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Abstract

During the Great Recession, many central banks lowered their policy rate to its zero lower
bound (ZLB), creating a kink in the policy rule and calling into question linear estimation
methods. There are two promising alternatives: estimate a fully nonlinear model that
accounts for precautionary savings effects of the ZLB or a piecewise linear model that is
much faster but ignores the precautionary savings effects. Repeated estimation with
artificial datasets reveals some advantages of the nonlinear model, but they are not large
enough to justify the longer estimation time, regardless of the ZLB duration in the data.
Misspecification of the estimated models has a much larger impact on accuracy. It biases
the parameter estimates and creates significant differences between the predictions of the
models and the data generating process.
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1 INTRODUCTION

Using Bayesian methods to estimate linear dynamic stoclgesteral equilibrium (DSGE) models
has become common practice in the literature over the lageafs. Many central banks also use
these models for forecasting and counterfactual simulatidhe estimation procedure sequentially
draws parameters from a proposal distribution, solves theéaingiven that draw, and then evalu-
ates the likelihood function. With linearity and normalligtlibuted shocks, the model solves in a
fraction of a second and it is easy to exactly evaluate thailikod function with a Kalman filte.
The financial crisis and subsequent recession compelleg oeriral banks to take unprece-
dented action to reduce their policy rate to its zero lowemuat(ZLB), calling into question linear
estimation methods. The ZLB constraint presents a chadl&rgempirical work because it creates
a kink in the central bank’s policy rule. The constraint hagags existed, but when policy rates
were well above zero and the likelihood of hitting the coaisirwas negligible, it was reasonable
toignore it. The lengthy period of near zero policy ratesrélie last decade and the increased like-
lihood of future ZLB events due to estimates of a lower ndt@i@ has forced researchers to think
more carefully about the ZLB constraint and its implicaida.g., Laubach and Williams, 2016).
There are two promising estimation methods used in theatitee that account for the ZLB
constraint in DSGE models. The first method estimates a fdhjinear model with an occasion-
ally binding ZLB constraint (e.g., Gust et al., 2017; Plagttal., 2018; Richter and Throckmorton,
2016). This method provides the most comprehensive tredtaighe ZLB constraint but is nu-
merically intensive. It uses projection methods to solertbnlinear model and a particle filter to
evaluate the likelihood function for each draw from the pdst distribution (henceforth, NL-PE).
The second method estimates a piecewise linear versioreafahlinear model (e.g., Guerri-
eri and lacoviello, 2017). The model is solved using the GadBolbox developed by Guerrieri
and lacoviello (2015). The likelihood is evaluated usingrarersion filter, which solves for the
shocks that minimize the distance between the data and tdelrpoedictions each period. The
benefit of this method (henceforth, PW-IF) is that it is ngad fast as estimating a linear model
with a Kalman filter while still capturing the kink in the de@n rules created by the ZLB con-
straint. However, PW-IF differs from NL-PF in two ways. Omeuseholds do not account for the
possibility that the ZLB may bind in the future if it does nabd in the current period, which is in-
consistent with survey data. Two, the inversion filter reexthe interest rate as an observable and
sets the monetary policy shock to zero when the ZLB binds redsethe particle filter estimates
those shocks given the data. The question is whether PWalir éaglequate substitute for NL-PF.

1Schorfheide (2000) and Otrok (2001) were the first to useetimesthods to generate draws from the posterior
distribution of a linear DSGE model. See An and Schorfhe2®®7) and Herbst and Schorfheide (2016) for examples.

2Several papers examine the effects of the ZLB constraintaliaratednonlinear model using projection methods
similar to ours (e.g., Aruoba et al., 2018; Fernandezavirde et al., 2015; Gavin et al., 2015; Keen et al., 2017;
Mertens and Ravn, 2014; Nakata, 2017; Nakov, 2008; Ngo, ;/ZRithter and Throckmorton, 2015; Wolman, 2005).
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This paper compares the accuracy of the two estimation rdetie specify a true parameter-
ization of a medium-scale nonlinear model with an occasiphinding ZLB constraint, solve the
model with a projection method, and generate a large sanijplatasets. The datasets either con-
tain no ZLB events or a single event with various durationgrtderstand the influence of the ZLB
on the posterior estimates. For each dataset, we use NL-GPP\ARIF to estimate a small-scale,
but nested, version of the medium-scale model that gersettadedata. We also estimate the linear
model with a Kalman filter (henceforth, Lin-KF), since it wiage most common method before the
Great Recession. The small-scale model excludes feattites medium-scale model that others
have shown are empirically important. The difference betwthe two models—referred to as
misspecification—account for the practical reality thatnabdels are misspecified. It also sheds
light on the merits of estimating a simpler, more misspedifiraodel with NL-PF, versus a richer,
less misspecified, model with PW-IF that is numerically tostty with fully nonlinear methods.

We measure accuracy by comparing the parameter estimegdg;tppons of the notional interest
rate, expected frequency and duration of the ZLB, simulegsgonses to a severe recession, and
forecasting performance. While our posterior estimatgsalesome advantages of NL-PF, they
are not large enough to justify the significantly longer rastion time, regardless of the ZLB
duration in the data. This key finding holds because the ptew@ary savings effects of the ZLB
and the effects of other nonlinearities, independent ofahB, are small in canonical models.
Model misspecification has a larger impact. It biases tharpater estimates and creates significant
differences between the predictions of the two estimatedetscand the data generating process.

Since there is not a large advantage to estimating the fahjimear model over an equally
misspecified piecewise linear model, our results indica#t tesearchers are better off reducing
misspecification by estimating a richer piecewise lineadehthan a simpler but computationally
feasible nonlinear model when the ZLB binds in the data. Thjgortant finding opens the door
to promising new research on the implications of the ZLB t@mnst. The results also provide a
useful benchmark for future research that explores othelimesar features or estimation methods.

Our paper is the first to compare different estimation methbdt account for the ZLB con-
straint. Others compare nonlinear estimation methodsn&ati methods. Fernandez-Villaverde
and Rubio-Ramirez (2005) show that a neoclassical growitietrestimated with NL-PF predicts
moments closer to the true moments than the estimates frarKEiusing two artificial datasets
and actual data. The primary source of nonlinearity in thrdel is high risk aversion. Hirose and
Inoue (2016) generate artificial datasets from a linear ietere the ZLB constraint is imposed
using anticipated monetary policy shocks and then applyKkEnto estimate the model without
the constraint. They find the estimated parameters, impakg@nses, and structural shocks be-
come less accurate as the frequency and duration of ZLB ®ustrease in the data. Hirose and
Sunakawa (2015) extend that work by generating data frorménear model and reexamine the



bias. None of these papers introduce misspecification fwhian important aspect of our analysis.
We also build on recent empirical work that analyzes the icagibns of the ZLB constraint
(e.g., Gust et al., 2017; liboshi et al., 2018; Plante eR8l18; Richter and Throckmorton, 2016).
These papers use NL-PF to estimate a nonlinear model sitaitaurs using actual data from the
U.S. or Japan that includes the ZLB period. Our contribuisot® examine the accuracy of these
nonlinear estimation methods and show under what conditiogy outperform other approaches.
The measurement error (ME) in the observation equation efitter is a key aspect of the
estimation procedure that could potentially affect theuagcy of the parameter estimates. Unlike
the inversion filter, the particle filter requires positiveEMariances to prevent degeneracy—a
situation when the likelihood is inaccurate. The literathias used a wide range of different values,
with limited investigation on how they impact accuracy. Gamet al. (2014) show the downside
of introducing ME is that the posterior distributions of searameters do not contain the truth
in a DSGE model estimated with Lin-KF. Cuba-Borda et al. @0ghow that ME in the particle
filter reduces the accuracy of the likelihood function usangplibrated model with an occasionally
binding borrowing constraint. Our analysis provides a pt&dly important role for ME because
it includes model misspecification. We find larger ME variemamprove the accuracy of some
parameters, but the benefits are more than offset by desrigetse accuracy of other parametérs.
The paper proceeds as followSection 2describes our data generating process and artificial
datasetsSection Joutlines the estimated model and numerical meth8estion 4shows our pos-
terior estimates and several measures of accuracy for stinfa¢ion methodSection Sconcludes.

2 DATA GENERATING PROCESS

To test the accuracy of recent estimation methods, we gengtarge number of artificial datasets
from a canonical New Keynesian model with capital and an siocally binding ZLB constraint.

2.1 HRMs The production sector consists of a continuum of monopoéily competitive inter-
mediate goods firms and a final goods firm. Intermediate firen [0, 1] produces a differentiated
good,y(f), according tay(f) = (viks—1(f))*(zen:(f))1 %, wheren(f) is the labor hired by firm
f andk(f) is the capital rented by firnfi. z, = ¢,2,_1 is technology and is the capital utilization
rate, which are both common across firms. Deviations fronsthady-state growth rate, follow

Gt =G+ 0444, €4 ~ N(0,1). Q)

The final goods firm purchases output from each intermediatetéi produce the final good,
e = [ ye(f) O D/%f)%/@=1  whereg, > 1 is the elasticity of substitution. Dividend max-

3Herbst and Schorfheide (2018) develop a tempered pariigletfiat sequentially reduces the ME variances. They
assess accuracy against the Kalman filter on U.S. data witeaImodel and find it outperforms the untempered filter.

3



imization determines the demand for intermediate gépg (f) = (p:(f)/p:)~%vy;, wherep, =
fo pi(f)1%df]Y/(=%) is the price level. Following Rotemberg (1982), interméalirms pay a
price adjustment costdi? (f) = p,(pe(f)/(Fpi_1(f))—1)%*y: /2, wherep, > 0 scales the cost and
7 is the steady-state gross inflation rate. Given this cost, fichoosesy,(f), k;—1(f), andp,(f)
to maximize the expected discounted present value of fulividends.E; > .7, ¢ xdx(f), subject
to its production function and the demand for its productewy, ; = 1, ¢.1+1 = B(Ai/ A1) IS
the pricing kernel between periodandt + 1, ¢, = Hz‘ifﬂ gi—1,5, andd(f) = pe(H)ue(f)/pr —
wing(f) — ¥k, 1 (f) — adjf (f). In symmetric equilibrium, the optimality conditions rexuto

Yy = (Utkt—l)a(ztnt)l_a, (2)
wy = (1 — a)megy/ny, (3
Tf = amcyy/ (viki—1), 4)

(/T — 1) (/7)) = 1 = 0, + Opymey + Bpp Ey[(Ae/ Mer) (Tean /T — 1) (g1 /T) Y1/ ye),  (B)

wherer; = p;/p:—1 is the gross inflation rate. I, = 0, the real marginal cost of producing a unit
of output (nc;) equals(d, — 1)/6,, which is the inverse of the markup of price over marginat.cos

2.2 HouseHoLDs Each household consists of a unit mass of members who sugfdyed-
tiated types of laborp(¢), at real wage ratey(¢). A perfectly competitive labor union bundles
the labor types to produce an aggregate labor product; [fol ny (£)Ow=1/0w 40100/ (0=1) "where
0, > 1is the elasticity of substitution. Dividend maximizatioetdrmines the demand for labor
typel, ni(f) = (w,(£) Jw;)~%n,, wherew, = [ [ w,(¢)'~%»d¢]"/(1-%) is the aggregate real wage.
The households chooge;, n, by, x4, ki, v }52,, to maximize expected lifetime utility given by
Eo> 2, Bllog(e — hefy) — Xfol n(€)*1d¢/(1 + n)], whereg is the discount factory deter-
mines steady-state labadr/n is the Frisch labor supply elasticityjs consumptiong® is aggregate
consumptionf. is the degree of external habit persisterdds the real value of a privately-issugd
period nominal bond is investment, and, is an expectation operator conditional on information
available in period). Following Chugh (2006), the nominal wage rate for eachddipoe is sub-
ject to an adjustment costdj* (¢) = @, (w{ (£) — 1)%y,/2, wherew{ ({) = maw(£) /(Tgw;_1(£)) is
nominal wage growth relative its steady-state. The costilifing the capital shocky, is given by

uy = 7 (exp(oy (v — 1)) = 1)/, (6)
whereo, > 0 scales the cost. Given the two costs, the household’s bedgstraint is given by
Cy + T4 + bt/(stit) + utkt—l + fol adjt‘”(ﬁ)dﬁ = fol wt(ﬁ)nt(ﬁ)dﬁ + TfUt/{Zt_l + bt—l/ﬂ-t + dt,

wherei is the gross nominal interest raté, is the capital rental rate, antis a real dividend from



ownership of intermediate firms. The nominal bohds subject to a risk premium, that follows
st = (1= ps)S+ psSi—1 + 0ses1, 0 < ps < 1, €5 ~N(0, 1), (7

wheres is the steady-state value. An increase;ibboosts saving, which lowers periediemand.
Households also face an investment adjustment cost, savhef Imotion for capital is given by

ki =18k +x,(1—v(x) —1)%/2), 0<§ <1, (8)

wherez{ = z;/(gx;—1) is investment growth relative to its steady-state ane 0 scales the cost.
The first order conditions to each household’s constraimgidnization problem are given by

rk =" exp (o, (v, — 1)), 9)

At = ¢ — hef (20)

w] = xni\, (11)

1= BE[(Ae/ A1) (Seie/Ter1)], (12)

4t = ﬁEt[()\t/At+1)(7“f+1Ut+1 — U1+ (1= 0)qu41)], (13)

=gl —v(z] - 1)2/2 —v(x] — zf] + 5V§Et[()\t/)\t+1)%+1(xtg+1)2(xtg+1 - 1)}, (14)

pu(wf — Dwf = [(1 = 0u)w; + Ouw]ny/yr + BowE (M) M) Wiy — Dwdyyyea /v, (15)

wherel/ ) is the marginal utility of consumption,is Tobin’s g, andy/ is the flexible wage rate.
Monetary Policy The central bank sets the gross nominal interest rasecording to

i = max{1,1i}'}, (16)

ip = (i) /7)™ ) (y{259)))' 7 exp(oieis), 0 < ps < 1, &, ~N(0,1),  (17)

wherey? is real GDP (i.e., outpuy;, minus the resources lost due to adjustment cedsg,and
adj™, and utilization costs);” is the gross notional interest rateandt are the target values of
the inflation and nominal interest rates, afydand¢, are the responses to the inflation and output
growth gaps. A more negative net notional rate indicatestbigacentral bank is more constrained.

Competitive Equilibrium The aggregate resource constraint and real GDP definitgogiaen by
G+ T = yfdp> (18)
i =1 = pp(m/7 = 1)*/2 = pu(w] = 1)*/20ys — wki 1. (19)

The model does not have a steady-state due to the unit reathmology,;. Therefore, we define
the variables with a trend in terms of technology (i®.,= z;/z). The detrended equilibrium



system is provided i\ppendix A A competitive equilibrium consists of sequences of quan-
.- ~ ~ ~qd L . ~ o~ ~ . Y

tities, {¢r, 01, U7, 7, yi e, e, T 3520, prlces,{wt,wtf,wf,zt,zf,wt, e, U, Ug, @, TF, meg 152, and
exogenous variablegs;, g:}:°,, that satisfy the detrended equilibrium system, given ttitai
conditions{¢_4,4" |, k_1,@_1,10_1, So, 9o, €i0}, and three sequences of shocks,;, €5+, i 152

Subjective Discount Factor B 0.9949 Rotemberg Price Adjustment Cost ¢, 100
Frisch Labor Supply Elasticity 1/7 3 Rotemberg Wage Adjustment Cost ¢, 100
Price Elasticity of Substitution 6, 6 Capital Utilization Curvature o 5
Wage Elasticity of Substitution 6, 6 Inflation Gap Response O 2
Steady-State Labor Hours n 0.3333 Output Growth Gap Response Dy 0.5
Steady-State Risk Premium 5 1.0058 Habit Persistence h 0.8
Steady-State Growth Rate g 1.0034 Risk Premium Persistence Ps 0.8
Steady-State Inflation Rate T 1.0053 Notional Rate Persistence Pi 0.8
Capital Share of Income Q 0.35 Technology Growth Shock SD og 0.005
Capital Depreciation Rate 0 0.025 Risk Premium Shock SD Os 0.005
Investment Adjustment Cost v 4 Notional Interest Rate Shock SD o; 0.002

Table 1: Parameter values for the data generating process.

2.3 FARAMETER VALUES Table 1shows the true model parameters. The parameters were cho-
sen so our data generating process is characteristic ofddt8. The steady-state growth rag, (
inflation rate (), risk-premium §), and capital share of income/)( are equal to the time aver-
ages of per capita real GDP growth, the percent change in Bfe i@iplicit price deflator, the
Baa corporate bond yield relative to the yield on the 10-YBa&asury, and the Fernald (2012)
utilization-adjusted quarterly-TFP estimates of the taghare of income from 1988Q1-2017Q4.
The subjective discount facto?, is set t00.9949, which is the time average of the values im-
plied by the steady-state consumption Euler equation anfittteral funds rate. The corresponding
annualized steady-state nominal interest rate3%, which is consistent with the sample average
and current long-run estimates of the federal funds rate.l@isure preference parameterjs set
so steady-state labor equals3 of the available time. The elasticities of substitutionAmstn inter-
mediate goods and labor typés,andd,,, are set t®, which correspond to 20% average markup
in each sector and match the values used in Gust et al. (204&)-risch elasticity of labor supply,
1/n, is set to3 to match the macro estimate in Peterman (2016). The rengg@irameters are set
to round numbers that are in line with the posterior estisyitam similar models in the literature.

2.4 SOLUTION AND SIMULATION METHODS We solve the nonlinear model with the policy
function iteration algorithm described in Richter et al012), which is based on the theoretical
work on monotone operators in Coleman (1991). We discréteendogenous state variables and
approximate the exogenous statesyg;, ande; ; using the/N-state Markov chain in Rouwenhorst
(1995). The Rouwenhorst method is attractive becauseytregjuires us to interpolate along the
dimensions of the endogenous state variables, which mhkesotution more accurate and faster
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than quadrature methods. To obtain initial conjectureshifemonlinear policy functions, we solve
the level-linear analogue of our nonlinear model with SBr(2002) gensys algorithm. Then we
minimize the Euler equation errors on every node in the spéee and compute the maximum
distance between the updated policy functions and thelmitinjectures. Finally, we replace the
initial conjectures with the updated policy functions aterate until the maximum distance is
below the tolerance level. Ség@pendix Bfor a more detailed description of the solution method.
We generate data for output growth, the inflation rate, aradhtiminal interest rate by simulat-
ing the model using the nonlinear policy functions, so theesbables are given by, = [v7, 7y, 7).
Each simulation is initialized with a draw from the ergodistdbution and contain$20 quarters,
which is similar to what is typically used when estimatingdats with actual data. We use samples
from the data generating process that either have no ZLB®wee®a singular ZLB event that makes
up 5%, 10%, 15%, 20%, and25% of the sample. Since our sampleliZ) quarters, the ZLB events
are eithen, 12, 18, 24, or 30 quarters long. The longest ZLB events reflect the expergeotsome
advanced economies, such as the U.S. since the Great Recesdiapan. We creat® datasets
for each ZLB duration and then report measures of accurasstban the posterior mean estimates.

3 ESTIMATION METHODS

Every model contains some form of misspecification. To antéar this reality, we test the accu-

racy of different estimation methods on a small-scale mtuslidoes not include capital or sticky
wages. The medium-scale model that generates our datpsediao the small-scale model when
a = ¢, = 0andd,, — oo. The equilibrium system includes)( (5), (7), (10), (12), (16), (17), and

Yo = ZiNy, (20)

Wy = megyy /Ny, (21)

wy = xn{ A, (22)

o = yI%, (23)

i = [1 = pp(m/7 = 1)% /2y (24)

Once again, we remove the trend in technology and providdetrended equilibrium system in
Appendix A The competitive equilibrium includes sequences of qiasti{c,, 7, 777, y?, 1},
prices,{wy, iy, i}, 7, ;\t,mct}fgo, and exogenous variable§s;, g: }:°,, that satisfy the detrended
system, given the initial condition§g_+, " ,, so, go, €i,0}, and shock sequences, ¢, € ¢, it } 724 -
The medium-scale model used to generate the data shoubliteytgater endogenous persis-
tence due to the inclusion of capital and sticky wages. Aaoitmportant difference between the
two models is the aggregate resource constraint. In thd-seele model, deviations g from
y must be explained by inflation, as it does not contain wagesaajient or capital utilization costs.
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We estimate the small-scale model with Bayesian methodsed&ah dataset, we draw param-
eters from a proposal distribution, solve the model cooddl on the draw, and filter the data to
evaluate the likelihood function within a random walk Mgtatis-Hastings algorithm. Within this
framework, we test the accuracy of two promising estimatm@athods that account for the ZLB.

The first method estimates the fully nonlinear model with gigle filter (NL-PF). We solve
the model with the same algorithm we used to generate oursétdaTo filter the data, we follow
Algorithm 14 in Herbst and Schorfheide (2016) and adapt te&dobootstrap particle filter de-
scribed in Fernandez-Villaverde and Rubio-Ramirez {2@06 include the information contained
in the current observation, so the model better matchesregtoutliers in the data. NL-PF is well-
equipped to handle the nonlinearities in the data, but ilsis the most computationally intensive.
NL-PF requires solving the fully nonlinear model and perforg a large number of simulations to
evaluate the likelihood function for each draw in the randeatk Metropolis-Hastings algorithm.
Appendix Cprovides a more detailed description of the estimationrélym and the particle filter.

The second method estimates a piecewise linear versiom ofahlinear model with an inver-
sion filter. To solve the model, we use the OccBin toolbox tyed by Guerrieri and lacoviello
(2015). The algorithm separates the model into two reginesne regime, the ZLB constraint
is slack, and the decision rules from the unconstraine@tinedel are used. In the other regime,
the ZLB binds and backwards induction within a guess andyarethod solves for the decision
rules. For example, if the ZLB binds in the current periodjrahal conjecture is made for how
many quarters the nominal interest rate will remain at th& Zgtarting far enough in the future,
the algorithm uses the decision rules for when the ZLB doé¢$&imal and iterates backward to the
current period. The algorithm switches to the decisiongtite the ZLB regime when the simu-
lated nominal interest rate indicates that the ZLB bindse $imulation implies a new guess for
the ZLB duration. The algorithm iterates until the implied&duration equals the previous guess.

The advantage of using the piecewise linear model is thatves very quickly. Furthermore,
the nonlinear solution time exponentially increases wlith size of the model, whereas the size
of the model has little effect on the solution time in the pwise linear model. However, it is
numerically too costly to apply a patrticle filter to the pietse linear model. For each particle, the
piecewise linear solution requires a long enough simuldtiaeturn to the regime where the ZLB
does not bind, whereas only a 1-period update is needed @thdnlinear solution. To speed up
the filter, Guerrieri and lacoviello (2017) follow Fair andylor (1983) and use an inversion filter
that requires only one simulation, rather than a simulatowreach particle. The inversion filter
solves for the shocks that minimize the distance betweealibervables and the equivalent model
predictions each period. While it is not as fast as the Kalfiln, the time it takes to execute the
piecewise linear solution embedded in the inversion fikensignificant relative to using NL-PF.

The piecewise linear model estimated with the inversioarflPW-IF) makes two simplifica-



tions. One, households do not account for the possibilaytie ZLB may bind in the future when
it does not bind in the current period. That means houselhgidse the effects of the constraint in
states of the economy where the ZLB is likely to bind in therrieure because the algorithm uses
the unconstrained linear decision rules. Two, the algorittmoves the nominal interest rate as an
observable and sets the monetary policy shock to zero wieegliB binds? This simplification
removes a source of volatility at the ZLB and a feature of tlealeh that could help identify the
parameters of the monetary policy rule. With NL-PF, housgshform expectations about going to
the ZLB and the policy shocks influence the duration of the ZleBiod. The question is whether
the differences in the two methods are large enough to yusee higher estimation time of NL-PF.
As a benchmark, we estimate the linear analogue of the remlimodel using Sims’s (2002)
gensys algorithm to solve the model and a Kalman filter touatal the likelihood function (Lin-
KF). Unlike the other two methods, this method ignores th® Zbnstraint, but it is much easier
to implement and was the most common method used in thetliterbefore the Great Recession.
For each estimation method, the observation equation endiyx, = Hs; + &, wheres;
is a vector of variablesH is an observable selection matrix, afids a vector of measurement
errors (MEs). The inversion filter solves for the shocks thatimize the distance between the
observablesx;, and their model predictiong/s;, so there is no ME up to a numerical tolerance.
With a Kalman filter or particle filte; ~ N(0, R), whereR is a diagonal matrix of ME varianceés.
We are free to set the ME variances to zero when we use the IKdiftex, since the number of
observables is equal to the number of shocks. The partitde tilowever, always requires positive
ME variances to avoid degeneracy—a situation when only dl smaber of particles fit the data
well. Unfortunately, there is no consensus on how to setthiakies, despite their potentially large
effect on the estimates. We consider three different vdhrebe ME variances2%, 5%, and10%
of the variance in the data. These values encompass theavige of values used in the literatdre.
Table 2displays information about the prior distributions of thetimated parameters. All
other parameter values are fixed at their true values. Tloe reans are set to the true parameter
values to isolate the influence of other aspects of the esimprocedure, such as the solution
method and filter. Different prior means would most likelyeat the accuracy of the estimation

“4In the special case where the notional rate implied by theatisghositive, the observable and shock are reinstated.

Slreland (2004) allows for correlated MEs, but he finds a reaimess cycle model's out-of-sample forecasts
improve when the ME covariance matrix is diagonal. Guei@uintana (2010) finds that introducing i.i.d. MEs and
fixing the variances ta0% or 20% of the standard deviation of the data improves the empificahd forecasting
properties of a New Keynesian model. Fernandez-Villasendd Rubio-Ramirez (2007) estimate the ME variances,
but Doh (2011) argues that approach can lead to complicalienause the ME variances are similar to bandwidths in
nonparameteric estimation. Given those findings, we usagodal ME covariance matrix and fix the ME variances.

6Some papers set the MiEandard deviationto 20% or 25% of the sample standard deviations, which is equivalent
to setting the MBEvariancesto 4% or 6.25% of the sample variances (e.g., An and Schorfheide, 2007; RB@ohl;
Herbst and Schorfheide, 2016; van Binsbergen et al., 2@iAer work directly sets the ME varianceslief% or 25%
of the sample variances (e.g., Bocola, 2016; Gust et al.7;2@lante et al., 2018; Richter and Throckmorton, 2016).



Parameter Dist. Mean (SD) Mean (SD) Paemet Dist. Mean (SD)
©p Norm 100 0.8 oy IGam 0.005
(25) (0.1) (0.005)
Or Norm 2.0 0.8 Os IGam 0.005
(0.25) (0.1) (0.005)
by Norm 0.5 0.8 o; IGam 0.002
(0.25) (0.1) (0.002)

Table 2: Prior distributions, means, and standard deviatid the estimated parameters.

and contaminate our results. The prior standard devigtiwhieh are consistent with the values in
the literature, are relatively diffuse to give the algamitfiexibility to search the parameter space.

Our estimation procedure has three stages. First, we coaduode search to create an initial
variance-covariance matrix for the estimated paramefEng. covariance matrix is based on the
parameters corresponding to #@&h percentile of the likelihoods from,000 draws. Second, we
perform an initial run of the Metropolis-Hastings algornttwith 25,000 draws from the posterior
distribution. We burn off the firsi,000 draws and use the remaining draws to update the variance-
covariance matrix from the mode search. Third, we conducia fun of the Metropolis-Hastings
algorithm. We obtairs0,000 draws from the posterior distribution and then record thamraw.

The algorithm is programmed in Fortran using Open MPI. Wetherdatasets in parallel across
several supercomputers. When estimating PW-IF and Linel§Eh dataset uses a single core. To
estimate NL-PF, each dataset ugéscores because we parallelize the nonlinear solution across
the nodes in the state space. For example, a supercomptiteéOwdores can simultaneously run
80 PW-IF datasets but only NL-PF datasets. To increase the accuracy of the partioge, filke
evaluate the likelihood function on each core. Since eacHPRNldataset usd$ cores, we obtain
16 likelihoods and determine whether to accept or reject a drased on the median likelihood.
This step reduces the variance of the likelihoods from séedts. The filter use$0,000 particles.

NL-PF (16 Cores) PW-IF (1 Core) Lin-KF (1 Core)
0Q 30Q 0Q 30Q 0Q 30Q
Seconds per draw 6.7 8.4 0.035 0.096 0.002 0.002
(6.1,7.9) (7.5,9.5) (0.031,0.040)  (0.051,0.135)  (0.002,0.004)  (0.001,0.003)
Hours per dataset 148.8 186.4 0.781 2.137 0.052 0.049
(134.9,176.5)  (167.6,210.7)  (0.689,0.889)  (1.133,3.000)  (0.044,0.089)  (0.022,0.067)

Table 3: Average an(b, 95) percentiles of the estimation times by method and ZLB darsiti the data.

Table 3shows the computing times for each estimation method. Weoappate the times by
calculating the solution and filter time across the datagigen the parameter estimates. We also
show hours per dataset, which are extrapolated by multiglgeconds per draw 89,000 draws
and dividing by3,600 seconds per hour. We report times for NL-PF, PW-IF, and LinkKdatasets
where the ZLB never binds and datasets with one 30 quartereZieBt. NL-PF is run on 16 cores
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and the other two methods use a single core. The estimatr@stdepend on the hardware, but
there are two interesting takeaways. One, PW-IF is sliggitlwer than Lin-KF, but it only takes a
few hours to run on a single core. Two, NL-PF requires ordensagnitude more time than PW-IF,
which is hard to justify unless there are significant differes in accuracy. However, NL-PF ran in
about a week with6 cores, so itis possible to estimate the fully nonlinear nhode workstation.

4 POSTERIORESTIMATES AND ACCURACY

The section begins by showing the accuracy of the param&tieraes for each estimation method.
We then compare the filtered estimates of the notional isteede, expected frequency and dura-
tion of the ZLB, responses to a severe recession, and faneggerformance across the methods.

4.1 RRAMETER ESTIMATES We measure parameter accuracy by calculating the norrdalize
root-mean square-erroNRMSE) for each estimated parameter. For paramgi@nd estimation
methodh, the error is the difference between the parameter estifortiataset:, 6, , and the
true parameteéj. Therefore, theNRMSE for parametey and estimation metholdis given by

NRMSE] = Gi\/ S Oy — 05)%,

whereN is the number of datasets. TR&ISE is normalized by, to remove the scale differences.

0Q 6Q 12Q 18Q 24Q 30Q
NL-PF-5% 1.90 1.96 1.99 2.12 2.09 2.08
PW-IF0% 1.53 1.63 1.71 2.01 1.99 1.91
Lin-KF-0% 1.49 1.62 1.89 2.10 2.30 2.24
Lin-KF-5% 1.88 2.01 2.11 2.27 2.28 2.28

Table 4: Sum of th&RMSE across the estimated parameters. Columns denote the ZlaBatuin the data.

Table 4shows the sum of thERMSE across the parameters. These values provide an aggre-
gate measure of parameter accuracy. The percentage appertie name of each specification
corresponds to the size of the ME variances. The estimates diatasets without a ZLB event
show how well each specification performs without any infeeefrom the ZLB constraint. With
these datasets, PW-I[E4 and Lin-KF-0% have roughly the same accuracy since the solution meth-
ods are identical when the ZLB does not bind. Interestingdyh of those specifications are more
accurate than NL-PE%. The results for Lin-KF% show the lower accuracy of NL-PF% is
driven by positive ME variances and that the ZLB is the onlpariant nonlinearity in the model.

Comparing the columns for each method shows the effectseoZ B duration in the data.
When the ZLB binds, it reduces the accuracy of every spetiicand accuracy typically dimin-
ishes as the ZLB event lengthens. Lengthening the ZLB ewdhei data has the smallest effect on
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the accuracy of NL-PBE%. Datasets with a 30 quarter ZLB event reduce accurady tiyrelative

to datasets without a ZLB event. For comparison, the acgutacreases b§.38 with PW-IF-0%
and by0.75 with Lin-KF-0%. However, NL-PF5% is less accurate than PW-[F% due to the
positive ME variances. In other words, it is the best equildpehandle ZLB events in the data, but
the loss in accuracy due to the positive ME variances in thigcpafilter outweighs those benefits.

Ptr  Truth NL-PF-%% PW-IF-0% Lin-KF-5%
0Q 30Q 0Q 30Q 0Q 30Q
©p 100 151.1 188.4 142.6 183.4 151.4 191.6
(134.2, 165.8) (174.7,202.7) (121.1,157.3) (169.2, 198.5) (134.0, 165.7) (175.3,204.1)
[0.52] [0.89] [0.44] [0.84] [0.52] [0.92]
h 0.8 0.66 0.68 0.64 0.63 0.66 0.67
(0.62,0.70) (0.64,0.71) (0.61,0.67) (0.60,0.67) (0.62,0.69) (0.63,0.70)
[0.18] [0.16] [0.20] [0.21] [0.18] [0.17)
Ds 0.8 0.76 0.81 0.76 0.82 0.76 0.82
(0.72,0.80) (0.78,0.84) (0.73,0.81) (0.79,0.86) (0.72,0.80) (0.78,0.86)
[0.06] [0.03] [0.05] [0.04] [0.06] [0.04]
Di 0.8 0.79 0.80 0.76 0.77 0.79 0.84
(0.75,0.82) (0.75,0.84) (0.71,0.79) (0.73,0.81) (0.75,0.82) (0.80,0.88)
[0.03] [0.03] [0.06] [0.05] [0.03] [0.06]
og 0.005 0.0032 0.0040 0.0051 0.0059 0.0032 0.0043
(0.0023,0.0039)  (0.0030,0.0052)  (0.0044,0.0058)  (0.0050,0.0069)  (0.0023,0.0039)  (0.0030, 0.0057)
[0.37] [0.23] [0.09] [0.22] [0.36] [0.20]
os 0.005 0.0052 0.0050 0.0051 0.0046 0.0053 0.0047
(0.0040,0.0066)  (0.0039,0.0062)  (0.0042, 0.0063)  (0.0036,0.0056)  (0.0040,0.0067)  (0.0037,0.0061)
[0.15] [0.13] [0.13] [0.15] [0.15] [0.15]
o; 0.002 0.0017 0.0015 0.0020 0.0020 0.0017 0.0016
(0.0014,0.0020)  (0.0013,0.0019)  (0.0018,0.0023)  (0.0019,0.0024)  (0.0015,0.0020)  (0.0014, 0.0019)
[0.17] [0.24] [0.08] [0.09] [0.16] [0.20]
o 2.0 2.04 2.13 2.01 1.96 2.04 1.73
(1.88,2.19) (1.94,2.31) (1.84,2.16) (1.77,2.14) (1.88,2.20) (1.52,1.91)
[0.06] [0.09] [0.06] [0.06] [0.06] [0.15]
Dy 0.5 0.35 0.42 0.32 0.44 0.35 0.32
(0.21,0.54) (0.27,0.62) (0.17,0.48) (0.27,0.61) (0.22,0.54) (0.17,0.47)
[0.36] [0.28] [0.41] [0.25] [0.35] [0.40]

Table 5: Average(5, 95) percentiles anNRMSE] of the parameter estimates.

Table Sbreaks the results down by parameter. Each cell includes/rage(5, 95) percentiles

andNRMSE of the parameter estimates across the datasets. For dgigplie focus on datasets
without a ZLB event and those with a 30 quarter event. Ni&MISEs are comparable despite
differences in the scales of the parameters, because tirs are weighted by the true parameters.

The Rotemberg price adjustment cost parametgy i€ the least accurate and it becomes less

accurate when the ZLB binds in the data. The bias is likelyedriby misspecification in the
aggregate resource constraint.does not include investment, a utilization cost, or a wadjeist-
ment cost, so deviations @fd” from y, must be driven by price adjustment costs. There is also
downward bias in the estimates of habit persistehgerisk premium persistencey), interest rate
smoothing f;), and the monetary response to the output growth ggifiom the misspecification.
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The ZLB duration has the opposite effect @an so the downward bias disappears. The bias in

"Appendix E.2shows the estimates without misspecification (i.e., tha dajenerated with the small-scale model).



the NL-PF5% estimates of the technology growth and monetary policy lslstendard deviations
(0, ando;) is due to the positive ME variances in the filter, as Lin-B%k-produces identical es-
timates. The importance of the ME variances is likely dritgrthe filter ascribing large shocks
to ME rather than the structural shocks, reducing theinestd volatility. Therefore, it is notable
that NL-PF5% is the most accurate in estimating the parameters that tthévesk-premium shock
(ps ando,), and long ZLB events do not make them less accurate. Oy#ralbecreases in accu-
racy due to the ZLB are largely driven by a single paramete)y &énd for many of the parameters
accuracy is higher in datasets with a 30 quarter ZLB evemntdadasets where the ZLB never binds.

Ptr  Truth NL-PF-2% NL-PF-5% NL-PF-10%
0Q 30Q 0Q 30Q 0Q 30Q
©p 100 150.2 192.0 151.1 188.4 149.5 182.7
(133.5, 165.3) (176.5,207.1) (134.2, 165.8) (174.7,202.7) (132.6, 163.8) (168.6, 197.3)
[0.51] [0.93] [0.52] [0.89] [0.50] [0.83]
h 0.8 0.66 0.67 0.66 0.68 0.66 0.68
(0.62,0.69) (0.64,0.71) (0.62,0.70) (0.64,0.71) (0.61,0.70) (0.65,0.72)
[0.18] [0.17) [0.18] [0.16) [0.17) [0.15]
Ds 0.8 0.76 0.81 0.76 0.81 0.76 0.81
(0.71,0.79) (0.78,0.84) (0.72, 0.80) (0.78,0.84) (0.72,0.79) (0.79,0.85)
[0.06] [0.03] [0.06] [0.03] [0.06] [0.03]
Di 0.8 0.77 0.79 0.79 0.80 0.80 0.81
(0.73,0.80) (0.75,0.83) (0.75,0.82) (0.75,0.84) (0.77,0.84) (0.76,0.85)
[0.05] [0.03] [0.03] [0.03] [0.03] [0.03]
ogs 0.005 0.0038 0.0043 0.0032 0.0040 0.0027 0.0038
' (0.0031,0.0043)  (0.0035,0.0052)  (0.0023,0.0039)  (0.0030,0.0052)  (0.0020,0.0035)  (0.0025,0.0050)
[0.25] [0.18] [0.37] [0.23] [0.46) [0.28]
os 0.005 0.0052 0.0051 0.0052 0.0050 0.0051 0.0049
(0.0039,0.0065)  (0.0040,0.0061)  (0.0040, 0.0066)  (0.0039,0.0062)  (0.0041,0.0065)  (0.0037,0.0061)
[0.15] [0.13] [0.15] [0.13] [0.14] [0.14]
o; 0.002 0.0019 0.0018 0.0017 0.0015 0.0015 0.0013
(0.0017,0.0021)  (0.0016,0.0021)  (0.0014,0.0020)  (0.0013,0.0019)  (0.0012,0.0018)  (0.0011,0.0017)
[0.10] [0.14] [0.17] [0.24] [0.25] [0.34]
o 2.0 2.01 2.14 2.04 2.13 2.06 2.12
(1.84,2.16) (1.96,2.31) (1.88,2.19) (1.94,2.31) (1.89,2.21) (1.92,2.28)
[0.06] [0.09] [0.06] [0.09] [0.07] [0.08]
Dy 0.5 0.31 0.39 0.35 0.42 0.41 0.46
‘ (0.18,0.48) (0.24,0.60) (0.21,0.54) (0.27,0.62) (0.26,0.59) (0.30,0.66)
[0.42] [0.32] [0.36] [0.28] [0.27] [0.24]
z [1.79] [2.01] [1.90] [2.08] [1.95] [2.13]

Table 6: Average(5, 95) percentiles anfiNRMSE] of the parameter estimates.is sum of theNRMSE.

ME Variances Table 6shows the parameter estimates & RRIMSEs for NL-PF with three dif-
ferent ME variances2%, 5% (baseline), and0%. If there was no misspecificiation, it would be
obvious that lower ME variances would increase accuracy t# effective sample size in the
particle filter became too small. In our setup, the presehceigsspecification creates a potential
tradeoff. On the one hand, lower ME variances force the mimdalatch sharp swings in the data,
which could help identify the parameters. On the other hhigther ME variances give the model a
degree of freedom to account for important discrepanciggdsn the estimated model and the data
generating process (e.g., the aggregate resource comstvehich could decrease parameter bias.
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We find smaller ME variances reduce the sum of igMSE across the parameters. Fgf
ando;, higher ME variances push the estimates lower, away fronrtigevalue. Once again, this
result is likely driven by the filter incorrectly ascribingovements in the data to ME rather than
the structural shocks. This loss in accuracy as the ME veemincrease is partially offset by the
increase in the accuracy of most other parameters. Essmétg with all datasets and estimates
of ¢, with datasets where the ZLB binds for 30 quarters improventbst. These parameters are
tightly linked to real GDP and the aggregate resource caimstrwhich is a key misspecification
that is compensated for with higher ME. These results shavNtE variances are important for
accuracy. In some cases, they may compensate for modeleuisation and enable use of the
particle filter. In our setup, however, positive ME varianbave a net negative effect on accuracy.

4.2 NOTIONAL INTERESTRATE ESTIMATES We measure the accuracy of the notional rate by
calculating the average MSE across periods when the ZLB binds. For perioahd estimation
methodh, the error is the difference between the filtered notiontd kmsed on the parameter
estimates for datasét i}, ,, and the true notional ratg;. The RMSE for methodh is given by

. N t+7—1/~ b
RMSE;: = %% Zkzl Z]—:t— (Z;'L,h,k - Z?)Q’

wheret is the first period the ZLB binds andis the duration of the ZLB event. There is no reason
to normalize thdR MSE since the units are the same across periods and we do not soss atates.
Estimates of the notional interest rate are of keen intdoepblicymakers for two key rea-
sons. One, they summarize the severity of the recessiorhambiminal interest rate policymakers
would like to set in the absence of the ZLB, which help inforetidions about implementing un-
conventional monetary policy. Two, estimates of the nalaate help determine how long the
ZLB is expected to bind, which is necessary to issue forwandance. The notional rate is also
the only latent endogenous state variable in the model shadtidirectly linked to an observable.
Figure 1shows the accuracy of the notional rate for our baseline ogdstiNL-PF5% and PW-
IF-0%. We also show the how different ME variances in the partiderfaffect accuracy. We do
not present the results for Lin-KF because they are unirditisra. Since the linear model does not
distinguish between the notional and nominal rates anddh@mal rate is an observable, the error
in the linear model equals the absolute value of the noti@atalwhen the ZLB binds in the data.
Regardless of the ZLB duration, NL-P#% provides more accurate estimates of the notional
rate than PW-IR3%. On average, the differences are ab@Qt percentage points per period. The
magnitude of the differences is roughly the same when thezihBs for a long time in the data, so
the cumulative differences are often large over the entif® geriod. Nevertheless, the differences
in the estimates are not big enough to have a meaningful ingpguolicy prescriptions. Increasing
or decreasing the ME variances also has a fairly small e#ésgiecially when the ZLB eventis long.
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Figure 1:RMSE of the notional interest rate across ZLB durations in thadRates are net annualized percentages.

4.3 EXPECTEDZLB DURATION AND PROBABILITY In addition to estimates of the notional in-
terest rate, two commonly referenced statistics in thedlitee are the expected duration and prob-
ability of the ZLB constraint. These statistics determihe impact of a ZLB event in the model
and are frequently measured against survey dataire 2shows the accuracy of the two statistics.
The top panel compares the expected ZLB durations givendheneter estimates from the
small-scale model to the actual expected ZLB durations fileendata generating process (DGP)
given the true parameters. The expected ZLB durations anpoted as the average acrasg)00
simulations of a model initialized at the filtered statesg@ual states for the DGP) where the ZLB
binds. The solid lines are the mean expected ZLB duratiotissismall-scale model after pooling
across the different ZLB states and datasets. The shadas are the 5, 95) percentiles of the
durations. The estimated expected ZLB duration equalstivabexpected ZLB duration along the
45 degree line. The deviations from the 45 degree line giyaht bias in the estimated durations.
When the actual expected ZLB duration is relatively shiw, NL-PF5% and PW-IF0% ex-
pected ZLB durations are close to the truth. As the actuatebgal duration lengthens, both es-
timates become less accurate. The NL&##95th percentile continues to encompass the actual
expected durations. However, once the actual value excaedgiarters, there is 8% chance
or higher of underestimating the actual expected duratitim RW-1F-0%. Furthermore, the PW-
IF-0% mean expected duration is typically at least one quartetteshthan the NL-PF% mean
estimate® These results are likely driven by model misspecificatisrtha presence of capital and
sticky wages in the DGP makes the ZLB more persistent thameiestimated small-scale model.
The Lin-KF0% estimated ZLB durations are always significantly shortaceithat method

8Prior to instituting date-based forward guidance in 201tLeBChip consensus forecasts revealed that people
expected the ZLB to bind for three quarters or less. Afteftinerard guidance, the expectation rose to seven quarters.
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Figure 2: Estimated and actual ZLB statistics. The soliddimre mean estimates and the shaded areas capture the
(5,95) percentiles across the datasets. The dashed line shows thkerstimated values would equal the actual values.

does not permit a negative notional rate when filtering thea.d& he only instance when Lin-
KF-0% produces an expected ZLB duration beyond one year is wheecthregomy is in a severe
downturn and the actual expected duration is extremely.|®hg Lin-KF-0% estimates are a lower
bound on the PW-IBY estimates since the solutions are identical when the ZLB doébind.

The bottom panel is constructed in a similar way as the toglpaxcept the horizontal and
vertical axes correspond to the actual and estimated pildppadf a ZLB event that lasts for at
least four quarters. The probability is calculated in alipgs where the ZLB does not bind in the
data. We do not show the results for Lin-Ki% because the probability of a four quarter ZLB event
is always near zero. NL-P5% and PW-IF0% underestimate the true probability, but the mean
NL-PF5% estimates are slightly closer to the actual probabilitied #the95th percentile almost
encompasses the truth. These results illustrate the grecaty savings effects of the ZLB, which
are not captured by PW-16%. However, they do not provide overwhelming support for NE-P
5%, and changing the ME variances in the particle filter has soathable effect on the results.
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Figure 3: Recession responses. The solid line is the truglafion, the dashed line is the mean estimated simulation,
and the shaded area contains (Bg95) percentiles across the datasets. The simulations aralirgiil in steady state
and followed by foun.5 standard deviation positive risk premium shocks. All valaee net annualized percentages.

4.4 ReCESSIONRESPONSES To illustrate the economic implications of the differencesc-
curacy, we compare simulations of the small-scale modelgbur parameter estimates to simula-
tions of the DGP given the true parameters. The simulationgialized in steady state and fol-
lowed by four consecutive.5 standard deviation positive risk premium shocks, whichegates a

10 quarter ZLB event in the DGPA risk premium shock is a proxy for a change in demand because
it affects households’ consumption and saving decisioasitive shocks cause households to post-
pone consumption to future periods, which reduces curnatpiLn growth. We focus on this shock

9The simulations are reflective of the Great Recession. ThewruCongressional Budget Office estimate of the
output gap in 2009Q2 is'5.9%, roughly equivalent to the output (level) gap in the truewdation in the fourth period.
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because it is the primary mechanism for generating ZLB eviarthe DGP and estimated modéls.
Figure 3shows the simulated paths of the output growth gap, inflatitey and notional interest
rate in annualized net percentages. The NL5PFsimulations are shown in the left column and
the PW-IFO% simulations are in the right column. The true simulationtef DGP (solid line) is
compared to the mean estimated simulation of the smalescatlel (dashed line). T8, 95) per-
centiles account for differences in the simulations actbegparameter estimates for each dataset.
Model misspecification leads to significantly muted respsnelative to the true simulatidh.
None of the estimated simulations for NL-BF: or PW-IF-0% can replicate the size of the neg-
ative output growth gap, decline in inflation, or policy reape at the beginning of the true simu-
lation. Both estimation methods also underestimate thatubur of the ZLB event. However, the
NL-PF-5% mean simulations of the three variables and the ZLB duraiencloser to the truth
than the PW-IF3% simulations. Unlike the piecewise linear solution, thdyfuonlinear solution
captures the expectational effects of going to the ZLB, whgats downward pressure on output
and inflation and improves accuracy. Although NL-Pk-is closer to the truth than PW-16%,
once again these differences are not large enough to jtiséifgignificantly longer estimation time.

4.5 FORECASTPERFORMANCE Anotherimportant aspect of any model is its ability to fastc
We examine the forecasting performance of each estimatigthad in the quarter immediately
preceding a severe recession that causes the ZLB to bindodiheforecasts are inaccurate since
severe recessions are rare. However, there are potemmdbyrtant differences between the fore-
cast distributions, which assign probabilities to the mnfpotential outcomes in a given period.
The tails of the distribution are particularly importanto fheasure the accuracy of the forecast
distribution of variablej, we compute the continuous rank probability scar&PS) given by

CR’PS%,k,t,T = fﬁ; [Fon et (G ) e + fjiT[l — Fo et (Jear) P djigr,

wherem indicates whether the forecast distribution comes froni&® or an estimated modéi,

is the dataset,is the forecast datéy,, ;. : (j.+-) is the cumulative distribution function (CDF) of the

T-quarter ahead forecast, afpd. is the true realization. ThRERPS measures the accuracy of the

forecast distribution by penalizing probabilities asgdiio outcomes that are not realized. It also

has the same units as the forecasted variables, which aperentages, and reduces to the mean

absolute error if the forecast is deterministic. A small&PS indicates a more accurate forec¥st.
For each dataset, we calculat€BPS for the small-scale model given the parameter estimates

and the medium-scale model that generates the data. Toxamate the forecast distribution for

a given model, we first initialize the forecasts at the filteséate (or actual state for the DGP) one

0Appendix E.3shows impulse responses to a technology growth and moratéicy shock in a severe recession.
Lappendix E.2reproduces the responses without misspecification to coitfis the source of the muted responses.
2Appendix Dshows the CDF for a specific dataset to illustrate what eachtepresents in th€RPS calculation.
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quarter before the ZLB binds in the data. Then we draw randuocks and simulate the model
for 8 quarters]0,000 times. Using the simulations, we approximate the CDF of timedast dis-
tribution 8-quarters ahedd.Finally, we average th€RPS for a given model across the datasets.

I DGP [ N1-PF-5% [ PW-IF-0% [ Lin-KF-0% |

Output Growth Gap
T

4 T T T T
3.49 ?i? Bﬂi 3.36 3-38 3.30
3.12 3.13 3.07 3.06 3.09 3 01 ]
3 2.83 2.83 2_78 264 I -
2.35
2 i
1 i
0
Inflation Rate
183 1 f [
1.60 1.62
159 L0 1.58 149 25 1.56 — La7 2155
0.90 i
Nominal Interest Rate
T T T T
1.79
1.63 1.64 1.68 1.62 1.66 s Bl 1.63 20
— 1.52 7] 1.48 ] : 1.47 [ i
0.78 ]
6Q 12Q 18Q 24Q 30Q

Figure 4: MearCRPS of 8-quarter ahead forecasts. Forecasts are made onerchefdee the ZLB binds in the data.

Figure 4shows the mea@RPS across the datasets for the DGP and each estimation method.
The horizontal axis denotes the ZLB duration in the data. @uaodel misspecification, none of
the estimation methods perform as well as the DGP. The DGRthasst &.5 percentage point
advantage over the estimated models, regardless of theakissl variable or ZLB duration in the
data. Interestingly, th€RPS is similar across the estimation methods. The differencesrmst
pronounced for the nominal interest rate forecasts in dtgaghere the ZLB binds for 30 quarters.

3We obtain similar results with a four quarter forecast hamizas well as with th&MSE of the point forecast.
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The NL-PF5% CRPS is only 179% of the DGPCRPS, compared td99% for PW-IF-0% and
211% for Lin-KF-0%. The NL-PF&% forecasts of the inflation rate are also consistently more
accurate than the other estimation methods. However, taabs the differences in accuracy are
small relative to the DGP. These findings are consistent aithprevious results. NL-PE% has
an advantage over PW-IF4, but it is never large enough to justify the higher compotadi costs.

5 CONCLUSION

During the Great Recession, many central banks lowered plodicy rate to its ZLB, creating
a kink in their policy rule and calling into question lineastienation methods. There are two
promising alternatives: estimate a fully nonlinear motiat taccounts for the expectational effects
of going to the ZLB or a piecewise linear model that is fastdripnores the expectational effects.
This paper examines whether the differences in accuratfjtise longer estimation time. Based
on our estimates with both methods, we find the answer is gaydéess of the ZLB duration in
the data. Model misspecification, however, biases the peterastimates and creates significant
differences between the predictions of the two estimatedatsaand the data generating process.
Our results indicate that PW-IF is an excellent substitot®lil_-PF and that it is more beneficial
to reduce misspecification by estimating a richer pieceViear model than a simpler but prop-
erly solved nonlinear model when examining the empiricgllioations of the ZLB constrairit'
The nonlinear model has the advantage that it is more viersaihile the piecewise linear and
nonlinear models can handle any combination of occasipialiding constraints, only the non-
linear model can account for other nonlinear features esipéd in the literature (e.g., stochastic
volatility, asymmetric adjustment costs, non-Gaussiarcks, search frictions, time-varying pol-
icy rules, changes in steady states). Our results will adsvesas an important starting point for
research that explores these nonlinear features or makas@b in nonlinear estimation methods.
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A DETRENDEDEQUILIBRIUM SYSTEM
Medium-Scale Model The detrended system includds, (6), (7), (9), (16), (17) and

e = (vike—1/ge)*n{ ™,
Tf = Oémctgtgt/(vt];t—l)7
Wy = (1 — a)merdie/mu,
wi = mygyy [ (TGWs—1),
HY =1 = pp(m/T = 1°/2 = pulw] = 1)*/2]; — wike-1 /91
vl = 9™ /(g™),
A =& —héi1 /g,
12){ = Xn?:\t,
Ct + Tt = U,
r] = g%/ (9T1-1),
ke = (1= 0)(ki1/g0) + (1 — v(af —1)*/2),
1= BE[(Ae/Ms1)(stie/ (Gre1mes1))],
@ = BE[(M/Ns1) (rfpqvesn — wsn + (1= 8)qes1)/ge41),

1=q[l —v(z] —1)%/2 - v(z] — V2] + BrgEige (M /Mes1) (@) (2] — 1)/ ges1],
(/T — 1)( /) = 1 = O + Opmcy + Bop Ee[(Ae/Ms1) (mes1 /7 — 1) (g1 /7) (G /5],
pw(w! — Dwf = [(1 — 0u)d; + 0] 104/t + Bow Bl (M /N1 (Wl — Dl (Ges/52)).

The variables aré, n, &, k. §, 9%, u, v, w9, 29, y9, &', @, r*, 7, ,i", ¢, me, A, g, ands.

(25)
(26)
(27)
(28)
(29)
(30)
(31)
(32)
(33)
(34)
(39)
(36)
(37)
(38)
(39)
(40)

Small-Scale Model The detrended system includds,((7), (16), (17), (30), (31), (36), (39), and

Yr = ng,
Wy = megle /N,
B = [1— oplme/7 —1)% /2,
Wy = xny i,
~ ~gdp'

Ct = Yi

The variables aré n, §, 9%, y9, o, 7, i,i", mc, A, g, ands.

B NONLINEAR SOLUTION METHOD

We begin by compactly writing the detrended nonlinear eguilm system as
E[f(St41,5t, €t41) |2, 0] = 0,
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(42)
(43)
(44)
(45)



where f is a vector-valued functiors, is a vector of variables;, = [e,,,£4+,€:4) IS @ vector of
shocksg, is a vector of statexf = [¢;_1, i} 4, K1, Tp1, W1, St, G, e;| for the model with cap-
ital andz; = [¢;—1, )" 4, St, g1, €:4)' for the model without capital), andlis a vector of parameters.

There are many ways to discretize the exogenous state lewjaly g;, ande; ;. We use the
Markov chain in Rouwenhorst (1995), which Kopecky and Su1.0) show outperforms other
methods for approximating autoregressive processes. dteds onc,_,, i} 4, ki1, @1, and
w1 are respectively set t&2.5%, +6%, +£8%, +15%, +4% of their deterministic steady state.
These bounds were chosen so the grids co®@its of the simulated values for each state vari-
able and ZLB duration. We discretize the states ih@venly-spaced points, except for capital
and the risk premium which uséd and13 points, respectively. The product of the points in each
dimension,D, represents the total nodes in the state spare-(16,823,807 for the model with
capital andD = 31,213 for the model without capital). The realizationffon noded is denoted
z:(d). The Rouwenhorst method provides integration no@les; (m), g:+1(m), € ++1(m)], with
weights,p(m), form € {1,..., M }. Since the exogenous variables evolve according to a Markov
chain, the number of future realizations is the same as #te gariables(13,7,7) or M = 637.

The vector of policy functions is denotgd, and the realization on nodgis denotedf,(d)
(pf, = [i(ze), TP (21), ne(2Z1), @:(21), v1(2)] fOr the capital model angf, = [¢:(z;), 77" (z;)] for
the model without capital, where’**(z;) = m,(z,)/7). Our choice of policy functions, while not
unique, simplifies solving for the other variables in the ln@ar system of equations given

The following steps outline our global policy function iéion algorithm:

1. Use Sims’s (200)ensys algorithm to solve the level-linear model without the ZLBneo
straint. Then map the solution to the discretized stateesfainitialize the policy functions.

2. Oniterationy € {1,2,...} and each nodé € {1, ..., D}, use Chris Sims’ssol ve to find
pf,(d) to satisfyE[f(-)|z,(d), V] ~ 0. Guespf,(d) = pf,_,(d). Then apply the following:
(a) Solve for all variables dated at timegivenpf,(d) andz;(d).

(b) Linearly interpolate the policy functionsf;_,, at the updated state variables, (),
to obtainpf, ., (m) on every integration nodey € {1,..., M}.

(c) Given{pf, ,(m)}}_,, solve for the other elements sf. ; (m) and compute

m=1"
E[f (st+1,50(d), e0s1)|20(d), 0] = 30y 6(m) f(s1(m), 50(d), €1 ().
Whencsol ve converges, saif;(d) = pf,(d).

3. Repeat step 2 untihaxdist; < 107°, wheremaxdist; = max{|pf; — pf;_,|}. When that
criterion is satisfied, the algorithm has converged to am@apmate nonlinear solution.
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C ESTIMATION ALGORITHM

We use a random walk Metropolis-Hastings algorithm to esténthe model irsection 3with
artificial data of120 quarters. To measure how well the model fits the data, we tiseraghe
adapted particle filter described in Algorithm 14 in Herbsd &chorfheide (2016), which modifies
the basic bootstrap filter in Stewart and McCarty (1992) anct@n et al. (1993) to better account
for the outliers in the data, or the inversion filter recentbed by Guerrieri and lacoviello (2017).

C.1 METROPOLISHASTINGS ALGORITHM The following steps outline the algorithm:

1. Generate artificial data consisting of the output grovéth, ghe inflation rate, and the nomi-
nal interest ratex; = [y/, m, i/, whereN, = 3 is the number of observable variables.

2. Specify the prior distributions, means, variances, anthids of each element of the vector
of N, estimated parametes= [¢,, ¢r, ¢y, h, ps, pi, 04, 05, 0i].

3. Find the posterior mode to initialize the preliminary kigtolis-Hastings step.

(@) Foralli € {1,..., N,,}, whereN,, = 5,000, apply the following steps:

i. Draw 6; from the joint prior distribution and calculate its densiglue:
log (27" = S~ log p(0; 4 15, 02),

wherep is the prior density function of parametewith meany.; and variancerj?.

i. Solve the model giverd;. Follow Appendix Bfor the nonlinear model and use
OccBin for the PW linear model. Repeat 3(a)i if the algorithoes not converge.

iii. Obtain the model log-likelihoodlog (74!, Apply the particle filter described in
section C.2o the nonlinear model and the inversion filter to the PW lineadel.

iv. The posterior log-likelihood i&og (7" = log (7" + log (0%

(b) Calculatemax(log 2°*, ... log 6’}%) and find the corresponding parameter vedr,

4. Approximate the covariance matrix for the joint postedistribution of the parameters,,
which is used to obtain candidate draws during the prelimiMetropolis-Hastings step.

(a) Locate the draws with a likelihood in the top decile. 8tdw®e N,, .., = (1 — p) N,
draws in aN,,, .., X N, matrix,©, and defing® = © — S §, . /N,., ..

(b) Calculatex = ©'6 /Num.sup @nd verify it is positive definite, otherwise repeat step 3.

5. Perform an initial run of the random walk Metropolis-Hags algorithm.
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(@) Foralli € {0,..., Ny}, whereN, = 25,000, perform the following steps:

i. Draw a candidate vector of parametgis?, where

N(éo,COZ) fori = 0,

N(#;_1,¢3) fori > 0.

92’ cand ~

We setcy = 0 and tune to target an overall acceptance rate of roughlyt.
ii. Calculate the prior density valulyg (*"", of the candidate draw""?, as in 3(a)i.
iii. Solve the model giveréf“"d. If the algorithm does not converge repeat 5(a)i.
iv. Obtain the model log-likelihood valugyg /°%!, using the methods in 3(a)iii.

v. Accept or reject the candidate draw according to

(Beamd log feand) if § = 0,
(6:,1og £;) = { (Beamd log ¢5and) if min(L, 65974 /0, ) > 4,

A~

(0;—1,10g ;1) otherwise

wherew is a draw from a uniform distributionlJ[0, 1], and the posterior log-
likelihood associated with the candidate drawois(¢*? = log (7" 4 log (%!,

(b) Burn the firstV, = 5000 draws and use the remaining sample to calculate the mean

draw,6°® = S°¥4 . 0;/(Ns— Ny), and the covariance matrix’®. We follow step

4 to calculate=®® but use allV, — N, draws instead of just the uppgth percentile.

6. Conduct a final run of the Metropolis-Hastings algorithyrépeating step 5, wher®,; =
50,000, 6, = 65", andy; = 35®), The final posterior mean estimates ére " 6,/N,.

C.2 ADAPTED PARTICLE FILTER Henceforth, our definition of; from Appendix Bis referred
to as the state vector, which should not be confused withtétte gariables for the nonlinear model.

1. Initialize the filter by drawind e, ,}?__,, forall p € {0, ..., N,} and simulating the model,
whereN, is the number of particles. We initialize the filter with thedi state vectos, ,,,

which is approximately a draw from the model’s ergodic dbsttion. We setV,, = 40,000.
2. Fort € {1,...,T}, sequentially filter the nonlinear model as follows:

(@) Forp € {1,...,N,}, draw shocks from an adapted distributien, ~ N(&;, I'), where
&, maximizesp(&;|s;)p(s¢|8;—1) ands,_; = E;V:”l st—1,/ N, is the mean state vector.

i. Use the model solution to update the state vesiogivens;_; and a guess faf;.
Defines} = Hs;, whereH selects the observable variables from the state vector.
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ii. Calculate the measurement errgr= s} —x;, which is assumed to be multivariate
normally distributedp(&|s;) = (27)%2|R|~/? exp(—& R71¢,/2), whereR =

diag(c?, 4,02, .02 ;) is a diagonal matrix of measurement error variances.

me,y9’ Y me,m ¥ me,i

iii. The probability of observing the current stasg, conditional ors;_1, is given by
p(si|si—1) = (2m) 732 exp(—2]5,/2).

iv. Maximizep(&|s;)p(si|si_1) o< exp(—&R™¢,/2) exp(—£,&;/2) by solving for the
optimalz;. We use MATLAB'’sf m nsear ch routine converted to Fortran.
(b) Use the model solution to predict the state veetgy, givens,_; , ande; .
(c) Calculatet,;, = sﬁp — x;. The unnormalized weight on partiglas given by

_ P(&ilStp)P(StplSt-1p) eXp(—fé’pR_1€t7p/2) eXp(_gi,pgt,p/m
tp — 0.8 —; — .
9(StplSt—1,p,Xt) exp(—(etp — &)/ (Erp — €1)/2)

Without adaptations; = 0 andw;, = p(&]s:,), @s in a basic bootstrap particle filter.
The time¢ contribution to the model log-likelinood &% = Y™™ w, /N,

(d) Normalize the weightd}; , = w;,/ Z;V:Pl wgp. Then use systematic resampling with
replacement from the swarm of particles as described ingitea (1996) to get a set
of particles that represents the filter distribution andhuodite {st,p}j,vil accordingly.

3. The model log-likelihood igog (% = ST log £,

Aruoba et al. (2018) apply the same methodology to a New Kagnenodel with sunspot shocks.
See Herbst and Schorfheide (2016) for a comprehensivesdigcuof the different particle filters.

D CONTINUOUSRANK PROBABILITY SCORE(CRPS) EXAMPLE

Figure 5shows an example of the 8-quarter ahead forecast distribafithe nominal interest rate
given the parameter estimates from NL-FF- We picked a dataset where the ZLB binds for six
guarters, from perio@0 to 95 in the sample. The forecasts are initialized at the filtetatesn
period89, immediately before the ZLB first binds, and the forecastritistion is approximated
based o 0,000 simulations. Due to a strong tendency for the forecastsviert¢o the stochastic
steady state, the mean forecast for the nominal interestigat32%. However, the probability
density function (PDF) in the left panel shows a significamiber of forecasts remain near or at
the ZLB, even after 8 quarters. The true realization equal$’, which means there is signifi-
cant probability mass under the PDF above and below the alueev The right panel shows the
cumulative distribution function (CDF) of the forecasthiel’RPS for this dataset and estimation
method is closely related to the shaded area, which has tie saits as the forecasted variable.
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Figure 5: Example forecast distribution in the period befitee ZLB binds in the data.

E ADDITIONAL RESULTS

The section provides additional results. First, we showetifiects of reducing misspecification
by estimating a richer piecewise linear model. Second, wevdiow misspecification affects the
parameter estimates and recession responses by gendeattrigpm our small-scale model. Third,
we plot impulse responses to a technology growth and mgonetdicy shock when the ZLB binds.

E.1 LARGERESTIMATED MODEL Table 7shows how the PW-1BY parameter estimates are
affected when sticky wages are included in the estimatedehodreduce the amount of model
misspecification. The equilibrium system is the same as tiggnal small-scale model, except
(43) and @4) are replaced with28), (32), (40), and a definition of real GDP that accounts for
the resources lost due to sticky wages (i = [1 — o, (m /7 — 1)2/2 — pu(w! — 1)2/2]3).
Sticky wages would add another state variable and subaligriticrease the computational cost
of NL-PF-5%. In particular, the new state variable would increase thatiem time by the percent
increase in the state space plus the additional time it takesach node to interpolate in that
dimension. The first two columns show the NL-Bf%-and PW-IF8% estimates using the original
estimated model and the last column shows the P\W/Festimates in the less misspecified model.
In datasets with a 30 quarter ZLB event, introducing sticlgges reduces the sum of the
NRMSE from 1.91 to 1.59, creating a clear advantage over NL-B%- This result is driven by
more accurate estimates,of andh, which dominate the lower accuracy®f Our other accuracy
measures also improve. Estimates of the expected ZLB duaratid probability of a 4-quarter ZLB
event become more accurate and essentially unbiased. THEBW CRPS is now lower than
the NL-PF5% CRPS at a 4-quarter horizon and the NL-PF: advantage at an 8-quarter horizon
is smaller. These results suggest it is better to apply PWARo a less misspecified model than
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Ptr  Truth NL-PF-5% PW-IF-0% PW-IF-0%-Sticky Wages
0Q 30Q 0Q 30Q 0Q 30Q

©p 100 151.1 188.4 142.6 183.4 100.1 129.8
(134.2,165.8) (174.7,202.7) (121.1,157.3) (169.2, 198.5) (76.9,119.6) (105.5, 152.3)

[0.52] [0.89] [0.44] [0.84] [0.13] [0.33]

h 0.8 0.66 0.68 0.64 0.63 0.82 0.80
(0.62,0.70) (0.64,0.71) (0.61,0.67) (0.60, 0.67) (0.78,0.86) (0.77,0.85)

[0.18] [0.16] [0.20] [0.21] [0.04] [0.03]

Ps 0.8 0.76 0.81 0.76 0.82 0.82 0.84
(0.72,0.80) (0.78,0.84) (0.73,0.81) (0.79,0.86) (0.76, 0.86) (0.80, 0.88)

[0.06] [0.03] [0.05] [0.04] [0.04] [0.06]

Di 0.8 0.79 0.80 0.76 0.77 0.80 0.80
(0.75,0.82) (0.75,0.84) (0.71,0.79) (0.73,0.81) (0.77,0.83) (0.77,0.84)

[0.03] [0.03] [0.06] [0.05] [0.02] [0.03]

ogs 0.005 0.0032 0.0040 0.0051 0.0059 0.0038 0.0047
' (0.0023,0.0039)  (0.0030, 0.0052)  (0.0044, 0.0058)  (0.0050, 0.0069)  (0.0031,0.0044)  (0.0039, 0.0055)

[0.37] [0.23] [0.09] [0.22] [0.24] [0.12]

os 0.005 0.0052 0.0050 0.0051 0.0046 0.0085 0.0074
(0.0040, 0.0066)  (0.0039, 0.0062)  (0.0042, 0.0063)  (0.0036, 0.0056)  (0.0056,0.0134)  (0.0050, 0.0107)

[0.15] [0.13] [0.13] [0.15] [0.81] [0.60]

o; 0.002 0.0017 0.0015 0.0020 0.0020 0.0020 0.0020
(0.0014,0.0020)  (0.0013,0.0019)  (0.0018, 0.0023)  (0.0019, 0.0024)  (0.0018, 0.0022)  (0.0018, 0.0023)

[0.17] [0.24] [0.08] [0.09] [0.08] [0.08]

o 2.0 2.04 2.13 2.01 1.96 1.91 1.81
(1.88,2.19) (1.94,2.31) (1.84,2.16) (1.77,2.14) (1.74,2.04) (1.63, 1.99)

[0.06] [0.09] [0.06] [0.06] [0.07] [0.11]

Oy 0.5 0.35 0.42 0.32 0.44 0.40 0.50
‘ (0.21,0.54) (0.27,0.62) (0.17,0.48) (0.27,0.61) (0.24,0.58) (0.33,0.73)

[0.36] [0.28] [0.41] [0.25] [0.28] [0.23]

b [1.90] [2.08] [1.53] [1.91] [1.71] [1.59]

Table 7: Average(5, 95) percentiles anfiNRMSE] of the parameter estimates.is sum of theNRMSE.

NL-PF+5% to a properly solved but more misspecified model when the ZibBbin the data®

E.2 No MISSPECIFICATION Table 8compares the parameter estimates after removing model
misspecification. Since it is numerically very expensivestimate the medium-scale model used
to generate the data with NL-PF, we created new datasetstfresmall-scale model used to esti-
mate. The sum of thERMSE shows about0% of the error is due to model misspecification. For
example, in datasets without any ZLB events, the error wlitiR¥-5% increases from.12 to 1.90
when misspecification is added to the estimated model. Removisspecification has the largest
impact on the accuracy of,, h, and¢, because the estimates no longer have to compensate for an
incorrectly specified aggregate resource constraint geldifferences in implied volatility. No-
tably, the NL-PF5% estimate ofp, declines from.52.6 to 97.5 in datasets without any ZLB events.
The other results emphasized in the paper are unchangedshblk& standard deviations are
biased downward with NL-PEY% because the filter incorrectly assigns some of the fluctnatio
ME, reducing the estimated variances. When the ZLB bindeerdata, it biases the estimates of
v, andp, upward, though NL-PB% and PW-IF8% are both far more accurate than Lin-KF.

15n datasets without any ZLB events, the sum of Mi@MSE increases from.53 to 1.71 when sticky wages are
included in the model estimated with PW-08%. However, the inaccuracy is entirely driven by the upwaasbhino .
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No Misspecification: DGP and Estimation Use Small-Scale &od

Ptr  Truth NL-PF-%%, PW-1F-0% Lin-KF-5%
0Q 30Q 0Q 30Q 0Q 30Q
©p 100 96.8 109.8 94.3 110.6 103.7 128.5
(81.6,109.9) (89.5,130.3) (81.8,108.3) (95.3,125.1) (92.6,118.4) (111.2,145.3)
[0.09] [0.15] [0.11] [0.15] [0.09] [0.30]
h 0.8 0.79 0.79 0.79 0.79 0.80 0.79
(0.76, 0.82) (0.77,0.82) (0.75,0.82) (0.77,0.82) (0.76,0.83) (0.76,0.82)
[0.02] [0.02] [0.02] [0.02] [0.02] [0.03]
Ds 0.8 0.80 0.83 0.81 0.84 0.82 0.87
(0.76,0.83) (0.78,0.86) (0.76,0.85) (0.80,0.87) (0.77,0.86) (0.83,0.91)
[0.03] [0.04] [0.04] [0.06] [0.05] [0.10]
Di 0.8 0.82 0.82 0.79 0.79 0.82 0.86
(0.79,0.84) (0.78,0.85) (0.77,0.82) (0.74,0.82) (0.79,0.84) (0.83,0.88)
[0.03] [0.03] [0.02] [0.03] [0.03] [0.08]
ogs 0.005 0.0037 0.0035 0.0051 0.0052 0.0038 0.0034
' (0.0029,0.0046)  (0.0025,0.0045)  (0.0044, 0.0056)  (0.0043,0.0061)  (0.0029,0.0046)  (0.0026, 0.0044)
[0.27] [0.33] [0.08] [0.11] [0.26] [0.33]
os 0.005 0.0047 0.0043 0.0049 0.0046 0.0047 0.0036
(0.0035,0.0058)  (0.0032,0.0058)  (0.0039,0.0060)  (0.0034,0.0057)  (0.0034,0.0059)  (0.0027, 0.0046)
[0.19] [0.22] [0.16] [0.17] [0.21] [0.32]
o; 0.002 0.0016 0.0014 0.0020 0.0019 0.0016 0.0015
(0.0013,0.0020)  (0.0010,0.0018)  (0.0017,0.0022)  (0.0016,0.0022)  (0.0013,0.0019)  (0.0012,0.0017)
[0.20] [0.31] [0.07] [0.10] [0.20] [0.27]
On 2.0 2.00 2.01 1.95 1.80 1.97 1.62
(1.81,2.21) (1.82,2.20) (1.74,2.14) (1.58,2.06) (1.76,2.18) (1.42,1.86)
[0.06] [0.06] [0.06] [0.12] [0.07] [0.20]
Oy 0.5 0.45 0.48 0.46 0.52 0.46 0.50
‘ (0.29,0.61) (0.28,0.61) (0.30,0.63) (0.32,0.73) (0.31,0.63) (0.34,0.66)
[0.22] [0.18] [0.21] [0.23] [0.22] [0.19]
z [1.12] [1.35] [0.78] [0.99] [1.14] [1.82]

Table 8: Average(5, 95) percentiles anfiNRMSE] of the parameter estimates.is sum of theNRMSE.

Figure 6plots the recession responsefigure 3without misspecification. The solid line shows

the responses based on the true parameterization of thesrakd model, rather than the medium-
scale model that generates our original datasets. The dlisbeshows the mean responses, given
the parameter estimates with our alternative datasetssi§ent with the previous results, the re-
sponses based on the NL-B%-and PW-IF0% parameter estimates are very similar. The key dif-
ference is that the mean estimated simulations are mucérdtothe true simulation and ttig, 95)
percentiles almost always encompass the truth. This rekalt's the muted responsedigure 3
are primarily driven by model misspecification, rather tireactcuracies in the estimation methods.

E.3 IMPULSE RESPONSES This section shows generalized impulse response funcfi®iftfs)

of a technology growth and monetary policy shock when th@eryy is in a severe recession and
the ZLB binds. To compute the GIRFs, we follow Koop et al. (@29Ve first calculate the mean
of 10,000 simulations, conditional on random shocks in every qudrter, the baseline path). We
then calculate a second mean from another sab®00 simulations, but this time the shock in
the first quarter is replaced with a two standard deviatigyatiee technology growth or monetary
policy shock (i.e., the impulse path). Finally, we plot thiéestences between the two mean paths.
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True Simulation — — — Mean Estimated Simulation
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Figure 6: Recession responses without misspecificatioe. sbkid line is the true simulation, the dashed line is the
mean estimated simulation, and the shaded area contails, 818 percentiles across the datasets. The simulations
are initialized in steady state and followed by fdus standard deviation positive risk premium shocks.

The benefit of a GIRF over a traditional impulse responsetfongs that it allows us to calcu-
late the responses in any state of the economy without thesimfe of mean reversion. For the true
model, we initialize at the state following four consecativs standard deviation positive risk pre-
mium shocks, consistent wiflgure 3 We then find a sequence of four equally sized risk premium
shocks that produce the same notional rate in our estimabeélras the true model, so the simula-
tions begin at the same point. The NL-B%-simulations are shown in the left column and the PW-
IF-0% simulations are in the right column. The true simulationhaf DGP (solid line) is compared
to the mean estimated simulation of the small-scale moaelh@d line). Thé5, 95) percentiles
account for the differences in the simulations across tih@pater estimates for each dataset.
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True Response — — — Mean Estimated Response
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Figure 7: Responses to a -2 standard deviation technolayytiyrshock in a severe recession. The solid line is the
true simulation, the dashed line is the mean estimated atioal and the shaded area contains(th@5) percentiles.

Figure 7shows the responses to a technology growth shock. Quaditathe responses of out-
put growth and inflation are similar across the specificatidtigher technology growth increases
the output growth gap and decreases the inflation rate ligpiaal supply shock. Since the Fed
faces a tradeoff between stabilizing the inflation and ougpps, the notional interest rate response
depends on the parameterization. The notional rate risistiné DGP, but falls with both of the
estimated models. Quantitatively, there are importarfedihices between all of the responses.
Consistent withfigure 3 model misspecification leads to muted responses of thaubgtpwth
gap and the inflation rate. There are also differences in tgnitudes of the estimated responses,
but most of that is driven by the downward bias in the shockdded deviation with NL-PKBY%.
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True Response — — — Mean Estimated Response
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Figure 8: Responses to a -2 standard deviation monetargypsiiock in a severe recession. The solid line is the true
simulation, the dashed line is the mean estimated simuladiod the shaded area contains(the5) percentiles.

Figure 8shows the responses to a monetary policy shock. AlthougBlitBebinds in the true
and estimated models, the shock is expansionary becauseeitd the expected nominal interest
rate in future periods. Therefore, the output growth gap thedinflation rate both increase in
all three models. Unlike with the other two shocks, modelspéification has a relatively small
effect on the responses, as tfie95) percentiles of the estimated responses encompass the true
responses in most periods. There are some differences NLHRF-5% and PW-IFO% responses,
but they are smaller than flgure 7and never large enough to have meaningful policy implicestio
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