropriately
augmented with cross-section averages to filter out the effects of the unobserved common
factors, from which long-run effects can be indirectly estimated. We refer to this approach
as cross-sectionally augmented ARDL or CS-ARDL in short. The main drawback of com-
puting the long-run coefficients from CS-ARDL specifications is that due to the inclusion of
lagged dependent variables in the regressions a relatively large time dimension is required
for satisfactory small sample performance, especially if the sum of the AR coefficients in the
ARDL specifications are close to one. In the case of heterogenous slope specifications the
CS-ARDL estimates of the long-run coefficients could also be sensitive to outlier estimates
of the long-run effects for individual cross-section units.

This paper makes a theoretical contribution to the econometric analysis of the long run by
proposing a new approach to the estimation of the long-run coefficients in dynamic heteroge-
neous panels with cross-sectionally dependent errors. The approach is based on a distributed
lag representation that does not feature lags of the dependent variable, and allows for resid-
ual factor error structure and weak cross-section dependence of idiosyncratic errors. Similar
to CCE estimators proposed by Pesaran (2006), we appropriately augment the individual re-
gressions by cross-section averages to deal with the effects of common factors. We derive the
asymptotic distribution of the proposed cross-sectionally augmented distributed lag (or CS-
DL in short) mean group and pooled estimators under the coefficient heterogeneity and large
time and cross-section dimensions. We also investigate consequences of various departures
from our maintained assumptions by means of Monte Carlo experiments, including a unit
root in factors and/or in regressors, homogeneity of coefficients or breaks in error processes.
We also investigate whether the imposition of CS-DL estimates of long-run coefficients can
improve the estimation of the short-run coefficients.

The main advantage of the proposed CS-DL approach is that its small sample perfor-
mance is often better compared to estimating unit-specific CS-ARDL specifications, under a
variety of settings investigated in the Monte Carlo experiments when 7' is moderately large
(30 < T < 100). Furthermore, the imposition of CS-DL estimates of long-run coefficients
can substantially improve the estimates of short-run coefficients when 7" is moderately large.
However, the CS-DL approach should be seen as complementary and not as superior to the
CS-ARDL approach. The main drawback is that, unlike the panel CS-ARDL approach, the
CS-DL approach does not allow for feedback effects from the dependent variable onto the
regressors. However, a careful investigation of the size of the small sample bias emanating
from the presence of such feedback effects suggests that the CS-DL approach can still out-
perform the CS-ARDL approach when T is moderately large. The relative merits of different



approaches are carefully documented in the paper, and our main conclusion is that the CS-
DL approach is a valuable complementary method for estimating long-run effects in panels
where the time dimension is moderately large.

The remainder of the paper is organized as follows. We begin with the definition of
long-run coefficients and discuss their estimation in Section 2. The next section introduces
the CS-DL approach to the estimation of long-run relationships. Section 4 investigates the
small sample performance of the CS-DL approach and compares it with the performance of
the CS-ARDL approach by means of Monte Carlo experiments. The last section concludes.
Mathematical derivations are relegated to the Appendix.

A brief word on notation: All vectors are column vectors represented by bold lower case
letters and matrices are represented by bold capital letters. ||A|| = /0 (A’A) is the spectral
norm of A, o (A) is the spectral radius of A.' a,, = O(b,,) denotes the deterministic sequence
{a,} is at most of order b,. Convergence in probability and convergence in distribution are
denoted by % and i, respectively. (N, T) 7, 00 denotes joint asymptotics in N and T, with
N and T — 00, in no particular order. We use K to denote a positive fixed constant that

does not vary with NV or T'.

2 Estimation of long-run or level relationships in eco-

nomics

The estimation of long-run relations can be carried out with or without constraining the
short-run dynamics. In this section, we focus on the estimation of long-run relations without
restricting the short-run dynamics and assuming that there exists a single long-run relation-
ship between the dependent variable, v;, and a set of regressors.” For illustrative purposes,
suppose that there is one regressor x, and suppose that z, = (i, 7;)" is jointly determined

by the following vector autoregression of order 1, VAR(1),
Z; = @Zt_l —+ €y, (1)

where ® = (¢;;) is a 2 x 2 matrix of unknown parameters, and e, = (ey,ex) is a 2-

dimensional vector of reduced form errors. Denoting the covariance of e, and e, by

INote that if x is a vector, then ||x| = /o (x’x) = v/x'x corresponds to the Euclidean length of the
vector X.

2The problem of estimation and inference in the case of multiple long-run relations is further complicated
by the identification problem and simultaneous determination of variables. The case of multiple long-run
relations is discussed for example in Pesaran (1997).



wVar (ezt), we can write
eyt = B (eys |ext) + us = weg + uy, (2)

where by construction w,; is uncorrelated with e,;, namely F (u;|e,;) = 0. Substituting (2)

for ey, the equation for the dependent variable y, in (1) is

Yo = O11Yi—1 + P1aTi—1 + Wegy + Uy (3)

Using the equation for the regressor z; in (1), we obtain the following expression for e,

Cat = Tt — Po1Yi—1 — PoaTi_1,

and substituting this expression for e,; back in (3) yields the following conditional model for
Yt
Yr = @Yi1 + Bowe + frae1 + uy, (4)

where
P = G1; — Whay, By =w, B1 = P13 — WPhay. (5)

Note that w; is uncorrelated with the regressor z; and its lag by construction. (4) is
ARDL(1,1) representation of y; conditional on z;, and the short-run coefficients ¢, f3,, and
[, can be directly estimated from (4) by least squares. Model (4) can also be written in the

form of the error-correction model,
Ay = — (1= 9) (y—1 — 0z11) + BoAws + uy,
or as the following level relationship
yr = Oxy + (L) Az + 1y, (6)

where @; = (1 — <,0L)_1 ug, o (L) = Y02 ault, ap = > oeyi10s, for £=0,1,2, ..., and

(L) = 6" = (1= L)~ (By+ B1L).
£=0

The level coefficient, @, is defined by

0250"‘51
1—¢p



Note that if z, is integrated of order one (I (1) for short) then (1, —#)" is the cointegrating
vector and the level relation (6) is also cointegrating.

The level coefficient 6 can still be motivated as the long-run outcome of a counterfactual
exercise even if z; is stationary . One possible counterfactual is to consider the effects of a

permanent shock to the xz; process on g; in the long run. Let

gyt = lim F (yt+s — ,uy7t+S|It_1,ex,t+h =o0,, for h=0,1,2, ) ,

S§—00

and similarly

grt = lim F (JUHS — My irs| Zt-1, €xp4n = O, for b =0,1,2, ) ,

S§—00

where p,, and p,,, respectively, are the deterministic components of y; and z; (in the cur-
rent illustrative example deterministic components are zero) and Z; is the set containing all

information up to the period ¢. Using (1) and noting that E (e, |e;r) = wey, we obtain

Gyt = Gy, Gat = gwfg
g ) w _ wWtd1—wdyy
g = gy _ (12 _ ‘I)) X O = _¢11+¢22w_<;5i117¢£121—~:k¢112¢21_1 O
z P11+ P22— 11022+ P12021—1

Gy W+ Qg — Whny

9z 11— (P11 — Wﬁbzl),

which upon using (5), yields, g, = 6g,, namely the long-run impact of a permanent change

and

in the mean of x on y is given by 6. Note that only in the special case when the reduced form
errors are uncorrelated (w = 0), is the short-run coefficient /3, in the ARDL model (4) equal
to 0 and the long-run coefficient 6 reduces to ¢,/ (1 — ¢;;). But, in general, when w # 0,
the short-run coefficient 3, is non-zero and contemporaneous values of the regressor should
not be excluded from (4). In the stationary case with regressors not strictly exogenous, 6
depends also on the parameters of the x; process and the estimation of 6 should therefore
be based on (4).

An alternative way to show that ¢ is equal to the ratio g,/g, is to consider the ARDL
representation (4) for the future period ¢t 4 s, given the information at time ¢ — 1. We first
note that

Yirs = PYtrs—1 + BoTers + B1leys—1 + Usys,

and after taking the conditional expectation with respect to {Z;_1, e, 4+n = 04, for h=10,1,2, ...

3Note that, in the stationary case, Yo, ®¢ = (I — o).



taking limits as s — oo, and noting that in the stationary case g, = g, and g,; = ¢,, we

obtain
9y = ¢9y + Bogz + 519z,
and hence
9y _ bt By
9o 1—v ’
as desired.

Regardless of whether the variables are integrated of order one or integrated of order zero
or whether the regressors are exogenous or not, the level coefficient 6 is well defined and can
be consistently estimated. The rates of convergence and the asymptotic distributions of the
ARDL estimates of 6 are established in Pesaran and Shin (1999). See, in particular, their
Theorem 3.3.

2.1 Two approaches to the estimation of long-run effects

Consider now the problem of estimation of long-run effects in heterogeneous dynamic panels
with a multi-factor error structure. Let ;; be the dependent variable of the i*" cross-section
unit, x;; be the k£ x 1 vector of unit-specific regressors, and consider the following panel

ARDL(py;, psi) specification,

Dyi Pzi

Yit = Z PipYit—t + Z B;zxi,t—é + U, (7)
=1 =0

wir = Yk + €is (8)

fori =1,2,....N and t = 1,2,...,T, where f; is an m x 1 vector of unobserved common
factors, and p,; and p,; are the lag orders chosen to be sufficiently long so that u; is a

serially uncorrelated process across all 7. The vector of long-run coefficients is then given by

Pzi

9, = =07 (9)
1—- ]5:1 Pie

There are two approaches to estimating the long-run coefficients. One approach, already
considered in the literature, is to estimate the individual short-run coefficients {¢,,} and {3,,}
in the ARDL relation, (7), and then compute the estimates of long-run effects using formula
(9) with the short-run coefficients replaced by their estimates {¢,,} and { BM} We shall
refer to this approach as the "ARDL approach to the estimation of long-run effects". The

advantage of this approach is that the estimates of short-run coefficients are also obtained.



But when the focus is on the long-run coefficients, 8; can be estimated directly without first
estimating the short run coefficients. This is possible by observing that the ARDL model,
(7), can be written as

Yir = 0% + o (L) Axyp + Ty, (10)

where @y = ¢ (L) s ¢, (L) = 1= Y% oult, 0 = 8, (1), 8 (L) = ¢ (L) B, (L) =
Sto0ilt, B (L) = Y207 By Lt and a; (L) = Y7203, 8,LF. We shall refer to the
direct estimation of 6; based on the distributed lag representation (10) as the "distributed
lag (DL) approach to the estimation of long-run effects". Under the usual assumptions
on the roots of ¢, (L) falling strictly outside the unit circle, the coefficients of a; (L) are
exponentially decaying; and it is possible to show that, in the absence of feedback effects from
lagged values of y;; onto the regressors x;;, a consistent estimate of 8; can be obtained directly
based on the least squares regression of y;; on x;; and {AXit_g}ZZD , where the truncation lag
order p is chosen appropriately as an increasing function of the sample size. But, when
the feedback effects from the lagged values of the dependent variable to the regressors are
present, u; will be correlated with x;; and the DL approach would no longer be consistent.
Note that strict exogeneity is, however, not necessarily required for the consistency of the
DL approach, since arbitrary correlations amongst the individual reduced form innovations
in e, are still allowed. After the individual estimates ; are obtained, either using ARDL
or DL approach, they can then be averaged across ¢ to obtain a consistent estimate of the

average long-run effects, given by 6=N —iyN 0;.

2.2 Pros and cons of the two approaches to the estimation of long-

run effects

Consider first the ARDL approach, where the estimates of long-run effects are computed
based on the estimates of the short-run coefficients in (7). In the case where the unobserved
common factors are serially uncorrelated and are also uncorrelated with the regressors, the
long-run coefficients can be estimated consistently from the Ordinary Least Squares (OLS)
estimates of the short-run coefficients, irrespective of whether the regressors are strictly
exogenous or jointly determined with y;, in the sense that z; = (yi,x},) follows a VAR
model. The long-run estimates are also consistent irrespective of whether the underlying
variables are I (0) or 7 (1). These robustness properties are clearly important in empirical
research. However, the ARDL approach has also a number of drawbacks. The sampling
uncertainty could be large especially when the speed of convergence towards the long-run
relation is rather slow and the time dimension is not sufficiently long. This is readily apparent

from (9) since even a small change to 1—>",%| ¢;, could have large impact on the estimates of



0; when Y 7" ,, is close to unity. In this respect, a correct specification of lag orders could
be quite important for the performance of the ARDL estimates of 8;. Underestimating the
lag orders leads to inconsistent estimates, whilst overestimating the lag orders could result
in loss of efficiency and low power when the ARDL long-run estimates are used for inference.

In the more general case when the unobserved common factors are correlated with the
regressors then LS estimation of the ARDL model is no longer consistent and the effects of
unobserved common factors need to be taken into account. There are so far two possible
estimators developed in the literature for this case:* a principal-components based approach
by Song (2013) who extends the interactive fixed effects estimator of Bai (2009) to the
dynamic heterogeneous panels, and the dynamic common correlated effects mean group
estimator suggested by Chudik and Pesaran (2014a). A recent overview of these methods is
provided in Chudik and Pesaran (2014b). These estimators have (so far) been proposed only
for stationary panels, and are subject to the small 7" bias of the ARDL approach discussed
above. Bias correction techniques can also be used, but overall they do not seem to be
effective when the speed of adjustment to the steady state is slow.’

The main merit of the DL approach proposed in this paper is its robustness along a
number of important dimensions, and the fact that it tends to exhibit better small sample
performance as compared to the panel ARDL estimates when the time dimension 7" is not
very large. Specifically, (i) it is robust to the possibility of unit roots in regressors and/or
factors, (ii) it is applicable irrespective of whether the short and/or long-run coefficients are
heterogenous or homogeneous, (iii) it is robust to an arbitrary degree of serial correlation in &
and f;,° (vi) it does not require knowledge of the number of unobserved common factors under
certain conditions, and (v) it continues to be valid under weak cross-section dependence in
the idiosyncratic errors, €;;. These robustness properties are very important considerations in
applied research. In addition, the CS-DL approach does not require specifying the individual
lag orders, p,; and p,;, and is robust to possible breaks in €;. The main drawback of the

1y will be correlated with x;; when there

CS-DL approach, however, is that @;; = ¢ (L)
are feedback effects from lagged values of y;; onto the regressors, x;;. This correlation in turn
introduces a bias even when N and T sufficiently large, and therefore the CS-DL estimation
of the long-run effects is consistent only in the case when the feedback effects (or reverse
causality) are not present. The second drawback is that the small sample performance is very

good only when the eigenvalues of ¢ (L) are not close to the unit circle. We will provide small

4Related is also the quasi maximum likelihood estimator for dynamic panels by Moon and Weidner (2010),
but this estimators has been developed only for panels with homogeneous slope coefficients.

’Chudik and Pesaran (2014a) consider the application of two bias correction procedures to dynamic CCE
type estimators, but find that they do not fully eliminate the bias.

6Note that 6; is identified even when ¢;; is serially correlated.



sample evidence on the two approaches by means of Monte Carlo experiments in Section 4.

3 Cross-sectionally augmented distributed lag (CS-DL)

approach to estimation of mean long-run coefficients

3.1 The ARDL panel data model

To simplify the exposition we consider the panel ARDL data model (7) with p,;, = 1 and
pzi = 0,
Yir = Pi¥ii—1 + Bixu +vifi + i (11)

To allow for correlation between the m unobserved factors, f;, and the k£ observed regressors,

X;t, we assume that the latter is generated according to the following factor model
Xy = Dify 4 vy, (12)

fori=1,2,....,Nand t =1,2,....,T, where I'; is m X k matrix of factor loadings, and v;; are
the idiosyncratic components of x;; which are assumed to be distributed independently of
the idiosyncratic errors, €;. The panel data model (11) and (12) is identical to the model
considered by Pesaran (2006), with the exception that the lagged dependent variable is
included in (11). We have also omitted observed common effects and deterministics (such
as intercepts and time trends) from (11) to simplify the exposition. Introducing these terms
and additional lags of the dependent variable and regressors is relatively straightforward.
We are interested in the estimation of the mean long-run coefficients 8 = F (0;), where
0;,i=1,2,..., N are the cross-section specific long-run coefficients defined by (9), which for

pyi = 1 and p,; = 0 reduces to
- %‘.

We postulate the following assumptions.

0;

(13)

Assumption 1 (Individual Specific Errors) Individual specific errors €, and v;p are inde-
pendently distributed for all i,j,t and t'. €; follows a linear stationary process with absolute

summable autocovariances (uniformly in i),
[e.e]
Eit = Z asiﬁCi,t—é; (14)
=0

fori=1,2,..., N, where the vector of innovations ¢, = (Cy;,Cos, .., Cy) 18 spatially correlated



according to

Ct - RCt;

in which the elements of ¢, are independently and identically distributed (IID) with zero
means, unit variances and finite fourth-order cumulants. Matrix R has bounded row and

column matriz norms, namely |R| < K and ||R||; < K. In particular,

Var (ey) = Zoﬁwazi =0? < K < oo, (15)
=0

fori=1,2,.... N, where ng‘ =Var((y). vi follows a linear stationary process with absolute

summable autocovariances uniformly in i,
oo
Vit = E Siﬂ/i,t—e; (16)
=0

foriv = 1,2,....N, where vy is a k x 1 vector of IID random wvariables, with mean zero,

variance matrix Iy, and finite fourth-order cumulants. In particular,

>SSl

=0

Var (vi)|| = =[5l £ K < o0, (17)

fori=1,2,....N, where ||A| denotes the spectral norm of matriz A.

Assumption 2 (Common Factors) The m x 1 vector of unobserved common factors, f, =
(f1t, fots -y fmt), s covariance stationary with absolute summable autocovariances, distributed

independently of ¢;» and vy for all i,t and t'. Fourth moments of fu, for{ =1,2,....m, are
bounded.

Assumption 3 (Factor Loadings) The factor loadings, v;, and T';, are independently and
identically distributed across i, and of the common factors f;, for all i and t, with fixed means

~ and I', respectively, and bounded second moments. In particular,

Yi =+ N> My ~ 11D <m(l1,9~,) ,fori=1,2,....N,

and
vec (T;) = vec (L) + npy, My ~ 11D (k 0 1,Qp) ,fori=1,2,..., N,
m X

where £, and Qp are m x m and km x km symmetric nonnegative definite matrices, ||| <
K, 19| < K&, T[] < K, and || Q]| < K.

10



Assumption 4 (Coefficients) The long-run coefficients, 0;, defined in (13), follow the ran-

dom coefficient model
Hi:9+vi, ’UZN[ID <k01,99),f07’i:1,2,...,N, (18)
X

where ||0] < K, ||Q] < K, Qp is k x k symmetric nonnegative definite matriz, and the
random deviations v; are independently distributed of 7;, L';, ¢ji, Vi, and f; for all 1,5, and
t. The coefficients of the lagged dependent variable, v;, are distributed with a support strictly

inside the unit circle.

The polynomial 1 — ¢,L is invertible under Assumption 4, and multiplying (11) by
(1 — ;L) we obtain

yi = (=@ L) Bxu+ (1= L) it + (1 -9 L) e

= 0;xy; —a, (L) Ax; + 'y;f'it + &y, fori=1,2,....N, (19)

where Axy = Xy — X1, i (L) = 00,0 (1 — o) ' 8,14 £ = (1— ¢, L) £, and

En=(1- <p2-L)_1 ;. The distributed lag specification in (19) does not include lagged values

of the dependent variable, and as a result the CCE estimation procedure can be applied to

(19) directly. The level regression of y;; on x;; is estimated by augmenting the individual

regressions by differences of unit specific regressors x;; and their lags, in addition to the aug-

mentation by the cross-section averages that take care of the effects of unobserved common

factors. The CCE procedure continues to be applicable despite the fact that the errors, &;,
are serially correlated. (see Pesaran (2006)).

Let w = (wi,wy,...,wy) be an N x 1 vector of weights that satisfies the following

‘granularity’ conditions

Il = o (x73). (20)
Hi?UV_ZH = (N‘é> uniformly in 7, (21)

and the normalization condition N
i=1

Define the cross-section averages z,; = (?/wtﬂ_(;ut)l = Zf\il w;Z;, and consider augmenting
the regressions of y;; on x;; and the current and lagged values of Ax;;, with the following

set of cross-section averages, Syt = Zy U {A}_Cw’t,g}‘zzo. Cross-section averages approximate

11



the unobserved common factors arbitrarily well if
np = £ — E (£ Snpi) 2 0, (23)

uniformly in ¢, as N and p 7, 50. Sufficient conditions for result (23) to hold are given
by Assumptions 1-4 and if the rank condition rank (I') = m holds. Different sets of cross
section-averages could also be considered. For example, if the set of cross-section averages is
defined as Snp.t = {Zwt—r}}-, then the sufficient condition for (23) to hold under Assumption
1-4 would be the usual rank condition rank (C) = m, where C = (v, T"). Using covariates to
enlarge the set of cross-section averages could also be considered, as in Chudik and Pesaran
(2014a). Theses rank conditions can be relaxed in the case where 7, and I'; are independently
distributed.” In this case, the asymptotic variance of the CCE estimator does depend on
the rank condition, nevertheless the CS-DL estimators are consistent and the proposed non-
parametric estimators of the covariance matrix of the CS-DL estimators given below continue
to be valid regardless of whether the rank condition holds.

/ I 5 —_ — —
More formally, let y; = (Yip+1, Yipt2, - Vir) » Xi = (X@pﬂ, Xipt2y oo XZ»VT) v Loy = (Zwpi1, Zuwpt2, s Zw,T

/ / /

Ax; . Ax), AX],
/ / /

AX AXjpyy AXjpq oo Axiy

ip . . . 9
(T—p)xpk :
/ / /
Ay AXi,T—l T AXi,T—p—i—l

A)_(wp = Zf\il Wi AXp, Qui = (Zw, A)_(wp, AXip), and define the projection matrix
My = Ir_p) — Qui (QQui) " QL (24)

fori =1,2,...,N, where p = p(T) is a chosen non-decreasing truncation lag function such
that 0 < p < T, and A" is the Moore-Penrose pseudoinverse of A. We use the Moore-
Penrose pseudoinverse as opposed to standard inverse in (24) because the column vectors of
Q. could be asymptotically (as N — 00) linearly dependent.

The CS-DL mean group estimator of the long-run coefficients is given by

. 1 X
0 = - Hi, 2
MG N; (25)

"Correlation of 4, and T'; could introduce a bias in the rank deficient case, as noted by Sarafidis and
Wansbeek (2012).
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where
0; = (X;M;;X)) ™ XM,y (26)
The CS-DL pooled estimator of the long-run coefficients is

N
51) = (Z wiX/iMini> Z wz'XQMqiyi- (27)
i=1 i=1

Estimators 6 mc and 0 p differ from the mean group and pooled CCE estimator developed
in Pesaran (2006), which only allows for the inclusion of a fixed number of regressors, whilst
the CS-DL type estimators include prlags of Ax;; and their cross-section averages, where
pr increases with 7', albeit at a slower rate.

In addition to Assumptions 1-4 above, we shall also require the following assumption to

hold. Assumption 5 below ensures that EMG and §P and their asymptotic distributions are
well defined.

Assumption 5 (a) The matriz limNTp i Zf\il w;3; = W* exists and is nonsingular,

and sup; ,, HE?” < K, where ¥; = plim T *X!M,,;X;, and My, is defined in (A.3).

(b) Denote the t-th row of matrix )~(l = My X; by X}, = (Ti1g, Tinty o, Tikt) . Lhe individual
elements of X;; have uniformly bounded fourth moments, namely there exists a positive
constant K < oo such that E (7},) < K, for anyt = 1,2,...T, i = 1,2,.... N and
s=1,2,... k.

-1
(c) There exists Ty such that for all T > Ty, <Zf\il wiX;Mini/T> exists.

(d) There exists Ny, Ty and po = p(Ty) such that for all N > Ny, T > Ty and p(T) > p(Tp),
the k x k matrices (X/MyX;/T)™" exist for all i, uniformly.

Our main findings are summarized in the following theorems.

Theorem 1 (Asymptotic distribution of 5Mg) Suppose yi, fori=1,2,.... N and t =
1,2, ..., T is given by the panel data model (11)-(12), Assumptions 1-5 hold, and (N, T, p(T)) EX
0o such that v/ Np(T)p? — 0, for any constant 0 < p < 1 and p(T)*/T — 3, 0 < 3 < oo.
Then, if rank (I') = m we have

VN (§MG _ 9) 4N (0,9), (28)
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where 2y = Var (6;) and i is given by (25). If rank (') # m and =, is independently
distributed of T';, we have

VN (ﬁMG — 9) 4 N0, Swme) (29)

where

EMG = Qg + lim

p,N—00

: (30)

N

1

N Z E;IQifQ'yQ;fEi_l
i=1

in which ., = Var (v;), ; = plimy_oo T ' XM, X; and Qiy = plimy oo T XM, F. In
both cases, the asymptotic variance of /B\MG can be consistently estimated nonparametrically

by
N

Sue = ﬁ Z (51 - /H\MG) (/9\2 - gMG)/- (31)
i—1

Theorem 2 (Asymptotic distribution of /ép) Suppose yi, for i = 1,2,... N and t =
1,2,...,T are generated by the panel data model (11)-(12), Assumptions 1-5 hold, and (N, T, p(T")) ER
00, such that Np(T)p? — 0, for any constant 0 < p < 1 and p(T)?/T — », 0 < s < .

Then, if v, is independently distributed of I';, we have

N —-1/2
(Z w§> (51» . 9) 4 N(0,5), (32)

where p is given by (27),

N
_ k— 1 *yp*x—1 * e Al
Yp =0 RO @ _]Vlli{;;wzz,, (33)
1 & 1 &
R*=R;+R:, R} zjvliinmﬁzlzfzingzi, R} :]}%NZ@?Q#QVQ’W
=1 =1

Qy=Var(0,), Q, =Var(v,), Z; = plim T XM, X;, Qi = plim T XMy, F, and w; =
~1/2
vV Nw; (Ef\il w?) . If rank (T') = m, then =, is no longer required to be independently

distributed of T'; and (32) continues to hold with ¥ p = \I'*_lRZ‘I!*_l. In both cases, p can
be consistently estimated by S defined by equation (A.25) in the Appendiz.

Theorems 1-2 establish asymptotic distributions of 0 mc and /ép under slope heterogene-
ity. These theorems distinguish between cases where the rank condition that ensures (23)

is satisfied or not. Under the former, unobserved common factors can be approximated
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by cross-section averages when N is large and regardless of whether <, is correlated with
L, 5MG and b\p are consistent and asymptotically normal. In the latter case, where the
unobserved common factors cannot be approximated by cross-section averages when N is
large, then so long as =, and I'; are independently distributed, both §MG and /ép continue
to be consistent and asymptotically normal, but the asymptotic variance depends also on
unobserved common factors and their loadings. In both (full rank or rank deficient) cases,
the asymptotic variance of the CS-DL estimators can be estimated consistently using the
same non-parametric formulae as in the full rank case.

There are several departures from the assumptions of these theorems that might be
of interest in applied work, such as the consequences of breaks in the error processes, ¢;,
possibility of unit roots in factors and/or regressor specific components, and situations where
some or all coefficients are homogeneous over the cross-section units. These theoretical
extensions are outside the scope of the present paper but we investigate the robustness of
the proposed CS-DL estimator to such departures by means of Monte Carlo simulations in

the next section.

4 Monte Carlo experiments

This section investigates small sample properties of the CS-DL estimators and compares them
with the estimates obtained from the panel ARDL approach using the dynamic CCEMG esti-
mator of the short-run coefficients advanced in Chudik and Pesaran (2014a), which we denote
by CS-ARDL. First, we present results from the baseline experiments with heterogeneous
slopes (long- and short-run coefficients), and then we document small sample performance of
the alternative estimators under various deviations from the baseline experiments, including
robustness of the estimators to the introduction of unit roots in the regressors or factors,
possible breaks in the idiosyncratic error processes, and the consequences of feedback effects
from lagged values of y;; onto x;;. Second, we investigate whether it is possible to improve on
the estimation of short-run coefficients, provided the model is correctly specified, by imposing
CS-DL estimates of the long-run coefficients.

We start with a brief summary of the estimation methods and a description of the data
generating processes (DGP). Then we present findings on the estimation of the mean long-
run coefficient and on the extent to which estimates of the short-run coefficients can be

improved by using the CS-DL estimators of the long-run effects.
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4.1 Estimation methods

The CS-DL estimators are based on the following auxiliary regressions:

p—1 Dy Pz
Yit = Cyi + 9§Xit + Z dieAx; g+ Z Wy itYi—e + Z w;ﬂ'g)_(t—z + e, (34)
=0 £=0 =0

where X, = N1 Zf\il Xit, Jr = N7t Zf\il Yit, Pz is set equal to the integer part of T1/3,
denoted as [Tl/ 3], p = pz and py is set to 0. We consider both CS-DL mean group and
pooled estimators based on (34).

The CS-ARDL estimator is based on the following regressions:
Py Pz pz
Yit = Cyi + Z PieYit—e + Z BieXit—e + Z VYiZeo + €, (35)
=1 =0 =0

where z, = (7;,%}), ps = [Tl/ 3] and two options for the remaining lag orders are considered:
ARDL(2,1) specification, p, = 2 and p, = 1, and ARDL(1,0) specification, p, = 1 and
pe = 0. The CS-ARDL estimates of individual mean level coefficient are then given by

. e 3.

Ocs_arpri = —==91 (36)

1 - ?:1 Pie

where the estimates of short-run coefficients ((;,,3;,) are based on (35). The mean long-
run effects are estimated as N~} Zfil 905_ Arpr; and the inference is based on the usual

non-parametric estimator of asymptotic variance of the mean group estimator.

4.2 Data generating process

The dependent variable and regressors are generated using the following ARDL(2,1) panel

data model with factor error structure,

Yit = Cyi + Pir¥it—1 + Pislit—2 + BioTit + BaTiz—1 + Wi, Wi = iy + €t (37)

and

Tit = Cai + Kyilit—1 + ’Y;ift + Vgt (38)

We generate y;;,x;; for i = 1,2,..., N, and t = —99,...,0,1,2, ..., T with the starting values
Yi—101 = Yi—100 = 0, and discard the first 100 observations (¢t = —99, —48,...,0) to reduce
the effects of the initial values on the outcomes. The fixed effects are generated as ¢, ~
IIDN (1,1), and ¢, = ¢y + Se,i, Where ¢, ~ IIDN (0,1), thus allowing for dependence
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between x;; and cy;.

We consider three cases depending on the heterogeneity /homogeneity of the slopes:

e (heterogeneous slopes - baseline) o, = (1 + 2,i) Ny, Pio = — il 05 #pi ~ 1IDU (0.2,0.3),
Nyi ~ TIDU (0, 0., ). The long-run coefficients are generated as ¢; ~ ITDN (1,0.2%)
and the regression coefficient are generated as 8,y = s4in5;, 81 = (1 — 23;) ng;, Where
i = 0i/ (1 — o — @ip) and s¢5; ~ 11DU (0,1).

e (homogeneous long-run, heterogenous short-run slopes) 6; = 1 for all i and the remain-
ing coefficients (¢;1, @2, Bio, Bi1) are generated as in the previous fully heterogeneous

case.

e (homogeneous long- and short-run slopes) ¢,; = 1.15¢,.../2, v;s = —0.15¢,,... /2, 0; =
1) and BiO = 52‘1 = 05/ (]‘ - Spmax/2)'

We also consider the case of ARDL(1,0) panel model by setting s,; = 0 and »g; = 1 for
all 7, which gives ¢, = 8,; = 0 for all ©. We consider three values for ¢_ .. = 0.6, 0.8 or 0.9.
The unobserved common factors in f; and the unit-specific components, v;;, are generated

as independent AR(1) processes:

fu = szft—l,e + Srees Spee ™~ IIDN <O7U?f£) ) (39)
Vit =  PpiVit—1 + Vity, Sgir ~ ITDN (0, 012,1') ) (40)

fori =1,2,...N, ¢ =1,2,..,m, and for t = —99,...,0,1,2,...,T with the starting values
fr—100 = 0, and v; 100 = 0. The first 100 time observations (¢t = —99,—48,...,0) are
discarded. We consider three possibilities for the AR(1) coefficients p;, and p,;:

e (stationary baseline) p,; ~ IIDU[0.0.95], 0, = 1 — p3, for all i; p;, = 0.6, and

e (nonstationary factors) p,; ~ IIDU[0.0.95], o2, = 1 — p2; for all 4; and p; = 1,
a?ﬂ =0.12for ¢ =1,2,...,m.

e (nonstationary regressors and stationary factors) p,; = 1, 02, = 0.1? for all ¢; and

pre = 0.6, Ufﬂ =1- p?e, for ¢ =1,2,....m.

We consider also two options for the feedback coefficients x,;: no feedback effects, x,; = 0
for all 7, and with feedback effects, x,; ~ I1DU (0,0.2).
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Factor loadings are generated as
Yoo ~ ITIDN (747 0.22) and v, ~ IIDN (’yﬂ, 0.22) ,

for ¢ =1,2,..,m, and i = 1,2,..., N. Also, without loss of generality, the means of factor
loadings are calibrated so that Var(vif,) = Var(v.,f;)) = 1 in the stationary case. We
set v, = /by, and 7, = Vb, for £ = 1,2,...,m, where b, = 1/m — 0.22, and b, =
2/[m (m+1)]—2/ (m + 1) 0.22. This ensures that the contribution of the unobserved factors
to the variance of y;; does not rise with m in the stationary case. We consider m = 2 or 3
unobserved common factors.

Finally, the idiosyncratic errors, ¢;, are generated to be heteroskedastic, weakly cross-

sectionally dependent and serially correlated. Specifically,

Eit = Pei€it—1 1+ Cips (41)

where ¢, = (Cy4, Copy -, () are generated using the following spatial autoregressive model
(SAR),
Ct = aeseCt + St (42)

in which the elements of ¢, are drawn as IIDN [0, 30% (1 — p%)], with o7 obtained as inde-

pendent draws from x?(2) distribution,

01 0 0
2 0 3 0
SE:O%O |
0 0 10

: 0 3

00 -+ 0 1 0

and the spatial autoregressive parameter is set to a. = 0.6. Note that {€;} is cross-sectionally
weakly dependent for |a.| < 1. We consider p,, = 0 for all ¢ or p_; ~ IIDU (0,0.8). We
also consider the possibility of breaks in ¢; by generating for each ¢ random break points
b; € {1,2,..T} and

Eit = pgﬁi,t—l + Cita for t = ]-7 27 SEs) bz
Eit = pgi€i7t_1 + Citv for t = bz + 1, bz + 2, ...,T,

where p, p2. ~ I1DU (0,0.8), and ¢, = (Cyy, Cops -, Cp)' is generated using SAR model (42)
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with ¢;; ~ IIDN [0, 102 (1 — p2?)].

The above DGP is more general than the other DGPs used in MC experiments in the
literature and allows the factors and regressors to be correlated and persistent. The above
DGPs also include models with unit roots, breaks in the error processes, and allows for

correlated fixed effects. To summarize, we consider the following cases:

1. (3 options for heterogeneity of coefficients) heterogeneous baseline, homogeneous long-

run with heterogeneous short-run, and both long-and short-run homogeneous,

2. (2 options for lags) ARDL(2,1) baseline, and ARDL(1,0) model where s, = 0 and
»p; = 1 for all 4, which gives p;, = 3;; = 0 for all 1.

3. (3 options for ¢, . ) ©n.x = 0.6 (baseline), 0.8, or 0.9

4. (3 options for the persistence of factors and regressors) stationary baseline, I(1) factors,

or I(1) regressor specific components v,

5. (2 options for the number of factors) full rank case baseline m = 2, or rank deficient

case m = 3,

6. (3 options for the persistence of idiosyncratic errors) serially uncorrelated baseline

pei =0, p; ~ 1IDU (0,0.8), or breaks in the error process.

7. (2 options for feedback effects) x,; = 0 for all i (baseline), or x,; ~ I1DU (0,0.2).

Due to the large number of possible cases (648 in total), we only consider baseline exper-
iments and various departures from the baseline. We consider the following combinations of
sample sizes: N, T € {30, 50,100, 150,200}, and set the number of replications to R = 2,000,

in the case of all experiments.

4.3 Monte Carlo findings on the estimation of mean long-run co-

efficients

The results for the baseline DGP are summarized in Table 1. This table shows that both
CS-DL estimators (MG and pooled) perform well in the baseline experiments. This table
also shows that the CS-ARDL approach does not perform well when 7" is not large (<100)
due to the small sample problems arising when > ;% ¢,, is close to unity. Also, CS-ARDL

estimates that are based on misspecified lag orders are inconsistent, as to be expected. In
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contrast, the consistency of the CS-DL estimators does not depend on knowing the correct
lag specifications of the underlying ARDL model.

Next, we investigate robustness of the results to different assumptions regarding slope
heterogeneity. Table 2 presents findings for the experiment that depart from the baseline
DGP by assuming homogeneous long-run slopes, while allowing the short-run slopes to be
heterogeneous. Table 3 gives the results when both long- and short-run slopes are homoge-
neous. These results show that the CS-DL estimators continue to have good size and power
properties in all cases.

Experiments based on the ARDL(1,0) specification (as the DGP) are summarized in Table
4. CS-DL estimators continue to perform well, showing their robustness to the underlying
ARDL specification.

The effects of increasing the value of ¢, .. on the properties of the various estimators are
summarized in Tables 5 (for ¢, = 0.8) and 6 (for ¢, = 0.9). Small sample performance
of the CS-DL estimators deteriorates as ¢, moves closer to unity, as to be expected. Tables
5-6 show that the performance deteriorates substantially for values of ¢, .. close to unity, due
to the bias that results from the truncation of lags for the first differences of regressors. It
can take a large lag order for the truncation bias to be negligible when the largest eigenvalue
of the dynamic specification (given by the lags of the dependent variable) is close to one.
We see quite a substantial bias when ¢, .. = 0.9. Therefore, it is important that the CS-DL
approach is used when the speed of convergence towards equilibrium is not too slow and /or T
is sufficiently large so that biases arising from the approximation of dynamics by distributed
lag functions can be controlled.

The robustness of the results to the number of unobserved factors (m) is investigated in
Table 7. This table provides a summary in the case of m = 3 factors, which represents the
rank deficient case. It is interesting to note that despite the failure of the rank condition, the
CS-DL estimators continue to perform well (the results are almost unchanged as compared
with those in Table 1), while the CS-ARDL estimates are affected by two types of biases
(the time series bias and the bias due to rank deficiency) that operate in opposite directions.

Consider now the robustness of the results to the presence of unit roots in the unobserved
factors (Table 8) or in the regressors (Table 9). As can be seen the CS-DL estimators continue
to perform well when factors contain unit roots. Table 9, on the other hand, shows large
RMSE and low power for 7" = 30 and 50, when the idiosyncratic errors have unit roots. But,
interestingly enough, the reported size is correct and biases are very small for all sample
sizes.

The robustness of the CS-DL estimators to the patterns of residual serial correlation

is investigated in Table 10, whilst Table 11 present results on the robustness of CS-DL
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estimators to possible breaks in the error processes. As can be seen, and as predicted by
the theory, the CS-DL estimators are robust to both of these departures from the baseline
scenario, whereas the CS-ARDL approach is not. Recall, that CS-ARDL approach requires
that the lag orders are correctly specified, and does not allow for residual serial correlation
and/or breaks in the error processes, whilst CS-DL does.

Last but not least, the consequences of feedback effects from y;; to the regressors, x;,
is documented in Table 12. This table shows that the CS-ARDL approach is consistent
regardless of the feedback effects, provided that the lag orders are correctly specified, again
as predicted by the theory. But a satisfactory performance (in terms of bias and size of the
test) for the CS-ARDL approach requires 7' to be sufficiently large. On the other hand, in
the presence of feedbacks, the CS-DL estimators are inconsistent and show positive bias even
for T sufficiently large. But the bias due to feedback effects seem to be quite small; between
-0.02 and 0.06, and the CS-DL estimators tend to outperform the CS-ARDL estimators when
T < 100, even when the underlying ARDL model is correctly specified.

4.4 Monte Carlo findings on the improvement in estimation of

short-run coefficients

As a final exercise, we consider if it is possible to improve on the estimation of short-
run coefficients by imposing the CS-DL estimates of the long run, before estimating the
short-run coefficients. We consider the experiment that departs from the baseline model by
assuming a homogeneous long-run coefficient, whilst all the short-run slopes are allowed to
be heterogeneous, and use the ARDL(1,0) as the data generating process. More specifically,
we impose the CS-DL pooled estimator of the long-run coefficient, 0p, when estimating the
short-run coefficients using the CS-ARDL approach. In particular, we estimate the following

unit-specific regressions,
. bz
Ayir = ¢ + Ni <yi,t—1 - 9P95it> + Z OiZ o+ €5y, (43)
(=0

fori=1,2,..., N, and the resulting mean group estimator of E (y;;) = 1+ E ();) is denoted
by

N

. 1 - 3

YLMG = N Z%‘h i =1 =\,
i=1

where J\; is the least square estimate of \; based on (43). The results of these experiments are

summarized in Table 13. Imposing the CS-DL pooled estimator of the long-run coefficient
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improves the small sample properties of the short-run estimates substantially, about 80-90%
reduction of the difference between the RMSE of the infeasible CS-ARDL estimator and the
RMSE of the unconstrained estimator, when 7" = 30.

5 Concluding remarks

Panel data estimation of long-run effects is an important task in economics. This often
requires a large time dimension for a panel data model featuring slope heterogeneity, lagged
dependent variables, and cross-sectionally correlated innovations. This paper proposes a
cross-sectionally augmented distributed lag (CS-DL) approach to the estimation of long-
run effects as a complementary method to cross-sectionally augmented ARDL specifications.
Based on 