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ABSTRACT

The recent asset pricing literature finds valuation riskis@portant determinant of key as-
set pricing moments. Valuation risk is modelled as a timégpemce shock within Epstein-Zin
recursive utility preferences. While this form of valuatiosk appears to fit the data extremely
well, we show the preference specification violates an emaredly meaningful restriction on
the weights in the Epstein-Zin time-aggregator. The samaenwith the corrected preference
specification performs nearly as well at matching assetngrimoments, but only if the risk
aversion parameter is well above the accepted range ofsvaked in the literature. When the
corrected preference specification is combined with Ba¥iaedn long-run risk, the estimated
model significantly downgrades the role of valuation risk@&termining asset prices. The only
significant contribution of valuation risk is to help mattietvolatility of the risk-free rate.
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1 INTRODUCTION

In standard asset pricing models, uncertainty enters gftrthue supply side of the economy, either
through endowment shocks in a Lucas tree model or prodtycsiiocks in a production economy
model. Beginning with Albuquerque et al. (2016)—hencdfé@&fELR—the asset pricing literature
introduced demand side uncertainty or “valuation risk” ago#ential explanation of key asset
pricing puzzles. In macroeconomic parlance, these festaneoften referred to as discount factor
or time preference shocksAELR and other recent papers (e.g., Creal and Wu (2017);r8ukide
et al. (2018)) contend that valuation risk is an importanédainant of key asset pricing moments.
We show the success of valuation risk in resolving variogeigwricing puzzles rests sensitively
on the way the preference shock enters the utility functienGroot et al. (2018) show that within
Epstein and Zin (1991) recursive utility preferences, theetvarying weights in the CES time-
aggregator must sum tioto eliminate asymptotic dynamics in the model. The spediéoantro-
duced by AELR and used in the subsequent literature fadsstdnomically important restriction.
This paper corrects the preferences used in this class oélsiadd re-evaluates the role of val-
uation risk in resolving classic asset pricing puzzles. e correction will appear minor, it pro-
foundly changes the predictions of the model. Key compagatiatics, such as the response of the
equity premium and the risk-free rate to a rise in the integeral elasticity of substitution (IES)
parameter, switch sign. This means that once we re-estithateodel, the parameters that best
fit the data change dramatically. For example, our baseliogeinwith the corrected preferences
requires a coefficient of relative risk aversion (RA) welbab the accepted range in the literature.
For intuition, consider the log-stochastic discount fa¢@DF) under Epstein-Zin preferences

M1 = 0log B+ Q(Wdt-i-l - dt) - (9/¢)Aét+1 + (9 - 1)fy7t+17 (1)
~—_——

valuation risk

where the first, third, and fourth terms—subjective disd¢dantor (3), log-consumption growth
(Aci41), and return on the endowmert, (., )—are standard in this class of asset pricing models.
The second term captures valuation risk, whires a time preference shock. In AELR and the
subsequent literature, = 1. Once we correct the preferences and re-derive the log-8Bfnd

w = . Sincegs is the subjective discount factor at a monthly frequenag,very close td. There-
fore, at first sight, this innovation appears innocuous. el@v, when we apply this single, seem-
ingly minor, alteration to the model, the asset pricing prons are starkly different. In particular,

it becomes difficult to resolve the equity premium (Mehra Bnelscott (1985)), risk-free rate (Weil
(1989)) and correlation puzzles (Campbell and Cochran@3)9vith the corrected preferences.

IDiscount factor shocks have become common in the business litgrature since the 2007 financial crisis be-
cause they are an effective reduced-form mechanism fdnget the zero lower bound on the nominal interest rate.
2Rapach and Tan (2018) estimate a production asset pricingindgth the specification in de Groot et al. (2018).



The problem with the original valuation risk specificatisnélated to the preference parameter
0 = (1—~)/(1—1/v) that enters the log-SDF, wheteis RA and is the IES. Under constant
relative risk aversion (CRRA) preferences= 1/v. In this casef = 1 and the log-SDF becomes

M1 = log B+ (wapr1 — ar) — Aéerq /1. (2)

The return on the endowment drops outhf 6o the log-SDF is simply composed of the subjective
discount factor and consumption growth terms. The beneEjpstein-Zin preferences is that they
decoupley andi), so it is possible to simultaneously have high RA and a high However, there

is a highly nonlinear relationship betweérand, as shown irfigure 1 A vertical asymptote
occurs at) = 1: ¢ tends to infinity ag) approaches from below while the opposite occurs as
approaches from above. In factf is undefined when the IES equalsin addition to the vertical
asymptote, there is also a horizontal asymptote-aty as the IES becomes perfectly elastic.
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Figure 1: Preference paramefen the stochastic discount factor from a model with Epsté&impreferences.

Under the original Epstein and Zin (1989) preferences aadjémeralization in de Groot et al.
(2018) to include time-varying valuation risk, the asyniptafigure 1does not affect asset pricing
behavior. Moreover, there is a well-defined equilibrium wilee IES equal$ and the asset pric-
ing predictions are robust to small variations in the IESuarbl. Continuity is preserved because
the weights in the time-aggregator always sum to unity. Aerahtive interpretation of this result
is that the time-aggregator maintains the well-known priypthat a CES aggregator tends to a
Cobb-Douglas aggregator as the elasticity approathkesthe original AELR valuation risk spec-
ification, the restriction on the weights is violated so tingting properties of the CES aggregator
break down. As a consequence, the asymptofeyure 1permeates asset pricing behavior, with
small variations in the IES above and below unity generaterg different asset pricing outcomes.

Interestingly, the spurious asymptote that occurs withatginal valuation risk specification
helps match key asset pricing moments. Furthermore, wheastmnate a model that includes
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both valuation risk and long-run risk following Bansal anardin (2004), counterfactual exercises
demonstrate that the asset pricing moments are almost etghpkexplained by valuation risk,
not long-run risk. The reason is straightforward. The asytepstemming fron¥ allows the
model to deliver an arbitrarily large equity premium and dritearily low risk-free rate as the IES
approaches 1 from abovédith the corrected preferences, valuation risk has a mucilenrole.

We summarize our main results as follows: (1) The origin&lliaton risk model is specified
incorrectly but does well in matching asset pricing momge(®3 The corrected valuation risk
model performs nearly as well at matching asset pricing nmisa@ut only if the RA parameter is
well above the typical range of values used in the literat{BeWhen the corrected valuation risk
specification is combined with long-run risk, the estimatextiel significantly downgrades the role
of valuation risk in determining asset prices. For examaéjation risk alone generates an equity
premium of5.6% in the original model specification but only8% in the corrected specification.
(4) The mainrole of valuation risk in the correctly specifieddel is to generate sufficient volatility
in the risk-free rate, a dimension along which long-run nsbdels generally perform poorly.

The paper proceeds as followSection 2describes the baseline asset pricing model and the
corrected valuation risk preference specificati@gction 3explains why asset prices depend so
dramatically on the way valuation risk enters the Epstamtiility function. Section 4quantifies
the effects of the corrected valuation risk specificationpanameter estimates and asset prices.
Section Sestimates the relative importance of valuation and longrigk. Section 6concludes.

2 BASELINE ASSEFPRICING MODEL

We begin by laying out our baseline model. There are two asaatendowment shars,;, which
pays incomey;, and is in fixed unit supply, and an equity sha«g, which pays dividendsi;, and
is in zero net supply. The representative agent choosegsegs(c;, s+, s2+}:2, 10 maximize

UFPHR = [ PER (L= B 4 BE[(UAF) )Y £ e >0, (@)
as proposed by Albuguerque et al. (2016), or

[(1— a?RTﬂ)Cgl—v)/B + af)RTﬁ(Et[(UgﬁT)l—w])l/G]G/(l—“/)7 for1 #1 >0,

o P BRI, for =1,

DRT _
Ut —

(4)

as in de Groot et al. (2018)—henceforth DRT. The key diffeegmetweend) and @) is as follows:

The weights of the time-aggregator(®), a;'***(1 — 3) and 3, do not sum
to 1, whereas the weights (@), (1 — a7 3) andaP? 3, do sum to 1.

3The conceptual issue with the original valuation risk sfieaiion is that an IES marginally below one creates the
opposite result—an arbitrarily large andgativeequity premium with an arbitrarily large and positive rifske rate.
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The representative agent’s choices are constrained byoidildget constraint given by
Ct + DytS1t + DatS2t = Pyt + Ye)S14—1 + (Pae + di)s24-1, )
wherep, , andp,,, are the endowment and dividend claim prices. The optimadtityditions imply

Ty t+1 = (py,t+1 + yt+1)/py,t7 (6)

Eymiyyrya] = 1,
Et[m{+17“d,t+1] =1, 7rar1 = P + der1)/Pags (7)

wherer, ., andrq,,, are the gross rates of return on the endowment and equity elad

— _ l—l
mAFLR — 3 (afﬁLR) (Ct+1) 1/ ( (V{i?LR)l v ) 3 -
tt+1 aAELR ¢ Et[(VtﬁJLR)l—“f] ,
— _ 1-1
N VAN B[V

To permit an approximate analytical solution, we rewréegnd (7) as follows
Et[exp(mgﬂ + fy,t+1)] =1, (10)
Et[eXp(m{_i_l + fld’t_;’_l)] = 1’ (11)

wherer/, | is defined in {) anda, = 6 """ = —aP"" /(1 — B) so the shocks in the two models
are directly comparable. The common time preference shck, evolves according to

Adt_;,_g = paACALH_l + O-a{f:;_l’ 5?_,’_1 ~ N(O, 1), (12)

where0 < p, < 1,0, > 0isthe shock standard deviation, a hat denotes the log ofabl@randA
denotes a first-differendeWe then apply a Campbell and Shiller (1988) approximationiti@in

Tyt+1 = Ryo + Ry12yt+1 — 2yt + Ayt-‘rl) (13)

Tdt+1 = Kdo + Kd1Zdi+1 — 2dp + Ddiy, (14)
wherez, ., is the price-endowment ratié, . is the price-dividend ratio, and

Kyo = log(l +exp(2y)) — Ky 2y, Ky = exp(Zy)/(1 + exp(Z,)), (15)
Kao = log(1 + exp(Zq)) — ka1Za, ka1 = exp(Z2q)/(1 + exp(Zq)), (16)

are constants that are functions of the steady-state pndewment and price-dividend ratio.

“The DRT preferences place a boundgnSpecifically0 < a; < 1/3. Given the process irL@), a; will exceed
the bound in finite time, since the variancepfs increasing in. We decided to stick withl(?) to follow the literature.
Results with a stationary AR(2) process fqrthat respects the bound up to a tolerance are available upmyoest.
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To close the model, we assume the processes for endowmedivaaehd growth are given by

Agt—l—l =Hu + O-ygi/.l,_la 6?—4—1 ~ N(Ov 1)7 (17)
AdAt—l—l =p+ 71-dyo'ygft/+1 + ¢d0y5?+1> 5?—}-1 ~ N(O> 1)7 (18)

wherey is the common growth rate of the two assets> 0 and,0, > 0 are the shock standard
deviations, andr,, captures the correlation between consumption growth avidedid growth?
Asset market clearing implies ; = 1 ands,; = 0, so the resource constraint is givendy= ;.
Equilibrium consists of sequences of quantitjés};°,,, prices{m1, 2, Za, Py.t+1, Ta1+1 1o
and exogenous variablés;, dy, as 2, that satisfy 1), (10)-(14), (17), (18), and the resource con-
straint, given the state of the econonf, 1, a; }, and sequences of shocKs,, ;, €4, €a.t } 121
We posit the following solutions for the price-endowmend @mice-dividend ratios:

Zyt = Tyo + Nyresr + My20e, (29)
Zdt = Ndo + Na1 Qi1 + Na2dy, (20)

wherez, = 1,0 andz; = n4. We solve the model using the method of undetermined cosffigi
Appendix Aderives the equilibrium conditions, the solution, and etb$orm asset-prices.

3 INTUITION

This section develops intuition for why the valuation riglesification has such large effects on
the model predictions. To simplify the exposition, we caoesidifferent stylized shock processes.

3.1 CONVENTIONAL MODEL First, itis useful to review the role of Epstein-Zin prefeces and
the separation of the RA and IES parameters in matchingskenee rate and equity premium. For
simplicity, we remove valuation risks{{ = 0) and assume endowment/dividend risk is perfectly
correlated ¢, = 0; mq, = 1). The average risk-free rate and average equity premiurgiaee by

Elrg] = —log 8+ /v + (1/¢ — ) (1 = ~) = 4*)0; /2, (21)
Elep] = (2v — 1)02./2, (22)

where the first term inZ1) is the subjective discount factor, the second term acsdiontendow-
ment growth, and the third term accounts for precautionavngis. Endowment growth.(> 0)
creates an incentive for agents to borrow in order to smoatisemption. Since bonds are in zero
net supply, the risk-free rate must rise to deter borrowMihen the IESy), is high, agents are
willing to accept higher consumption growth so the compgasaequired to dissuade borrowing

SWe use this specification to illustrate the role of valuatisk. Insection 5we add long-run risk tol(7) and (L8).



is lower. Therefore, the model requires a fairly high IES ttch the low risk-free rate in the data.
With CRRA preferences, higher RA lowers the IES and pushethepisk-free rate. With
Epstein-Zin preferences, these parameters are indepesdesm high IES can lower the risk-free
rate without lowering RA. Notice the equity premium only éegs on RA. Therefore, the model
generates a low risk-free rate and modest equity premiumswificiently high RA and IES param-
eter values. Of course, there is an upper bound on what tatesteasonable RA and IES values,
which is the source of the risk-free rate and equity premiugzfes. Other prominent features such
as long-run risk and stochastic volatility a la Bansal aadovi (2004) help resolve these puzzles.

3.2 ORIGINAL VALUATION RISk MODEL Now consider an example where we remove cash-
flow risk (o, = 0) but keep valuation risk. For simplicity, we assume the tpneference shock
follows a random walk4, = 0). Under these assumptions, the return on the endowmentiand d
dend claims are identical 8@, £,1, 750, M1, My2) = (Kdo, Kd1, Ndos N1, Naz) = (Ko, K1, 1o, T, 12)-

We first solve the model with the original AELR preferencestte log-SDF is given byl) with

w = 1. With this specification, the average risk-free rate andaye equity premium are given by

Elry] = —log B + p/¥ + (0 — rioy,/2, (23)
Elep] = (1 — 20)x302/2. (24)

In this model, it is also straightforward to show the logepridividend ratio is given by, =
Z+ ase1 — a4 (i.e., the loadings on,.; anda, arel and—1). Therefore, when the agent becomes
more patient and; ., rises, the price-dividend ratio jumps one-for-one and tle¢éwrns to the sta-
tionary equilibrium in the next period. Sineg is independent of the IES, there is no endogenous
mechanism that prevents the asymptoté from influencing the risk-free rate or equity premium.
It is easy to see fromlp) that0 < x; < 1. Thereforef dominates the risk-free rate and equity
return when the IES is near The following result describes the comparative statidb #ie IES:

As ¢y tends tol from above,f tends to—oco. As a result, the average
risk-free rate tends te-oo and the average equity premium tendsHso.

This key finding illustrates why valuation risk seems likels@an attractive feature for jointly
resolving the risk-free rate and equity premium puzzles. tsIES tends td from above,f
becomes increasingly negative, which dominates othermétants of the risk-free rate and equity
premium. In particular, with an IES slightly abovethe asymptote i causes the average risk-
free rate to become arbitrarily small, while making the agerequity premium arbitrarily large.
Bizarrely, an IES marginally below (a popular value in the macro literature), generates thetexa
opposite predictions. Even when the IES is abbead away from the vertical asymptofigure 1
showsd can have a meaningful effect on asset prices given a largegbntsk aversion parameter.
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An |IES equal tal is a key value in the asset pricing literature. For exampie the basis of the
“risk-sensitive” preferences in Hansen and Sargent (260&jon 14.3). Therefore, it is clearly a
desirable property for small perturbations around an IEStofnot materially alter the predictions
of the model. A well-known example of where this propertydsak the standard Epstein-Zin asset
pricing model without valuation risk. Even though the loD¥fSas written in 2) is undefined when
the IES equalg, both the risk-free rate and the equity premiumad)(and 2) are well-defined.

3.3 CORRECTEDVALUATION Risk MODEL When we correct the preferences, so the weights
in the time-aggregator sum 1o the average risk-free rate and equity risk premium arengoye

Elry] = —=log B + pu/v 4 (0 — 1)(kim)?02 /2, (25)
Elep] = (1 = 20)(rk1m)*02/2, (26)

which are the same as the original valuation risk model, gxtiee loadingn,; appears. This
parameter determines the response of the price-dividdiwdtoaana,,; shock, and is no longer
invariant to the IES. In particulag; = Z + 4,1 — a,. Itis clear from @5) and @6) that for the
asymptote to disappeay, must equab when the IES equals Appendix Averifies this is true.

Why does the influence of the asymptote disappear when thed&ls1? The response of
the price-dividend ratio to an anticipated changé;in, is determined by the relative strength of
the substitution and wealth effects. First, consider thesstution effect. A highet;,; means the
agent values present consumption more relative to thedfatiod therefore wants to consume more
today by reducing savin§This effect lowers current asset demand and the price-@adatio.

The wealth effect operates in the opposite direction. Whenis higher, the rise in the agent’s
value of¢, is less than the fall in the value of future certainty equewilconsumption since con-
sumption is expected to grow. Therefore, the agent feelsgporausing current asset demand and
the price-dividend ratio to rise. When the IES equiglthe substitution and wealth effects cancel
out. This means the price-dividend ratio and éixepostreturn on equity does not react on impact
to an anticipated change i, which eliminates the effects of the asymptote. When the IES
exceedd, as is typically the case in asset pricing models, the duitisth effect dominates and re-
duces current asset demand on impact, causing the primedd/ratio to fall. In the special case
when there is no consumption growth, there are no wealtletsfte time preference shocks, and
substitution effects do not occur until the changé,in; materializes and lowers the discount rate.

3.4 GRAPHICAL ILLUSTRATION Our analytical results show the way a time preference shock
enters Epstein-Zin recursive utility determines whetherasymptote id shows up in equilibrium
outcomesFigure 2illustrates our results by plotting the average risk-frate rthe average equity

SWwith the corrected preferences, a riséjn; corresponds to a fall iaﬂffT, so the agent becomes more impatient.
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Figure 2: Equilibrium outcomes in the model without cashftisi under AELR and DRT preferences.

premium, and the price-dividend ratio loading on the peiee shock as a function gf. We
focus on the example without cashflow rigk, (= 0). We plot the results under both preferences
with and without growth. For illustrative purposes, we get 0.9975, v = 10, ando, = 0.005.

With the AELR preferences, the average risk-free rate aedage equity premium exhibit a
vertical asymptote when the IES equalsregardless of whether is positive. As a result, the
risk-free rate approaches positive infinity as the IES apgmesl from below and negative infinity
as the IES approacheédrom above. The equity premium has the same comparativestakcept
with the opposite sign. These results occur becayse 1, regardless of the value of the IES.
Therefore, the volatility of the return on equity is indedent of the IES, while the volatility of the
stochastic discount factor becomes infinitely large. Thesans the paradoxical agent with these
preferences will sacrifice an infinite amount of consumpitnoorder to hold an asset with zero risk.

In contrast, with DRT preferences the risk-free rate andtgguemium are continuous in the
IES, regardless of the value pf Whenyu = 0, the endowment stream is constant. This means
there is no incentive to smooth consumption, the averagefnee rate is independent of the IES,
and there is no immediate response of the price-dividend tata time-preference shock. As
a consequence, there are no unanticipated changes in thg exjurn, and the average equity
premium is zero. Whep > 0, the agent has an incentive to smooth consumption, so the SDF
and the return on the equity become correlated. When 1, the substitution effect from the
preference shock dominates the wealth effect. This cabhegwxrice-dividend ratio to falkf < 0)
when the SDF falls and leads to a positive equity premium.hig ¢ase, the comparative static
effect of the equity premium to a change in the IES has the sifgsign in the corrected valuation
risk model compared to the original valuation risk model. the corrected model, the equity
premium is rising in the IES, whereas in the original moded falling in the IES. This is because
the asymptote dominates the determination of asset pridée ioriginal model, even for large IES



values. When) < 1, the wealth effect dominates the substitution effect, soghce-dividend
ratio rises {; > 0) when the SDF falls. This generates a negative valuatidgnegsiity premium.
Finally, whem) = 1, the substitution and wealth effects cancel out, leaviegptite-dividend ratio
unchangedrf; = 0). As a result, valuation risk generates no equity premiuramthe IES idl.

4 ESTIMATED BASELINE MODEL

This section returns to the baseline modekeécttion 2 which has valuation risk and stochastic
endowment and dividend growth. We estimate the model with tiee AELR and DRT preference
specifications and then show how the parameter estimatdsegratset pricing moments differ.

4.1 DATA AND ESTIMATION METHOD We follow the estimation method in Albuquerque et al.
(2016) and use their dataset, which contains annual olssrsdrom 1929 to 2011 of U.S. per-
capita real consumption, the real market log return, thiefrise rate, per-capita real dividends,
and the log price-dividend ratio. We estimate the model io $tages. In the first stage, we use
Generalized Method of Moments (GMM) to obtain point estieseand a covariance matrix of key
moments in the data. In the second stage, we use Simulatémb¥ef Moments (SMM) to search
for a parameter vector that minimizes the distance betwseGMM point estimates and median
short-sample model moments, weighted by the GMM estimatkeo¥ariance-covariance matrix.
We use simulated annealing to minimize the objective fumcti, since gradient-based techniques
did not sufficiently explore the parameter space. A smdlieglue indicates a better fit to the data.
The algorithm matches the following moments: the mean aemtsird deviation of consump-
tion growth, dividend growth, real stock returns, the resk-free rate, and the price-dividend
ratio, the autocorrelation of the price-dividend ratio aedl risk-free rate, the correlation between
dividend growth and consumption growth, the correlatiotwleen equity returns and both con-
sumption and dividend growth atla, 5-, and10-year horizon. Seéppendix Bfor more details.

4.2 PRMRAMETER ESTIMATES AND MOMENTS Table lashows the estimated parameter val-
ues andable lbreports the data and model moments under the original andated valuation
risk specifications. The AELR estimates are similar to tHeesreported in Albuquerque et al.
(2016)! The model fits the data extremely well, with a lowewralue than the DRT model. The
AELR model requires a remarkably low RA valug3) but has a fairly typical value for the IES
(2.3). The low RA value is due to the asymptote in the AELR prefeeegpecification. An IES
close tol reduces the risk-free rate and raises the equity premium trlatrarily large extent.
Therefore, the AELR model is able to maintain an extremelyRA value and still match the data.

"Our results differ from AELR in two ways. One, AELR restriogir SMM procedure to exactly match the average
risk-free rate. We do not apply that restriction and insteadjht by the GMM variance-covariance matrix. Two, even
with the restriction in place, our simulated annealing pohae was able to achieve a lowkvalue than AELR report.
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Parameter AELR DRT Parameter AELR DRT Parameter AELR DRT

vy 2.19813  254.26306 Oy 0.00786  0.00421 Tdy —0.31831  0.39380
P 2.29054 9.31110 o 0.00151  0.00219 Ou 0.00068  0.00012
B 0.99740 0.99210 Y 2.00940  4.46431 Pa 0.98806  0.99886

(a) Parameter estimates. AELR:= 5.15; DRT: J = 10.70.

AELR Specification DRT Specification
Moment Data All Shocks Only CFR Only VR All Shocks Only CFR OMR
E[rg) 7.83 6.04 3.58 6.30 11.85 8.49 9.97
SDIrq] 17.25 15.55 5.42 14.41 9.95 6.29 3.84
Elrs] 0.13 0.24 3.82 0.34 0.69 6.81 2.68
SDlry] 3.56 4.56 0.00 4.56 4.49 0.00 4.49
Elep] 7.70 5.80 —0.24 5.97 11.16 1.68 7.30
SDlz4] 0.47 0.26 0.03 0.25 0.77 0.04 0.52
ACry] 0.52 0.88 1.00 0.88 1.00 1.00 1.00

(b) Unconditional short-sample moments given the paranmestiémates for each model. “All Shocks” simulates the med# all of the shocks,
“Only CFR” simulates the model with only the cashflow risk ek®, and “Only VR” simulates the model with only the valuatigsk shocks.

Table 1: Baseline model estimates

Corrected valuation risk behaves more like typical cash fisky in that both the risk-free rate
and the equity premium are increasing in the IES. As a rehdt;orrected valuation risk IES.()
is higher than the original valuation risk IES.§). The higher IES diminishes the consumption
smoothing motive and lowers the risk-free rate. Howevegethe higher IES is not able to suffi-
ciently raise the covariance between the SDF and the ectityrr, the data requires much higher
RA. Our RA estimateZ54) is an order of magnitude larger than the upper bound usaetigpted
in the literaturé® This causes the model to underpredict the variance of thigyegturn and over-
predict the variance of the risk-free rate. In addition, ekenthe valuation risk shocks more impor-
tant, the data prefers a higher average growth rate of didslbecause it amplifies the effect of a
time preference shock. The data also prefers highly pergisaluation risk shocks, which raise the
equity premium because agents value an early resolutionadrtainty withy > 1/¢. However,
the higher persistence also causes the model to overptiediatitocorrelation of the risk-free rate.
Next, we decompose the relative role of valuation risk argthéew risk in explaining the var-
ious asset pricing moment$able 1lbreports the model moments corresponding to counterfactual
simulations that either remove valuation risk (“Only CFR)cashflow risk (*Only VR”) from
the model. In each case, we re-solve the model after setting p, = 0 for “Only CFR” and
o, =Yg = T4y, = 0 for “Only VR”, so that agents make decisions subject to omlg type of risk.

8Mehra and Prescott (1985) suggest restricting RA to be amaxi of 10. The acceptable range for the IES is
less clearly defined in the literature although values al®oaee atypical. We can achieve a similavalue (11.70)
astable 1with a much lower RA §4.87) and a higher IESZ7.36). In this case, the SMM algorithm is prioritizing
matching the risk-free rat® 20) over other moments. Both sets of estimates are well outsid®as in the literature.

10



With the AELR specification, cashflow risk by itself genesag#most no equity premium or
precautionary savings demand because the RA parametetaw.sd herefore, the average risk-
free rate is much higher than in the data. Without serialedation in cash flow growth, cash flow
risk alone is unable to generate movements in the risk-f&e As a result, it is valuation risk and
the effects of the embedded asymptote that are able to miatdfittze asset pricing moments.

With the corrected valuation risk specification, the modiél matches the asset pricing mo-
ments reasonably well as long as one accepts the high RA &ddlses. Cashflow risk by itself
fails to lower the risk-free rate. Therefore, the equityrpi@m is significantly lower than with the
AELR specification. With the high RA and IES parameters ardsar unit root in the time pref-
erence shock process, valuation risk shocks lower thefieskrate, explain more of the equity pre-
mium than cashflow risk shocks, and are the only source ofilytdor the risk-free rate. In short,
cashflow risk plays a bigger role in explaining asset priecmgments under the DRT specification,
but the role of valuation risk is similarly important regkesk of the preference specification.

5 ESTIMATED LONG-RUN RISK MODEL

In the baseline model, valuation risk explains most of the &&set pricing moments, even after
correcting the preference specification. However, the prent role of valuation risk is not much
of a surprise given that we have abstracted from long-ruqg vidich is a well-known potential
resolution of many asset pricing puzzles. Therefore, tagign introduces long-run risk to our
baseline model and re-examines the role of valuation risk laath preference specifications.

In order to introduce long-run risk, we modif§{) and (8) as follows

Afipr = p+ Iy + 0y5?+17 5?+1 ~ N(0, 1), (27)
Adigr = p+ Gads + Tayoyely + Vaoyely, ey ~ N(O, 1), (28)
:i't-‘,-l = pa:i't + wxaygx,t—i—la 6tm-l,-l ~ N(Ov 1)7 (29)

where the specification of the persistent compongntyhich is common to both the endowment
and dividends growth processes, follows Bansal and Yaro04R We apply the same estimation
procedure as the baseline model, except we estimate thiéead| parametersy,, p,, andy,.°
Table 2ashows the estimated parameters getale 2breports key asset pricing moments for
the model with long-run risk. In the AELR model, the preseati®ng-run risk provides a slightly
better fit of the data (thg value declines frond.15 to 4.31). Both the RA (.6) and IES (.4)
parameter values are lower than in the baseline model. Hawiewng-run risk plays a minor role
since the asymptote resulting from the valuation risk dpEtion continues to dominate the deter-

9Long-run risk adds one additional state variatile,Following the guess and verify procedure applied to thebas
line model, we use Mathematica to solve for unknown coefiisién the price-endowment and price-dividend ratios.
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Parameter AELR DRT Parameter AELR DRT Parameter AELR DRT

0 1.63436  15.04390 W 0.00164 0.00157 Pa 0.99180  0.94072
P 1.43058 1.88177 Y 1.84323 1.73255 bd 2.73398  7.12070
B 0.99761 0.99918 Ty —0.93561  —0.25092 Pa 0.95732  0.99354
Oy 0.00615 0.00628 Oa 0.00049 0.00114 Ve 0.04933  0.01118

(a) Parameter estimates. AELR:= 4.31; DRT: J = 1.97.

AELR Specification DRT Specification
Moment Data All Shocks Only CFR Only VR All Shocks Only CFR OMR
E[rg) 7.83 6.31 4.04 6.43 6.22 7.39 3.14
SD[rg) 17.25 15.54 6.90 13.91 17.36 15.06 4.98
Elrs] 0.13 0.89 4.21 0.97 0.74 1.05 1.21
SDlry] 3.56 3.90 0.79 3.79 3.52 0.32 3.50
Elep] 7.70 5.42 —0.18 5.47 5.49 6.34 1.93
SDIz4] 0.47 0.28 0.06 0.27 0.37 0.33 0.26
ACry] 0.52 0.90 0.70 0.91 0.61 0.92 0.61

(b) Unconditional short-sample moments given the paranestiémates for each model. “All Shocks” simulates the med#i all of the shocks,
“Only CFR” simulates the model with only the cashflow risk sk& and “Only VR” simulates the model with only the valuatigsk shocks.

Table 2: Long-run risk model estimates

mination of asset prices. Valuation risk by itself explaah®ost all of the asset pricing moments,
including the near-zero risk free rate abid equity premium. Without valuation risk, the model
generates no equity premium, a risk-free rate Aégrand standard deviations well below the data.
The results change dramatically in the corrected valuaiskhmodel with long-run risk. In
particular, there are three interesting results with DR8fgnences. One, the model with long-run
risk provides a substantially better fit of the data over thegtine model, as thévalue falls from
10.70 to 1.97. Two, both the RA and IES parameter values are much lowerttiemalues in the
baseline model. For example, the RA parameter declines #faihin the baseline model tb5 in
the model with long-run risk, close to the acceptable rangike asset pricing literature. Three,
valuation risk no longer explains the vast majority of ags@ting moments. In contrast with the
AELR model, cashflow risk by itself generates an equity ptamsimilar to the data. Valuation
risk alone only generatesiad% equity premium. Interestingly, however, valuation risik glays
an important role because it explains the volatility of tisk4free rate. The standard deviation
of the risk-free rate in the data #6%. However, long-run risk alone only generates a standard
deviation 0f0.3%. In short, there is still a role for valuation risk, but in @srrected form, its role
in resolving key asset pricing puzzles is much smaller impttesence of long-run cashflow risk.

The Correlation Puzzle Another important asset pricing puzzle pertains to theetation be-
tween equity returns and fundamentals (Cochrane and H¢h868)). In the data, the correlation
between equity returns and consumption growth is near regaydless of the horizon. The corre-
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lation between equity returns and dividend growth is smadir@ghort horizons but increases over
longer horizons. The central issue is that many assetAgrimiodels predict too strong of a correla-
tion between stock returns and fundamentals relative tddkee Clearly, if valuation risk generates
meaningful volatility in asset returns and yet is uncomedavith consumption and dividend growth

(as in the model above), then valuation risk has the potedntrasolve the correlation puzzle.

AELR Specification DRT Specification
Moment Data All Shocks Only CFR All Shocks Only CFR
1-yearCorr[Ac,rq] —0.07 —0.02 —0.03 0.02 0.02
5-yearCorr[Ac, rq] —0.01 0.09 0.21 0.10 0.11
10-yearCorr[Ac, 4] —0.08 0.17 0.35 0.21 0.23
1-yearCorr[Ad, rq] 0.08 0.34 0.78 0.28 0.31
5-yearCorr[Ad, 4] 0.22 0.36 0.79 0.28 0.31
10-yearCorr[Ad, r4) 0.51 0.45 0.90 0.41 0.44

Table 3: Unconditional short-sample moments given therpatar estimates for each model. “All Shocks” simulates
the model with all of the shocks and “Only CFR” simulates thedel with only the cashflow risk shocks.

Table 3shows the correlations between equity returns and fundiatsaverl -, 5-, and10-year
horizons in the data and predicted by the model. We also denaicounterfactual with only cash-
flow risk (“*Only CFR”). The original AELR specification pretts near-zero correlations with con-
sumption growth over short-horizons, but they increase lmrger horizons. The correlation with
dividend growth is stronger than the data ovérngear horizon butincreases and is closer to the data
over al0-year horizon. When we remove valuation risk, those sanreledions are close to one.

The correlations between equity returns and both consemptid dividend growth are similar
across the original and corrected valuation risk specifinat However, all of the correlations with
the corrected specification are driven entirely by cash fisly rather than valuation risk. The in-
tuition for this result is reflective of the results iable 2 In the model with long-run risk, most
of the volatility in equity returns comes from changes ingamption and dividend growth, while
valuation risk plays a secondary role. Therefore, valuatisk no longer reduces the correlations.

6 CONCLUSION

The way valuation risk enters Epstein-Zin recursive wtiiteferences has important implications
for how a standard asset pricing model explains key assahgrmoments. Under the original

AELR preferences, an asymptote in the parameter space egfect to the IES dominates equi-
librium outcomes. In particular, the presence of the asptellows valuation risk to explain the

historically low risk-free rate and high equity premiumt the theoretical foundations of the pref-
erence specification are suspect. Once we correct the @nefes to remove the influence of the
asymptote, valuation risk alone requires implausibly higk aversion to match the data. When
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we add long-run risk to the model, we find a relatively smdk for valuation risk in resolving as-
set pricing puzzles, in contrast with the findings in theréitare. Corrected valuation risk however
still plays an important role in generating volatility ingthisk-free rate that is in line with the data.
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A PRICING KERNEL DERIVATION AND MODEL SOLUTION
The value function for preference specificatipe { AELR, DRT'} is given by
Vi = max(u] yf 7 4 wh (Bl (Vi) )Y 0
— At + pagsie + Dyesas — (Pay + die)si—1 — (Pye + Yi)s2,4-1),

Wherewf&fJLR — G?ELR(l B) wlDtRT =1— RTB wAELR B andeRT — atDRT

The representative agent’s optimality conditions imply

w (VI)oe Y = N, (30)
Wl (VOV (B [(V2) DY B [(VE) T (0VE 1 /0514)] = by, (31)

]
wh (V) (E(VE) DY T B(VE) 770V /0s24)] = A, (32)

wheredV; /0s1 ;1 = M(pys + y:) anddVy /sa, 1 = M(pay + di) by the envelope theorem.

Updating the envelope conditions and combini@@){(32) yields @) and @) in the main text.
Following Epstein and Zin (1991), we posit a minimum statealde solution of the form

Vi = &as1-1 + Ea52,0-1, (33)
¢t = E3451,0—1 + Ea 52,41 (34)

where( is a vector of unknown coefficients. The envelope conditmmabined with 80) imply

€10 = w0l (VY7 (pye + ), (35)
Eo = wl (V) Yer VY (pay + dy). (36)

Multiplying the respective conditions by ;_; ands,;_; and then adding yields
Vi =l (V) e (b + y)s1eor + (pag + di)snia), (37)
which after plugging in the budget constrair),(can be written as
(th)(lﬂ)/g = w{,tct_l/w(ct + DyeS1,0 + DaeSoe) = w{,tct_l/w(ct + Py,t)- (38)
Therefore, the optimal value function can be written as

wl ey py s = wl (B (Vi)Y (39)
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Solving 38) for V/ and @9) for Et[(VtH)l"Y] and then plugging inta8) and @) implies

miy1 = ﬁ(x{)0(0t+1/0t)_€/w zt}rp (40)
where

AELR_ AELR / AELR
=0y /Oy )

o = aPT (1 - aPETH)/(1 — P B).

Taking logs of 40) yields (1) in the main text, where

GAELR _ 4AELR _ AELR
Ty = ay )

EPFT = PR 4 log(1 — fexp(aPiT)) — log(1 — Bexp(aP ™)) & —(Balk" — aP™) /(1 — ).

We defineq, = a\FLR = —aPRT /(1 — 3), so the preference shocks in the two models are directly
comparable. It follows that! = wid, 1 — a, just like in (1), wherewFLE = 1 andw?FT = 4.
The Campbell and Shiller (1988) approximation to the returividends is given by

Pyt = 108(Yrr1 (Pye+1/Yer1) + Yer1) — 10g(ye(Py,e/yt))
= log(ys+1(exp(Zy41) + 1)) — 20 — log(ys)
= log(exp(Zy+1) + 1) — 2yt + Afe
~ log(exp(Zy) + 1) + exp(2y) (3401 — 2) /(1 + exp(2y)) = 2yt + Afiesa

= Kyo T Kyl Zyt+1 — 2yt T Afq1.

The derivation for the return on the dividend,.,, is analogous.
We solve the model using a guess and verify method. For thevendnt claim, we obtain

0 = log(Et[exp(Mit1 + Py 41)])

= log(E[exp(0f + 0(w’ a1 — @) — (0/0) Aders + O0fyt+1)])

= log(Eyfexp (083 + 0(war iy — ar) + 0(1 — 1/0)Afisr + 0(kyo + K12yt — 292))])
o ( 08 + 0w — i) + 0(1 = 1/0) (1 + 0yey01) + Oy )] )

+0hy1 (Mo + My1Guso + My2hes1) — O(1yo + Ny1aer + Ny2ds)
0B+ 0(1 — 1))+ 0(ky0 + myo (ks — 1))
FO(w? 4 ny1 (ky1p — 1) + Ny2kiy1) e
=01+ 11y2 + Ky17y1 Pa )

+0(1 — 1/9)0oyey 11 + Oky1My10aEa,141

=06+ 0(1 — 1))+ (g0 + myo(kyr — 1)) + Z((1 = 1/9)%02 + K212, 02)
+ 0w’ + 1 (ky1p — 1) + Nyariy1)aerr — O(1 + Nya + Ky1My1Pa) it

=log | E;

=log | E; |exp
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wherep = 1 + p,. The last equality follows from the log-normality efp(e, ) andexp(e,).
After equating coefficients, we obtain the following exctiusrestrictions

B"‘ (1 =1/ + (Kyo + myo(kyn — 1)) + %((1 - 1/¢)2U§ + ’%2,1775102) =0, (41)
w’ + Uyl(’iylﬁ - 1) + Nyakiy1 = 0, (42)
L+ ny2 + £y1my1pa = 0. (43)

For the dividend claim, we obtain

0 = log(E¢[exp(myt1 + Ta+1)])

= log(E;exp(03 + 0(warp1 — ar) — (0/1)Afiy1 + (0 — Dy 41 + Pas+1)])

B 08 + 0(wayy1 — ar) + (0(1 — 1/¢) — 1)AJi1 + Adyiq

=log | E} |exp ) . . A

+(9 — 1)(/€y0 + Ky12y,¢4+1 — Zy,t) + (Fado + Kd1Z2d 41 — Zd,t)
08 + 0(wagsr — ay) + (0(1 — 1/9p) — D) AGy1 + Adpyr
=log [ B¢ |exp | +(0 — 1)(kyo + ky1(myo + My1dira + My2di1) — (yo + My1Ges1 + 1y204))
+K40 + Kd1 (Ndo + Na1Ge+2 + Na2be+1) — (Mdo + a1 61 + Na2dr)

05 +0(1 — 1/9)p + (0 — 1) (kg0 + myo (g1 — 1)) + (Ko + nao (ka1 — 1))
+(0w? + (0 — 1)[(pry1 — 1)yt + Kyany2] + (Pkar — 111 + Kd1naz)des1

—(0+ (0 — )ny2 + naz + ((0 — D)ryany1 + Ka1nd1) pa)an
(Tay — V)oyeyi+1 + (0 = 1)ryings + Ka1na1)0aas1 + Yaoyely

=log | E; |exp

=08+ 0(1 — 1/9)u+ (0 — 1)(kyo + myo(ky1 — 1)) + (Kao + 1a0 (ka1 — 1))
+ (0w + (0 — D[(prg1 — 1)ny1 + Kyanye) + (Prar — D)nar + Karndz) e
— (04 (0 — D)ny2 +na2 + (0 — 1)ky1my1 + Kd1md1)pa)
+ 5((may = 7)oy + (0 = Disyings + Kainan)*o; + goy),

Once again, equating coefficients implies the followinglesion restrictions

06+ 0(1—1/v)u+ (6 — 1)(kyo + Myo(ky1 — 1)) + (Kao + Nao (ka1 — 1))

+5((may — 7)205 + (60 = D)kying + kanar ) o + wﬁai) =0, (44)
Ow’ + (0 — D[(pry1 — D)my1 + kel + (Pkar — D) + Karnaz = 0, (45)
0+ (0 — L)my2 + naz + (0 — 1)ryamy1 + Karnar)pa = 0. (46)

Equations 41)-(46), along with (L5) and (L6), form a system ot( equations and0 unknowns.
Given the model solution, we can solve for the risk free ratee Euler equation implies

Tt = — log(Ey[exp(mii1)])

= —Ei[mu] — %Vart[mt+1]7
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since the risk-free rate is known at tineThe pricing kernel is given by

Misr = 0B + 0(w s — 1) — (0/0) Adrr + (0 — 1)y 401
= 0B + 0(war1 — @) — YAGerr + (0 — 1) (Kyo + FyrZyast — Zye)
=08+ (0 — 1)(kyo + myo (ki — 1)) = v+ (007 + (0 — D)[(prys — Dmys + Kyamye]) e
— (04 (0 = 1)(ny2 + Ky1my1pa))ae + (0 — 1)Kyiny10a€a41 — YOyt
=08 + (0 — 1) (kyo + Nyo(Fyr — 1) + Ky1My10aatr1) — YH — YOuEyir1 + W a1 — s,

where the last line follows from imposing?) and @3). Therefore, the risk-free rate is given by
rie = =08 = (0 = 1)(kyo +myo(ry — 1) = (War — @) — 5(y0y) = 3((0 = Dryimyioa)”.
The unconditional expected risk-free rate is given by
Blry) =i =05 = (0 = V(80 + (ki = 1)) = 5(70,)° = 5((0 = Dryampoa)®.  (47)
Plugging @1) into (47) implies
Elrf] = =8+ 1/t + 50 = Drgmos + 3((1/¢ = 9)(1 =) = 7)o, (48)
We can also derive an expression for the equity premium. Therequation implies

0 = log(E¢[exp(1hs1 + Fa11)])
= Ey[Myq1 + Papa] + %Vart[mt-i-l + P41
= E, [mt-i-l] + E; [f’d7t+1] + %(Vart [mt-i-l] + Var, [f’d7t+1] + Cov, [mt+1> f’d,t+1])

= Eilepiii] = Eilrae — 154 = —% Var[rg11] — Covi[mg1, Pa ]
We first solve for the return on dividends, which is given by

Fdt+1 = Kdo + Kd1Zdt+1 — Zdt + Ady
= Kdo + Rd1 (ndo + ndldt+2 —+ nd2€%+1) — (’]’]do —+ ndldt—l—l + nd2&t) —+ ACZt—l—l
= (u+ Kao + (kar — D)nao) + ((pka1 — 1)na1 + EarNaz)er1 — (KaiMa1Pa + Naz) Gy

+ Kq1Nd10aCat+1 + TayOyEy 41 + Va0yed 41-

Therefore, the unconditional equity premium is given by

E[ep] = %(27 - Wdy)ﬂdyUZ - %?/1305 - %(2(9 - ]-)K'ylnyl + /ﬁdmdl)/ﬁdmdlag- (49)
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A.1 SpeCIAL CASE 1 (0, =94 =0 & mq, = 1) Inthis case, there is no valuation risk because
a; = 0 and endowment/dividend risk is perfectly correlatddi{ 1 = Ad;.1 = 1+ oer1). Under
these assumptions, it is easy to see th8t &nd @9) reduce to21) and @2) in the main text.

A.2 SPECIAL CASE 2 (0, = 0, p, = 0, & o, > 0) In this case, there is no cash flow
risk (Ag1 = Ady; = p) and the preference shock follows a random walk { = a,.1 +
0.4, 1). Under these assumptions, the return on the endowmentiadérmt claims are identical

SO {Ky0, Ky, Myo, My1s 2} = {Kdo, K1, Ndos a1, Naz} = {Ko, K1, M0, M, M2}. Therefore, 48) and
(49) reduce to 25) and @6) in the main text. Also, the exclusion restrictions simyptib

0= B+ (1= 1/¥)u+ (ko +mo(k1 — 1)) + dxinio, (50)
0=w +m(ks — 1)+ K, (51)

e = —1, (52)

ko = log(1 + exp(no)) — K170, (53)

k1 = exp(no)/(1 + exp(no)). (54)

First, notice tha® < x; < 1. Therefore, with AELR preferences{ZLF = 1), itis easy to see that
n = 1. With DRT preferencesJ”#T = j3), the solution for), is more complicated. However, for
1 = 1, we guess and then verify that = 0. In this case, fromq1) x; = 5 and 60) reduces to

0 =log 8+ Ko — (1 — B)no, (55)

This implies thaty, = log 8 — log(1 — ) andky = —(1 — ) log(1 — ) — Blog p.

Unanticipated Valuation Risk With a small change in the timing of the valuation risk shogg,
can derive a closed-form expression for the risk-free rathout relying on a Campbell-Shiller
approximation to show that the asymptote is not due to thecagpation. Building on special
case 2, we assumga, ., = oey,, instead ofAd,, = oef, SOAa,1, is no longer anticipated.
Preferences are given b§)( so the equilibrium condition that prices assit given by

1= BE (a1 /ac)(cen /) P (Vi VBV ria44], (56)

where we dropped the preference specific superscripts. gia bg conjecturing that the value
function takes the fornv; /c, = naf/(l_”). Substituting the guess into the value function implies
1-p

"1 Bexp((1 -+ 02/2)’ &7

Ui
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which verifies our conjecture. Therefore, we can substitite(56) to obtain

Pre = —log B+ p/v — log(Ei[(ar1/a)’]) /0,
= —log B + p/v — log(Eilexp(0Adr41)]) /0,
= —log B+ pu/v — 0o*/2.

This result shows that the risk-free rate will inherit thgraptote ing.

B ESTIMATION METHOD

We use the dataset provided by Albuquerque et al. (2016xwduntains annual observations from
1929 to 2011 of U.S. per-capita real consumption, the regket#og return, the risk-free rate, per-
capita real dividends, and the log price-dividend ratioe €stimation method is conducted in two
stages. The first stage estimates key moments in the datq agirstep Generalized Method of
Moments (GMM) estimator with a Newey and West (1987) weigdptnatrix with10 lags.

The second stage implements a Simulated Method of Momekilij$rocedure that searches
for a parameter vector that minimizes the distance betweeGMM estimates in the data and the
short-sample predictions of the model, weighted by the GMkheate of the covariance matrix.
The following steps outline the complete estimation method

1. Use GMM to estimate the data momenis,, and the corresponding covariance mat¥iy,

2. Specify a gues$,, for the N, estimates parameters= [y, ¥, 3, Oy, ly Vd, Tay, Oas Pa) » @Nd
the parameter covariance matrix,, which is initialized as a diagonal matrix.

3. Use simulated annealing to minimize the distance betweedata and model moments.
(a) Foralli € {0,..., Ny}, perform the following steps:
i. Draw a candidate vector of parameteis, where
fo fori =0,

~

N(#;_1,cXp) fori> 0.

éicand -~

We setc to target an overall acceptance rate of rougilyt.
ii. Solve the Campbell-Shiller approximation of the modekem éf‘md.

iii. Simulate the monthly model,000 times for the same length as the data plus a
burn-in period. We burn off 0,000 months so that the first period closely ap-
proximates a representative draw from the model’s ergodicilution. For each
simulationj, calculate the moments,, ;(As**®), analogous to those in the data.

20



iv. Calculate the median moments across the short-sampléations, ¥, (/") =
median ({\If arg (65 }(;010>, and evaluate the objective function,

e = [War(07) = W) S5 W (65™) — W]
v. Accept or reject the candidate draw according to

(fgmd, Jeond) if § = 0,
(6:,J;) = { (feand, Jeand) if min(1, exp(Ji_y — Je4) /t) > 4,

~

(0i—1, Ji—1) otherwise
wheret < 1 is the temperature andlis a draw from a uniform distribution. The
lower the temperature, the more likely it is that the cangidixaw is rejected.

(b) Find the parameter draft" that corresponds td™", and updaté& .
i. Discard the firstV,;/2 draws. Stack the remaining draws in\g/2 x N, matrix,
6, and define® = © — SN2 4, /N, s
ii. CalculateX = ©'0/N,, sup-
4. Repeat the previous step, initializing at dréy= 6™, covariance matrixtp = ¥, and
gradually decreasingeach time, until™" does not decrease more than some tolerance.
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