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1. Introduction 
The responsiveness of taxable income to tax-rate changes is a widely recognized and 
important public finance research question. Following the seminal work of Feldstein (1995, 
1998), a large body of literature has emerged regarding estimation of the elasticity of taxable 
income (ETI) with respect to the marginal net-of-tax rate1 at the observed income level. This 
literature has generated a wide range of estimates with vastly different implications for 
optimal tax policy. With significant tax reform well within sight after the recent US elections, 
evaluating and interpreting the policy consequences of these estimates has assumed particular 
importance. Estimates obtained using different methods, even for the same reform, remain 
strikingly different. As an example, previous research on the impact of the tax cuts in the Tax 
Reform Act of 1986 (TRA86) has produced ETI estimates ranging from 0.2 to 3 (e.g., 
Feldstein, 1995; Auten and Carroll, 1999; Mofitt and Wilhelm, 2000; Gruber and Saez, 2002; 
Kopczuk, 2005; Weber; 2014). 

The previous literature primarily used instrumental variable regression of the change in 
the log of taxable income on the change in the log of observed marginal net-of-tax rate. 
Instruments are required because the observed tax rate is mechanically a function of income; 
therefore, the change in observed net-of-tax rate is endogenous to the change in taxable 
income. The most widely used instrument is the net-of-tax rate change constructed holding 
real taxable income fixed at the base-year income level prior to the tax change. As mentioned 
by Gruber and Saez (2002), instruments exploiting variation in tax-rate changes due to tax 
reform are invalid if they are correlated with unobserved trend heterogeneity in income 
changes. If income is mean reverting, unobserved year-to-year variation in income can cause 
a positive trend heterogeneity bias. Furthermore, unobserved shocks to taxable income due to 
widening income distribution – driven by such factors as trade or technological change – can 
cause negative trend heterogeneity bias. While the search for valid instruments addressed 
concerns due to trend heterogeneity (e.g., Kopczuk, 2005; Blomquist and Selin, 2010; Weber, 
2014; Burns and Ziliak, 2016), previous research has ignored the consequences of different 
elasticities among individuals owing to, e.g., skill differences. Such heterogeneity is typically 
an essential component of many models in the theoretical optimal taxation literature (e.g., 
Mirlees, 1971).  

In this paper, we introduce elasticity heterogeneity in the estimation of the ETI in the 
standard IV setting in first-differences2 and make four contributions. First, we show that 
elasticity heterogeneity, in addition to trend heterogeneity, is an important source of bias. 
Instruments used in the literature are invalid because they are by construction endogenous to 
elasticity heterogeneity. Second, we show that different instruments attempt to estimate 
weighted averages of individual elasticities with different weighting functions. None of these 
weighted averages is policy relevant. Third, we propose potentially valid instruments for 
estimating more policy relevant weighted-average ETIs. Finally, we illustrate the importance 
of elasticity heterogeneity using the NBER tax panel for 1979-1990 and present new policy 
relevant estimates after disentangling and quantifying the various sources of bias. We show 

                                                 
1 The net-of-tax rate is one minus the tax rate. See Saez et al. (2012) for a review of the literature. 
2 Blomquist et al. (2014) developed a non-parametric method that allows general heterogeneity. However, their 
setting in levels does not nest the standard setting.  
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that accounting for elasticity heterogeneity helps reconcile the wide variation in ETI estimates 
arising from the methods in Feldstein (1995), Gruber and Saez (2002), Saez et al. (2012), 
Weber (2014), and Burns and Ziliak (2016). 

The intuition behind the elasticity heterogeneity bias can be illustrated using the 
estimated impact for TRA86 presented in Table 2 of Feldstein (1995). While the treated group 
(those with highest pre-reform income and marginal tax rate) received a marginal net-of-tax 
rate increase of 42% in the post-reform period, the increase for the control group (those with 
somewhat lower pre-reform income and marginal tax rate) was just 25%. The difference in 
taxable income change (treated minus control) of 51% divided by the difference in net-of-tax 
rate change of 17% yielded the implied ETI estimate of 3. As noted by Navratil (1995) and 
Saez et al. (2012, p.26), when the control group also faces a tax change, Feldstein’s grouping 
method is consistent only if the two groups have identical elasticities. However, individuals 
with different base-year income, ceteris paribus, have different elasticities.  

Subsequent panel studies did not use grouping methods and, instead, exploited the 
entire continuous variation in the net-of-tax rate change as base-year income varies. Gruber 
and Saez (2002) suggested pooling several first-differences to exploit base-year income-by-
year variation, which allows addressing trend heterogeneity by controlling for base-year 
income. Weber (2014) and Blomquist and Selin (2010) argued that replacing base-year 
income with lagged base-year income and mid-year income, respectively, would better 
account for trend heterogeneity bias. We show that the identifying income-by-year variation 
is endogenous to elasticity heterogeneity also for these methods.  

While tax-rate changes vary across the income distribution and year, they also vary 
within any given income level and year in a way that depends on demographic factors, such as 
state of residence, filing status, and number of children. The literature did not exploit such 
variation, possibly thinking it appeared insufficient. Contrary to conventional belief, however, 
using the NBER-TAXSIM model, we show that tax-rate changes due to TRA86 vary 
substantially even at given income levels and years. 

We identify two types of potentially valid instruments. First, we propose using income-
by-year residualized instruments that remove endogenous income-by-year variation in tax-rate 
changes from previous instruments. Second, we argue that tax-rate changes at constant 
income levels are uncorrelated with income-by-year variation. The first-dollar tax-rate 
change, e.g., is such an instrument, and its level version has been widely used in the literature 
on estimating tax price impact on charitable contributions, 401(k) contributions, capital gains 
realization, and labor supply.3 

An important motivation for our proposed instruments is that tax reform typically 
changes entire tax schedules, involving multiple tax brackets. Individuals in a particular 
bracket may potentially react not only to the tax-rate change in that bracket but also to tax-rate 
changes in other brackets if they switch brackets. This raises the issue about who contributes 
to identification of an estimated elasticity when using different instruments. We show that 
while valid instruments yield consistent weighted averages of individual elasticities, the 
weighting function differs across instruments. Similar in spirit to the local average treatment 
effect (LATE) in the treatment effects literature, the instruments yield local (weighted 

                                                 
3 See, e.g., Triest (1998) and Keane (2011) for reviews. 
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average) ETIs where the weight given to each elasticity depends on how strongly the 
observed net-of-tax rate change is correlated with the instrument. A first-dollar tax-rate 
change, e.g., most strongly affects the observed tax-rate change of low-income individuals. 

We prove that compared with other instruments, the base-year net-of-tax rate change 
gives the greatest weight to relatively inelastic individuals, as more elastic individuals have a 
greater likelihood of moving between brackets in response to a base-year tax-rate change. 
Therefore, the observed tax rates of more elastic individuals are relatively more responsive to 
tax-rate changes in brackets other than their base-year bracket. In particular, a completely 
inelastic individual never switches bracket and has an observed tax-rate change equal to the 
base-year tax-rate change. 

The instruments discussed use only a small part of the variation in tax-rate change 
across the income distribution during a tax reform, which affects precision. Furthermore, the 
local ETIs are not policy relevant because they only partially capture the effects of the 
collection of tax-rate changes in the data. One way to account for effects of changes in the 
entire tax structure is to use multiple constant-income net-of-tax rate change instruments. We 
propose constructing a single synthetic average net-of-tax rate change instrument that is a 
weighted average of net-of-tax rate changes across the entire income distribution. We show 
that weighting each constant-income net-of-tax rate change by the income level’s observed 
probability density yields an ETI analogous to the average treatment effect on the treated 
(ATT) in the treatment effects literature. 

The standard ETI, estimated in much of the literature, is limited because it is measured 
with respect to the observed net-of-tax rate, even as tax structure change is expressed in terms 
of a set of tax-rate changes at different income levels. With progressive tax rates, a 1% tax 
reduction at each income level would lower observed tax rates by less than 1%, as some 
individuals respond to the tax reduction by increasing their income and moving to a higher tax 
bracket. From a policy perspective, the reduced-form estimates of valid instruments represent 
policy elasticities (similarly defined as in Hendren, 2016), measuring income responses with 
respect to mechanical tax-rate variables under policy control. Our (weighted) average net-of-
tax rate change instrument yields a policy elasticity that is more informative for efficiency 
analysis than the standard ETI. Specifically, our methodology accounts for the nonlinear 
budget set complications discussed by Blomquist and Simula (2016). 

Our primary empirical finding is that the average net-of-tax rate change yields an ETI of 
around 0.7. The estimate is robust to inclusion of income control functions and demographic 
controls and even to inclusion of year-specific versions of these covariates. Furthermore, it is 
relatively insensitive to using only demographic group-level variation in tax-rate changes for 
identification. We argue that these results provide evidence for instrument validity. 

Our instrument also yields a reduced-form taxable income policy elasticity of 0.46, 
which is around 70% of the IV estimate. This implies that changing the tax structure by an 
amount that increases observed net-of-tax rates at the base-year income level by 1% increases 
taxable income by 0.46%. Furthermore, our instrument yields a broad income elasticity of 
0.21 and a broad income reduced-form policy elasticity of 0.13. 

We also estimate an ETI of 0.26 using the base-year net-of-tax rate change instrument 
proposed in Gruber and Saez (2002). We then isolate the continuous base-year income-by-
year variation, which is similar in spirit to the variation used by the grouping methods in 
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Feldstein (1995) and Saez et al. (2012). This method yields estimates of 1.0 to 1.3. On the 
other hand, using the base-year income-by-year residualized variation yields a consistent ETI 
of around 0.2. The discrepancy between the estimates of 0.2 and 1.0 to 1.3 reflects a large 
positive elasticity heterogeneity bias. On the other hand, the discrepancy between the 
consistent base-year ETI of 0.2 and the ETI of 0.7 for our newly suggested average net-of-tax 
change instrument reflects that the base-year instrument significantly overweights low-
elasticity individuals. We also reproduce an ETI estimate of 0.50 for a Weber (2014)-type net-
of-tax rate change instrument evaluated at base-year income lagged two years. 

Saez et al. (2012, p.28) offered two explanations for divergence across estimates in the 
literature. First, they argued that using continuous instruments capturing minor individual-
level tax-rate changes leads to lower estimates because individuals are less likely to respond 
to such rate changes. Second, they claimed that trend heterogeneity could account for much of 
the sensitivity in estimates across various methods. We find compelling evidence of 
alternative explanations. We show that the grouping estimates (1 to 3 in, e.g., Feldstein, 1995) 
were larger than the subsequent ungrouped estimates (0.2 to 1.5 in, e.g., Gruber and Saez, 
2002; Weber, 2014) mainly because grouping methods exclude tax-rate variation within given 
income levels and years, and therefore, suffer from a larger elasticity heterogeneity bias. We 
also show that the discrepancies between the ungrouped estimates are primarily due to 
differences in how each elasticity is weighted. 

 
  

2. Theoretical framework  
2.1 Basic model in levels 

The taxable income decision problem is such that the individual chooses (𝑌𝑌, 𝑐𝑐) to maximize 
utility 𝑢𝑢(𝑌𝑌, 𝑐𝑐) subject to a budget constraint 𝑐𝑐(𝑌𝑌) and 𝑌𝑌 ≥ 0, where 𝑌𝑌 is gross taxable income 
and 𝑐𝑐 is consumption. The set of points {𝑌𝑌, 𝑐𝑐(𝑌𝑌):𝑌𝑌 ≥ 0} is the budget frontier of the budget 
set {(𝑌𝑌, 𝑐𝑐): 0 ≤ 𝑌𝑌, 0 ≤ 𝑐𝑐 ≤ 𝑐𝑐(𝑌𝑌)}. We work with a standard iso-elastic quasi-linear utility 
function with two parameters: 

𝑢𝑢(𝑐𝑐,𝑌𝑌;𝛽𝛽𝑖𝑖 ,𝛼𝛼𝑖𝑖) = 𝑐𝑐 −
exp(𝛼𝛼𝑖𝑖)

− 1𝛽𝛽𝑖𝑖

1 + 1
𝛽𝛽𝑖𝑖

𝑌𝑌1+
1
𝛽𝛽𝑖𝑖 . (1) 

𝒆𝒆 = (𝛽𝛽𝑖𝑖 ,𝛼𝛼𝑖𝑖) are preference parameters, and subscript 𝑖𝑖 indexes individuals. With locally 
nonsatiated preferences, the individual consumes all its net income in our static model. 

The budget constraint depends on the tax (and transfer) system according to: 

𝑐𝑐(𝑌𝑌) = 𝑌𝑌 − 𝑇𝑇(𝑌𝑌) + 𝑐𝑐0, (2) 

where 𝑇𝑇(𝑌𝑌) expresses net taxes as a function of gross taxable income and where 𝑐𝑐0 is net 
income from sources other than taxable income. We assume that 𝑇𝑇(. ) is exogenous to 𝑐𝑐0. 
Without loss of generality, for a continuously differentiable budget constraint, the tax 
schedule/structure can be described by the marginal net-of-tax rate function 𝑡𝑡(𝑌𝑌) =
𝑑𝑑𝑐𝑐(𝑌𝑌) 𝑑𝑑𝑌𝑌⁄ = −𝑑𝑑𝑇𝑇(𝑌𝑌) 𝑑𝑑𝑐𝑐⁄ . We work with the natural logarithms of 𝑌𝑌 and 𝑡𝑡: 
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𝑦𝑦 = ln𝑌𝑌 , 𝜏𝜏(𝑦𝑦) = ln 𝑡𝑡(𝑦𝑦). (3) 

The set of tax-rate parameters 𝝉𝝉 = {(𝜏𝜏(𝑦𝑦):𝑦𝑦 ≥ 0, 𝑐𝑐0} is an alternative way to fully 
characterize the shape of budget constraint/frontier/set. Because the government sets the tax 
schedule by setting the tax rate at each income level, e.g., the first-dollar tax rate, the second 
dollar tax rate, etc., 𝝉𝝉 are tax policy variables (allowed to be individual-specific).4 

 An optimal choice of the observed (log of gross taxable) income 𝑦𝑦∗ is given by the 
first-order condition of an optimization problem with the convex preferences in Eq. (1) if the 
budget constraint in Eq. (2) is concave, i.e., if marginal tax rates are progressive. Plugging 𝑦𝑦∗ 
back into 𝜏𝜏(. ) yields the observed (log of marginal) net-of-tax rate 𝜏𝜏∗.5 We get the following 
system of simultaneous equations: 

𝑦𝑦∗(𝛽𝛽𝑖𝑖 ,𝛼𝛼𝑖𝑖; 𝝉𝝉) = argmax𝑦𝑦 𝑢𝑢�𝑦𝑦, 𝑐𝑐(𝑦𝑦)� = 𝑦𝑦(𝜏𝜏∗;𝛽𝛽𝑖𝑖 ,𝛼𝛼𝑖𝑖) =  𝛽𝛽𝑖𝑖𝜏𝜏∗ + 𝛼𝛼𝑖𝑖 , (4) 

𝜏𝜏∗(𝛽𝛽𝑖𝑖 ,𝛼𝛼𝑖𝑖; 𝝉𝝉) = 𝜏𝜏(𝑦𝑦∗; 𝝉𝝉). (5) 

A consequence of quasi-linear utility is that there is no income effect that depends on 𝑐𝑐0. The 
Slutsky condition with a positive substitution effect then implies 𝛽𝛽𝑖𝑖 ≥ 0. From the point of 
view of Eq. (4), 𝛽𝛽𝑖𝑖 = 𝑑𝑑𝑦𝑦∗ 𝑑𝑑𝜏𝜏∗⁄  represents the (both uncompensated and compensated) 
elasticity of taxable income with respect to the observed net-of-tax rate (ETI), whereas 𝛼𝛼𝑖𝑖 
represents potential taxable income without taxes (in which case 𝜏𝜏∗ = 0). 

We introduce unobserved preference heterogeneity through the error terms (𝑏𝑏𝑖𝑖 ,𝑎𝑎𝑖𝑖), and 
we let 𝛽𝛽 and 𝛼𝛼 be population-average parameters according to: 

𝛽𝛽𝑖𝑖 = 𝛽𝛽 + 𝑏𝑏𝑖𝑖 , 𝛼𝛼𝑖𝑖 = 𝛼𝛼 + 𝑎𝑎𝑖𝑖 , (6) 

where 𝐸𝐸(𝑏𝑏𝑖𝑖) = 𝐸𝐸(𝑎𝑎𝑖𝑖) = 0. Preference heterogeneity captures differences in taste for work 
and reflects that income differs between individuals with the same budget set. 𝑏𝑏𝑖𝑖 represents 
heterogeneity in income that is tax-rate dependent, and 𝑎𝑎𝑖𝑖 denotes heterogeneity in income 
that is tax-rate independent.6 While we allow 𝛽𝛽𝑖𝑖 to vary across individuals, we keep the 
functional-form assumption that it is constant for each individual. We do not make any 
distributional assumptions on the error terms. Most empirical work on taxable income 
allowed one-dimensional preference heterogeneity through 𝛼𝛼𝑖𝑖.7 The optimal taxation 
literature also typically assumes just one source of heterogeneity, but in this case, it is skill or 
ability heterogeneity that leads to heterogeneity in 𝛽𝛽𝑖𝑖 in our setting (e.g., Mirlees, 1971; Saez, 
2001). 

                                                 
4 For the individual, 𝑌𝑌 and 𝑐𝑐 are variables, whereas 𝝉𝝉𝑖𝑖, 𝛽𝛽𝑖𝑖, and 𝛼𝛼𝑖𝑖 are parameters. For the government and in the 
estimation, 𝝉𝝉𝑖𝑖 are variables, and we want to identify some function of 𝛽𝛽𝑖𝑖 and 𝛼𝛼𝑖𝑖. 
5 Like the literature using panel data methods, we do not explicitly model location on kink points in piecewise 
linear budget frontiers leading to a tax function that is not continuously differentiable. The model here can be 
augmented according to Liang (2014), which would allow using the tax rate from below or above for individuals 
at kink points, and that would not affect empirical results. 
6 The estimated coefficient for the net-of-tax variable in a specification that ignores income effects when such 
effects exist would represent a mixture of substitution and income effects. This mixture would be individual-
specific, which we allow, even if substitution and income effects were constant across individuals. 
7 Empirical work on labor supply using structural nonlinear budget set models in levels often allow several 
normally distributed error terms, e.g., the Hausman-type of model (Burtless and Hausman, 1978; Hausman, 
1995) and the discrete-choice model (Dagsvik, 1994; van Soest, 1995; Hoynes, 1996; Keane and Mofitt, 1998). 
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Let us start the analysis with the case with linear budget sets in which there is only one 
net-of-tax rate 𝜏𝜏(𝑦𝑦) = 𝜏𝜏̅ that is constant for each budget set and 𝑐𝑐 = 𝜏𝜏̅𝑌𝑌 + 𝑐𝑐0. Plugging in the 
budget constraint in Eq. (5) into the first-order condition in Eq. (4) gives: 

𝑦𝑦∗ = 𝛽𝛽𝑖𝑖𝜏𝜏̅ + 𝛼𝛼𝑖𝑖 . (7) 

𝑦𝑦∗ is a function of only 𝜏𝜏∗ = 𝜏𝜏̅. For each individual, 𝛽𝛽𝑖𝑖 = 𝑑𝑑𝑦𝑦∗ 𝑑𝑑𝜏𝜏̅⁄ . 
Because 𝐸𝐸𝒆𝒆(𝑦𝑦∗|𝜏𝜏̅) = 𝛽𝛽𝜏𝜏̅ + 𝛼𝛼, 𝛽𝛽 = 𝐸𝐸𝒆𝒆(𝛽𝛽𝑖𝑖) =  𝑑𝑑𝐸𝐸𝒆𝒆(𝑦𝑦∗|𝜏𝜏∗) 𝑑𝑑𝜏𝜏∗⁄  represents the 

population-average aggregate ETI. Eq. (7) is a random coefficient model (Wald, 1947). 
Assuming that 𝝉𝝉 is statistically independent from 𝒆𝒆, regressing 𝑦𝑦∗ on 𝜏𝜏̅ gives 𝛽𝛽𝑂𝑂𝑂𝑂𝑂𝑂 =
𝜎𝜎𝑦𝑦∗,𝜏𝜏�  𝜎𝜎𝜏𝜏�2⁄ = 𝛽𝛽, where 𝜎𝜎 and 𝜎𝜎2 denote the covariance and variance, respectively. 

The taxable income literature handles budget set nonlinearities by assuming that 
individuals behave according to budget sets linearized at observed income levels. A rationale 
for this procedure is that the optimal choice is the same on the linearized and nonlinear budget 
sets (Hausman, 1985; Mofitt, 1990). Plugging in a nonlinear budget constraint into the first-
order condition gives: 

𝑦𝑦∗ = 𝛽𝛽𝑖𝑖𝜏𝜏∗(𝛽𝛽𝑖𝑖 ,𝛼𝛼𝑖𝑖; 𝝉𝝉) + 𝛼𝛼𝑖𝑖 , (8) 

which is a correlated random coefficient model. Hastie and Tibshirani (1993) called it a 
varying coefficient model with endogenous regressors. Using Eq. (6), we can rewrite Eq. (8) 
as 𝑦𝑦∗ = 𝛽𝛽𝜏𝜏∗ + 𝑏𝑏𝑖𝑖𝜏𝜏∗ + 𝛼𝛼𝑖𝑖. The problem of estimating 𝛽𝛽 by regressing 𝑦𝑦∗ on 𝜏𝜏∗ is that 𝜏𝜏∗(𝒆𝒆; 𝝉𝝉) 
is correlated with the error term 𝑏𝑏𝑖𝑖𝜏𝜏∗ + 𝛼𝛼𝑖𝑖 as both are functions of 𝒆𝒆.8 

The fundamental source of bias is that, for each 𝝉𝝉, 𝒆𝒆 is correlated with both 𝑦𝑦∗ and 𝜏𝜏∗ 
due to 𝜏𝜏∗ mechanically being a function of 𝑦𝑦∗. In Figure 1, we provide an example with two 
individuals 𝑖𝑖 = 1,2 with different preferences (𝛽𝛽𝑖𝑖 ,𝛼𝛼𝑖𝑖) on a budget set with two tax 
brackets/segments indexed by superscript 𝑠𝑠 = 1,2 with net-of-tax rates 𝜏𝜏𝑠𝑠. They choose 
𝑦𝑦𝑖𝑖∗ = 𝑦𝑦𝑠𝑠=𝑖𝑖 and 𝜏𝜏𝑖𝑖∗ = 𝜏𝜏(𝑦𝑦𝑖𝑖∗) = 𝜏𝜏𝑠𝑠=𝑖𝑖. It cannot be the case that 𝛼𝛼1 = 𝛼𝛼2 and 𝛽𝛽1 = 𝛽𝛽2,9 and 𝜏𝜏𝑖𝑖∗ is 
therefore correlated with 𝑦𝑦𝑖𝑖∗, 𝛽𝛽𝑖𝑖, and 𝛼𝛼𝑖𝑖. Cleary, the OLS estimate of 𝑦𝑦∗ on 𝜏𝜏∗ is negative, and 
does not yield a consistent estimate of the positive ETI. In general, the OLS estimate contains 
a negative simultaneity bias. 
 
 

                                                 
8 This model is similar to the canonical empirical return-to-schooling model in Card (2001), where 𝑦𝑦∗ is 
earnings, 𝜏𝜏∗ is schooling, 𝛽𝛽𝑖𝑖 is marginal return to schooling, and 𝛼𝛼𝑖𝑖 is ability. While both schooling and the 
observed net-of-tax rate are simultaneously determined endogenous outcome variables, a theoretical difference is 
that earnings do not affect schooling whereas taxable income affects the observed net-of-tax rate. The regressor 
is endogenous because of a reverse causality problem in our case. Unlike schooling, we also know all 
determinants of the observed net-of tax rate (taxable income and the tax function). 
9 An implication of elasticity heterogeneity is that only individuals with 𝑦𝑦�−𝛼𝛼𝑖𝑖

𝜏𝜏2
< 𝛽𝛽𝑖𝑖 < 𝑦𝑦�−𝛼𝛼𝑖𝑖

𝜏𝜏1
 bunch at the kink point 

𝑦𝑦∗ = 𝑦𝑦� (applying the condition in Burtless and Hausman, 1978 to our model). The bunching method (Saez et al., 
2010; Chetty et al., 2011) can therefore not say anything about the average ETI of individuals with ETI values 
outside this interval. Further explorations of the bunching method with elasticity heterogeneity are left for future 
research. 
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Figure 1. Negative correlation between taxable income and the observed net-of-tax rate 

 
2.2 Introducing panel dimension  

With panel data, individual-specific heterogeneity can be differenced away. Let subscript 
𝑡𝑡 index years, and drop superscript * for observed variables for notational simplicity. Then: 

∆𝑖𝑖𝑖𝑖𝑦𝑦 = 𝑦𝑦𝑖𝑖,𝑖𝑖+𝑥𝑥 − 𝑦𝑦𝑖𝑖𝑖𝑖 ,   ∆𝑖𝑖𝑖𝑖𝜏𝜏 = 𝜏𝜏𝑖𝑖,𝑖𝑖+𝐷𝐷𝑖𝑖�𝑦𝑦𝑖𝑖,𝑖𝑖+𝐷𝐷𝑖𝑖� − 𝜏𝜏𝑖𝑖𝑖𝑖(𝑦𝑦𝑖𝑖𝑖𝑖), (9) 

where 𝜏𝜏𝑖𝑖𝑖𝑖(𝑦𝑦𝑖𝑖𝑖𝑖) = 𝜏𝜏(𝑦𝑦𝑖𝑖𝑖𝑖; 𝝉𝝉𝑖𝑖𝑖𝑖) depends on base-year income 𝑦𝑦𝑖𝑖𝑖𝑖. 
We introduce dynamics in the preference error terms in order to capture common panel 

complications. Without loss of generality, we let 𝛽𝛽𝑖𝑖𝑖𝑖 = 𝛽𝛽𝑖𝑖 be fixed over time. On the other 
hand, we allow the 𝛼𝛼𝑖𝑖 to contain a permanent income component 𝑎𝑎𝑖𝑖𝑖𝑖

𝑝𝑝  and a transitory income 
component 𝛼𝛼𝑖𝑖𝑖𝑖𝑣𝑣 . We specify changes in preference parameters and income according to:10  

𝛼𝛼𝑖𝑖𝑖𝑖 = 𝛼𝛼𝑖𝑖𝑖𝑖
𝑝𝑝 + 𝛼𝛼𝑖𝑖𝑖𝑖𝑣𝑣 ,   ∆𝑖𝑖𝑖𝑖𝛼𝛼𝑖𝑖𝑖𝑖

𝑝𝑝 = 𝑔𝑔𝑝𝑝�𝛼𝛼𝑖𝑖𝑖𝑖
𝑝𝑝 � + 𝛼𝛼𝑖𝑖𝑖𝑖

𝑝𝑝𝑝𝑝 ,   ∆𝑖𝑖𝑖𝑖𝛼𝛼𝑖𝑖𝑖𝑖𝑣𝑣 = 𝑔𝑔𝑣𝑣(𝛼𝛼𝑖𝑖𝑖𝑖𝑣𝑣 ) + 𝛼𝛼𝑖𝑖𝑖𝑖𝑣𝑣𝑝𝑝 , (10) 

∆𝑖𝑖𝑖𝑖𝑦𝑦 = 𝛽𝛽𝑖𝑖∆𝑖𝑖𝑖𝑖𝜏𝜏 + ∆𝑖𝑖𝑖𝑖𝛼𝛼, ∆𝑖𝑖𝑖𝑖𝛼𝛼 = 𝑔𝑔𝑖𝑖𝑖𝑖
𝑝𝑝�𝛼𝛼𝑖𝑖𝑖𝑖

𝑝𝑝 � + 𝑔𝑔𝑖𝑖𝑖𝑖𝑣𝑣 (𝛼𝛼𝑖𝑖𝑖𝑖𝑣𝑣 ) + 𝛼𝛼𝑖𝑖𝑖𝑖
𝑝𝑝𝑝𝑝 + 𝛼𝛼𝑖𝑖𝑖𝑖𝑣𝑣𝑝𝑝 , (11) 

where 𝛼𝛼𝑖𝑖𝑖𝑖
𝑝𝑝𝑝𝑝 and 𝛼𝛼𝑖𝑖𝑖𝑖𝑣𝑣𝑝𝑝 are error terms with 𝐸𝐸�𝛼𝛼𝑖𝑖𝑖𝑖

𝑝𝑝𝑝𝑝� = 𝐸𝐸(𝛼𝛼𝑖𝑖𝑖𝑖𝑣𝑣𝑝𝑝) = 0. 
∆𝑖𝑖𝑖𝑖𝛼𝛼 represents an income trend term that can be heterogeneous across 𝑦𝑦𝑖𝑖𝑖𝑖. 𝑔𝑔𝑝𝑝 could be 

increasing in 𝛼𝛼𝑖𝑖𝑖𝑖
𝑝𝑝  due to widening income distribution, which would lead to permanent income 

trends ∆𝑖𝑖𝑖𝑖𝛼𝛼𝑝𝑝 that are positively correlated with 𝑦𝑦𝑖𝑖𝑖𝑖. 𝑔𝑔𝑣𝑣 could be decreasing in 𝛼𝛼𝑖𝑖𝑖𝑖𝑣𝑣  due to mean 
reversion where individuals with high transitory income revert toward lower income levels. 
That would lead to transitory income trends ∆𝑖𝑖𝑖𝑖𝛼𝛼𝑣𝑣 that are negatively correlated with 𝑦𝑦𝑖𝑖𝑖𝑖. 

Estimation of taxable income responses typically starts with Eq. (11), but with constant 
𝛽𝛽𝑖𝑖 across individuals. Identification requires tax reforms that lead to differential changes in 
observed net-of-tax rates across individuals. While some previous models nest our level 
model (e.g., Blomquist et al., 2014, which allowed multi-dimensional preference 
heterogeneity), none of them nests our first-difference model.   
                                                 
10 Our specification encompasses the cases where permanent income grows at a constant rate according to: 
𝛼𝛼𝑖𝑖,𝑖𝑖+1
𝑝𝑝 = 𝛼𝛼𝑖𝑖

𝑝𝑝 + 𝑔𝑔𝑝𝑝 + 𝛼𝛼𝑖𝑖𝑖𝑖
𝑝𝑝𝑝𝑝, and where transitory income is serially correlated according to: 𝛼𝛼𝑖𝑖,𝑖𝑖+1𝑣𝑣 = 𝑔𝑔𝑣𝑣𝛼𝛼𝑖𝑖𝑣𝑣 + 𝛼𝛼𝑖𝑖𝑖𝑖𝑣𝑣𝑝𝑝, 

where 𝑔𝑔𝑝𝑝 and 𝑔𝑔𝑣𝑣 are constants.  

𝛽𝛽1,𝛼𝛼1 

𝑐𝑐 

𝑦𝑦 

𝛽𝛽2,𝛼𝛼2 

𝑦𝑦1 

𝑦𝑦2 

𝜏𝜏1 

𝜏𝜏2 
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We can rewrite Eq. (11) as ∆𝑦𝑦 = 𝛽𝛽∆𝜏𝜏 + 𝑏𝑏𝑖𝑖∆𝜏𝜏 + 𝑔𝑔�𝛼𝛼𝑖𝑖𝑖𝑖
𝑝𝑝 ,𝛼𝛼𝑖𝑖𝑖𝑖𝑣𝑣 ,𝛼𝛼𝑖𝑖𝑖𝑖

𝑝𝑝𝑝𝑝 ,𝛼𝛼𝑖𝑖𝑖𝑖𝑣𝑣𝑝𝑝�. The problem of 
estimating 𝛽𝛽 by regressing ∆𝑦𝑦 on ∆𝜏𝜏 is that ∆𝜏𝜏 = ∆𝜏𝜏�𝛽𝛽𝑖𝑖 ,𝛼𝛼𝑖𝑖𝑖𝑖

𝑝𝑝 ,𝛼𝛼𝑖𝑖𝑖𝑖𝑣𝑣 ,𝛼𝛼𝑖𝑖𝑖𝑖
𝑝𝑝𝑝𝑝 ,𝛼𝛼𝑖𝑖𝑖𝑖𝑣𝑣𝑝𝑝;∆𝝉𝝉𝑖𝑖𝑖𝑖, 𝝉𝝉𝑖𝑖𝑖𝑖� is 

correlated with the error term 𝑏𝑏𝑖𝑖∆𝜏𝜏 + 𝑔𝑔�𝛼𝛼𝑖𝑖𝑖𝑖
𝑝𝑝 ,𝛼𝛼𝑖𝑖𝑖𝑖𝑣𝑣 ,𝛼𝛼𝑖𝑖𝑖𝑖

𝑝𝑝𝑝𝑝 ,𝛼𝛼𝑖𝑖𝑖𝑖𝑣𝑣𝑝𝑝� as both are functions of preference 
error terms. The first-difference equation is therefore still a correlated random coefficient 
model. For the simple case without any reform (∆𝑖𝑖𝝉𝝉 = 𝟎𝟎), income trends are positively 
correlated with ∆𝑦𝑦, which in turn is negatively correlated with ∆𝜏𝜏, because some individuals 
increasing their income switch to tax brackets with higher tax rates. This leads to a first-
difference version of the negative simultaneity bias. 

 
2.3 Estimation with instrumental variables 

It is well known from Wooldridge (1997) and Heckman and Vytlacil (1998) that estimation 
with instrumental variables could yield consistent estimates of correlated random coefficient 
models. In the first-difference setting, let 𝑧𝑧 denote the instrument, let 𝜌𝜌 denote the reduced-
form estimate, let 𝛾𝛾 denote the first-stage estimate, and let 𝛽𝛽𝐼𝐼𝐼𝐼 denote the IV estimate. We can 
then define and derive the following relationships: 

𝜌𝜌 =
𝜎𝜎∆𝑦𝑦,𝑧𝑧

𝜎𝜎𝑧𝑧2
, 𝛾𝛾 =

𝜎𝜎∆𝜏𝜏,𝑧𝑧

𝜎𝜎𝑧𝑧2
,𝛽𝛽𝐼𝐼𝐼𝐼 =

𝜌𝜌
𝛾𝛾 

=
𝜎𝜎∆𝑦𝑦,𝑧𝑧

𝜎𝜎∆𝜏𝜏,𝑧𝑧
, (12) 

𝛽𝛽𝐼𝐼𝐼𝐼 = 𝛽𝛽𝑂𝑂𝐿𝐿𝐿𝐿𝐿𝐿 + 𝑏𝑏𝑖𝑖𝑎𝑎𝑠𝑠𝑏𝑏 + 𝑏𝑏𝑖𝑖𝑎𝑎𝑠𝑠𝑎𝑎, (13) 

𝛽𝛽𝑂𝑂𝐿𝐿𝐿𝐿𝐿𝐿 =
𝜎𝜎𝐿𝐿𝒆𝒆(∆𝑦𝑦|∆𝝉𝝉),𝐿𝐿𝒆𝒆(𝑧𝑧|∆𝝉𝝉)

𝜎𝜎𝐿𝐿𝒆𝒆(∆𝜏𝜏|∆𝝉𝝉),𝐿𝐿𝒆𝒆(𝑧𝑧|∆𝝉𝝉)
= �𝛽𝛽𝑖𝑖𝑤𝑤𝑖𝑖𝑖𝑖𝑂𝑂𝐿𝐿𝐿𝐿𝐿𝐿

𝑖𝑖𝑖𝑖

, (14) 

𝑤𝑤𝑖𝑖𝑖𝑖𝑂𝑂𝐿𝐿𝐿𝐿𝐿𝐿 =
∆𝜏𝜏[𝐸𝐸𝒆𝒆(𝑧𝑧|∆𝝉𝝉) − 𝐸𝐸𝑖𝑖𝑖𝑖(𝑧𝑧)]

∑ ∆𝜏𝜏[𝐸𝐸𝒆𝒆(𝑧𝑧|∆𝝉𝝉) − 𝐸𝐸𝑖𝑖𝑖𝑖(𝑧𝑧)]𝑖𝑖𝑖𝑖
, (15) 

𝑏𝑏𝑖𝑖𝑎𝑎𝑠𝑠𝑏𝑏 = �
𝐸𝐸∆𝝉𝝉�𝜎𝜎𝛽𝛽𝑖𝑖∆𝜏𝜏,𝑧𝑧|∆𝝉𝝉�
𝐸𝐸∆𝝉𝝉�𝜎𝜎∆𝜏𝜏,𝑧𝑧|∆𝝉𝝉�

− 𝛽𝛽𝑂𝑂𝐿𝐿𝐿𝐿𝐿𝐿�
𝐸𝐸∆𝝉𝝉�𝜎𝜎∆𝜏𝜏,𝑧𝑧�∆𝝉𝝉�

𝜎𝜎𝐿𝐿𝒆𝒆(∆𝜏𝜏|∆𝝉𝝉),𝐿𝐿𝒆𝒆(𝑧𝑧|∆𝝉𝝉) + 𝐸𝐸∆𝝉𝝉�𝜎𝜎∆𝜏𝜏,𝑧𝑧�∆𝝉𝝉�
, (16) 

𝑏𝑏𝑖𝑖𝑎𝑎𝑠𝑠𝑎𝑎 =
𝐸𝐸∆𝝉𝝉�𝜎𝜎∆𝛼𝛼𝑖𝑖𝑖𝑖,𝑧𝑧|∆𝝉𝝉�

𝜎𝜎∆𝜏𝜏,𝑧𝑧
. (17) 

The equality in Eq. (13) follows from the law of total covariance. 𝛽𝛽𝑂𝑂𝐿𝐿𝐿𝐿𝐿𝐿 is the 
correlation due to variation in budget set changes ∆𝝉𝝉. Assuming that ∆𝝉𝝉 and preferences 𝒆𝒆 are 
independent, we derive the second equality in Eq. (14) in Appendix A. 𝛽𝛽𝑂𝑂𝐿𝐿𝐿𝐿𝐿𝐿 represents the 
exact function of individual elasticities that could be estimated. We refer to any weighted 
average of individual elasticities as an aggregate ETI. The weight 𝑤𝑤𝑖𝑖𝑖𝑖𝑂𝑂𝐿𝐿𝐿𝐿𝐿𝐿 depends on the 
degree of compliance, i.e., the correlation between ∆𝜏𝜏 and 𝑧𝑧 due to ∆𝝉𝝉. Individuals with a 
higher correlation contribute more. The ETIs are local in the same sense as the local average 
treatment effect (LATE) in the treatment effects literature (Imbens and Angrist, 1994; Angrist 
and Imbens, 1995). 

Instrument relevance requires 𝑧𝑧 to be correlated with ∆𝜏𝜏. The two bias terms 𝑏𝑏𝑖𝑖𝑎𝑎𝑠𝑠𝑏𝑏 and 
𝑏𝑏𝑖𝑖𝑎𝑎𝑠𝑠𝑎𝑎 reflect correlations due to variation in 𝒆𝒆 conditional on ∆𝝉𝝉.11 They are nonzero when 𝑧𝑧 
                                                 
11 Using the terminology of the treatment effects literature, ∆𝜏𝜏 measures treatment intensity and 𝑧𝑧 measures 
treatment intention. Furthermore, 𝛽𝛽𝑂𝑂𝐿𝐿𝐿𝐿𝐿𝐿 indicates the external validity of 𝛽𝛽𝐼𝐼𝐼𝐼, wheras 𝑏𝑏𝑖𝑖𝑎𝑎𝑠𝑠𝑎𝑎 and 𝑏𝑏𝑖𝑖𝑎𝑎𝑠𝑠𝑏𝑏 indicate 
the internal validity of 𝛽𝛽𝐼𝐼𝐼𝐼. 
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is correlated with 𝛽𝛽𝑖𝑖 and ∆𝛼𝛼𝑖𝑖𝑖𝑖 for any given ∆𝝉𝝉. The only way relevance can be achieved 
without violating the exclusion restriction is by 𝑧𝑧 being correlated with budget set variables 
and their changes, 𝝉𝝉 and ∆𝝉𝝉, which are the only other determinants of ∆𝜏𝜏 besides 𝒆𝒆.12 

The IV setting in Eqs. (12) to (17) is very general. Using 𝑧𝑧 = ∆𝜏𝜏 yields the first-
difference estimate of ∆𝑦𝑦 on ∆𝜏𝜏. This estimate is an interesting benchmark because the 
underlying consistent ETI equals a weighted average elasticity on the taxed 𝛽𝛽𝐿𝐿𝐿𝐿𝐿𝐿 (see 
Appendix A). This is similar to the weighted average treatment effect on the treated (weighted 
ATT) that can be estimated in regressions in the treatment effects literature when treatment 
intensity is continuous. While 𝛽𝛽𝐿𝐿𝐿𝐿𝐿𝐿 is policy relevant unlike most 𝛽𝛽𝑂𝑂𝐿𝐿𝐿𝐿𝐿𝐿, the first-difference 
estimate does not equal it because it yields nonzero bias terms.13 

𝑤𝑤𝑖𝑖𝑖𝑖𝑂𝑂𝐿𝐿𝐿𝐿𝐿𝐿, and therefore 𝛽𝛽𝑂𝑂𝐿𝐿𝐿𝐿𝐿𝐿 and 𝛽𝛽𝐿𝐿𝐿𝐿𝐿𝐿, vary between data sets with different tax reforms 
producing different collections of budget set changes. 𝛽𝛽𝑂𝑂𝐿𝐿𝐿𝐿𝐿𝐿 and 𝛽𝛽𝐿𝐿𝐿𝐿𝐿𝐿 are therefore mixtures 
of preference and budget set parameters and do not represent pure deep universal behavioral 
parameters that are immutable to the tax system. Slemrod and Kopzcuk (2002) demonstrated 
and explored this insight for the case without elasticity heterogeneity. For a given tax reform, 
a consistently estimated 𝛽𝛽𝐿𝐿𝐿𝐿𝐿𝐿 accounts for the reform-specific compliance of each individual 
and is generally the most policy relevant parameter. It is, however, not informative for other 
types of reforms in terms of predicting behavioral effects. In comparison, 𝛽𝛽 is a deep 
parameter. However, it only predicts income responses to tax-rate changes conditional on 
individuals never switching tax brackets, which is only relevant with linear budget sets.14 

Most methods either explicitly used the IV specification in Eq. (12), e.g., Gruber and 
Saez (2002), or implicitly estimated such specifications, e.g., Feldstein (1995). With the 
constant elasticity assumption 𝛽𝛽𝐼𝐼𝐼𝐼 = 𝛽𝛽𝑂𝑂𝐿𝐿𝐿𝐿𝐿𝐿 = 𝛽𝛽𝐿𝐿𝐿𝐿𝐿𝐿 = 𝛽𝛽. This functional form implies 
𝑏𝑏𝑖𝑖𝑎𝑎𝑠𝑠𝑏𝑏 = 0 and ignores the elasticity heterogeneity bias, although the literature has widely 
accounted for the trend heterogeneity bias due to 𝑏𝑏𝑖𝑖𝑎𝑎𝑠𝑠𝑎𝑎.  

Empirical analysis often addressed elasticity heterogeneity by estimating subsample-
specific ETIs, sometimes by exploiting variation in tax changes across subsamples (e.g., 
Kawano et al., 2016). While such methods in some cases can consistently estimate a 𝛽𝛽𝑂𝑂𝐿𝐿𝐿𝐿𝐿𝐿 
(for the full sample), they cannot generally recover 𝛽𝛽𝐿𝐿𝐿𝐿𝐿𝐿, which requires accounting for the 
fact that tax-rate changes typically are correlated with elasticity heterogeneity both between 
and within subsamples.  
 
  

                                                 
12 This is similar to using arguably exogenous institutional characteristics as instruments for schooling in the 
return-to-schooling application. 
13 Removing the difference operators in Eqs. (12) to (17) yields an IV in a level setting. Consistency would then 
require budget sets 𝝉𝝉 (rather than their changes) to be independent from 𝒆𝒆. 
14 Of course, knowing the entire distribution of 𝛽𝛽𝑖𝑖 allows simulating 𝛽𝛽𝐿𝐿𝐿𝐿𝐿𝐿 in different tax reforms. Blomquist et 
al. (2014) showed, however, that pure preference parameters are not generally identified.  
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3. Estimation with different instruments 
3.1 Instruments using income-by-year variation in tax-rate changes 

Most instruments in the literature exploit variation in tax-rate changes at different income 
levels due to tax reform. Because individuals have different income, even reforms that lead to 
the same change in tax schedule for everyone can be exploited. Feldstein (1995) used 
variation in tax-rate changes across groups based on (pre-reform) base-year income. This 
grouping method corresponds to using the following instrument: 

𝑧𝑧0
𝑦𝑦�(𝑦𝑦𝑖𝑖𝑖𝑖) = 1(𝑦𝑦𝑖𝑖𝑖𝑖 > 𝑦𝑦�), (18) 

where 𝑦𝑦� is the top tax bracket income cutoff.15 We use subscript 0 to denote base-year 
income.  

In tax reforms, tax-rate changes often vary gradually across multiple tax brackets. To 
use all the available variation in tax changes, Eq. (18) can be modified by letting 𝑧𝑧0 = 𝑐𝑐(𝑦𝑦𝑖𝑖𝑖𝑖), 
where 𝑐𝑐(. ) can be, e.g., a polynomial or a spline. Such an “ungrouped” instrument can 
assume multiple values and even be continuous. 

Base-year instruments may satisfy instrument relevance because 𝑦𝑦𝑖𝑖𝑖𝑖�𝛽𝛽𝑖𝑖 ,𝛼𝛼𝑖𝑖𝑖𝑖
𝑝𝑝 ,𝛼𝛼𝑖𝑖𝑖𝑖𝑣𝑣 ; 𝝉𝝉𝑖𝑖𝑖𝑖� and 

∆𝑖𝑖𝑖𝑖𝜏𝜏 = ∆𝑖𝑖𝑖𝑖𝜏𝜏�𝛽𝛽𝑖𝑖 ,𝛼𝛼𝑖𝑖𝑖𝑖
𝑝𝑝 ,𝛼𝛼𝑖𝑖𝑖𝑖𝑣𝑣 ,𝛼𝛼𝑖𝑖𝑖𝑖

𝑝𝑝𝑝𝑝 ,𝛼𝛼𝑖𝑖𝑖𝑖𝑣𝑣𝑝𝑝;∆𝝉𝝉𝑖𝑖𝑖𝑖, 𝝉𝝉𝑖𝑖𝑖𝑖� are correlated as both are functions of 𝛽𝛽𝑖𝑖 ,𝛼𝛼𝑖𝑖𝑖𝑖
𝑝𝑝 , 𝛼𝛼𝑖𝑖𝑖𝑖𝑣𝑣 , 

and 𝝉𝝉𝑖𝑖𝑖𝑖. However, the instruments’ correlation with preference parameters violates the 
exclusion restriction.16 While the correlation with permanent and transitory income trends 𝑔𝑔𝑖𝑖𝑖𝑖

𝑝𝑝  
and 𝑔𝑔𝑖𝑖𝑖𝑖𝑣𝑣  (through 𝛼𝛼𝑖𝑖𝑖𝑖

𝑝𝑝  and 𝛼𝛼𝑖𝑖𝑖𝑖𝑣𝑣 ) leads to a trend heterogeneity (non-parallel trend) bias, the 
correlation with 𝛽𝛽𝑖𝑖 leads to an elasticity heterogeneity bias. The reason is that, ceteris paribus, 
individuals with different elasticities have different income, as we saw in Figure 1.17  

In Figure 2, we illustrate a stylized TRA86-example with a budget set with two tax 
brackets with net-of-tax rates 𝜏𝜏𝑖𝑖

𝑠𝑠=1,2 before the reform and 𝜏𝜏𝑖𝑖+𝐷𝐷𝑖𝑖
𝑠𝑠=1,2 after the reform. The tax 

reform results in the net-of-tax changes ∆𝜏𝜏𝑠𝑠 = 𝜏𝜏𝑖𝑖+𝐷𝐷𝑖𝑖𝑠𝑠 − 𝜏𝜏𝑖𝑖𝑠𝑠. There are larger tax reductions at 
higher income levels with ∆𝜏𝜏2 > ∆𝜏𝜏1. Furthermore, there are two individuals with 𝑦𝑦𝑖𝑖𝑖𝑖 =
𝛽𝛽𝑖𝑖=1,2𝜏𝜏𝑖𝑖𝑖𝑖 + 𝛼𝛼𝑖𝑖=1,2;𝑖𝑖 and 𝛽𝛽2 > 𝛽𝛽1 experiencing income changes, ∆𝑦𝑦𝑖𝑖 = 𝑦𝑦𝑖𝑖,𝑖𝑖+𝐷𝐷𝑖𝑖 − 𝑦𝑦𝑖𝑖𝑖𝑖. They 
locate on tax bracket 𝑖𝑖 = 𝑠𝑠 both before and after the reform, i.e., 𝜏𝜏𝑖𝑖𝑖𝑖∗ = 𝜏𝜏(𝑦𝑦𝑖𝑖𝑖𝑖) = 𝜏𝜏𝑖𝑖𝑠𝑠=𝑖𝑖. 

In this example, no individual switches tax brackets after the reform. For Feldstein’s 
instrument in Eq. (18), the first stage 𝛾𝛾 = 1 as ∆𝜏𝜏∗ = ∆𝜏𝜏𝑠𝑠. 
𝛽𝛽𝐼𝐼𝐼𝐼 = 𝜌𝜌 = (∆𝑦𝑦2 − ∆𝑦𝑦1) (∆𝜏𝜏2 − ∆𝜏𝜏1)⁄ 18 is the ratio between the income and observed net-of-
tax difference-in-differences (DID). The DIDs compare changes between tax brackets where 

                                                 
15 Tax reforms can also be exploited with repeated cross sections and aggregated time-series. Lindsey (1987), 
Feenberg and Poterba (1993), Slemrod (1996), and Saez (2004) grouped individuals by their observed incomes. 
As Saez et al. (2012) noted, changes in group composition over time could be an issue without panel data. 
16 These instruments do, however, account for the correlation between ∆𝜏𝜏 and �𝛼𝛼𝑖𝑖𝑖𝑖

𝑝𝑝𝑝𝑝 ,𝛼𝛼𝑖𝑖𝑖𝑖𝑣𝑣𝑝𝑝�, unlike the first-
difference regression without instruments. 
17 This can also be seen from the first-order condition 𝑦𝑦∗ = 𝛽𝛽𝑖𝑖𝜏𝜏∗ + 𝛼𝛼𝑖𝑖. For the entire equation system, we can 
show that 𝑑𝑑𝑦𝑦∗ 𝑑𝑑𝛽𝛽𝑖𝑖⁄ = 𝜏𝜏∗ [1 − 𝛽𝛽𝑖𝑖𝜕𝜕𝜏𝜏(𝑦𝑦∗) 𝜕𝜕𝑦𝑦⁄ ]⁄ ≠ 0. The sign and magnitude of bias could be different for other 
utility functions and depend on the degree of correlation between 𝛽𝛽𝑖𝑖 and 𝛼𝛼𝑖𝑖. The bias is zero only when 𝛼𝛼𝑖𝑖 is a 
particular function of 𝛽𝛽𝑖𝑖 and the tax schedule which implies one-dimensional heterogeneity.   
18 Note that without random shocks (𝛼𝛼𝑖𝑖𝑖𝑖

𝑝𝑝𝑝𝑝 = 𝛼𝛼𝑖𝑖𝑖𝑖𝑣𝑣𝑝𝑝 = 0), 𝛽𝛽𝐼𝐼𝐼𝐼 = 𝛽𝛽𝐹𝐹𝐷𝐷. This example therefore also illustrates the 
problem with the first-difference estimate when there is a tax reform that contributes to the identification.  
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the second bracket individual is the treated and the first bracket individual is the control. The 
IV estimate, therefore, relates the difference between the thick horizontal arrows to the 
difference between the vertical arrows.19 For clarity, but without loss of generality, assume 
that the first individual is a representative individual not affected by widening income 
distribution or mean reversion, unlike the second individual. In this case, we can represent the 
decomposition of ∆𝑦𝑦2 = 𝛽𝛽2∆𝜏𝜏2 + 𝑔𝑔2

𝑝𝑝 + 𝑔𝑔2𝑣𝑣 using the thin arrows in the figure. We have 
𝛽𝛽𝑂𝑂𝐿𝐿𝐿𝐿𝐿𝐿 + 𝑏𝑏𝑖𝑖𝑎𝑎𝑠𝑠𝑏𝑏 = (𝛽𝛽2∆𝜏𝜏2 − 𝛽𝛽1∆𝜏𝜏1) (∆𝜏𝜏2 − ∆𝜏𝜏1)⁄ ≥ 𝛽𝛽𝑂𝑂𝐿𝐿𝐿𝐿𝐿𝐿 = 𝛽𝛽2 ≥ 𝛽𝛽1. Furthermore, we have 
𝑏𝑏𝑖𝑖𝑎𝑎𝑠𝑠𝑎𝑎 = �𝑔𝑔2

𝑝𝑝 + 𝑔𝑔2𝑣𝑣� (∆𝜏𝜏2 − ∆𝜏𝜏1)⁄ . 
 

 
Figure 2. Elasticity and trend heterogeneity biases 

 
Auten and Carroll (1999) suggested accounting for trend heterogeneity by controlling for 
base-year income. With only one first-difference, the base-year income control function will 
soak up most of the variation in the instrument. Gruber and Saez (2002) proposed pooling 
several first-differences and using variation in tax-rate changes across base-year income levels 
and years. Based on this idea, we can generalize Eq. (18) as follows:  

𝒛𝒛0
𝑦𝑦𝑖𝑖(𝑦𝑦𝑖𝑖𝑖𝑖, 𝜇𝜇𝑖𝑖) = 𝑐𝑐(𝑦𝑦𝑖𝑖𝑖𝑖)𝝁𝝁𝑖𝑖 . (19) 

𝒛𝒛0
𝑦𝑦𝑖𝑖 is a vector-valued function, 𝜇𝜇𝑖𝑖 represents year-fixed effects, and 𝝁𝝁𝑖𝑖 is a vector of year 

dummies. We use a spline for 𝑐𝑐(. ) in Eq. (19). Because the instruments are year-specific, we 
can control for base-year income by including a control function 𝑐𝑐(𝑦𝑦𝑖𝑖𝑖𝑖) as covariates without 
destroying identification. We can also control for macro-economic shocks correlated with the 
timing of reforms by including 𝝁𝝁𝑖𝑖 as covariates. Because 𝑐𝑐 �𝑦𝑦𝑖𝑖𝑖𝑖�𝑔𝑔𝑖𝑖𝑖𝑖

𝑝𝑝 + 𝑔𝑔𝑖𝑖𝑖𝑖𝑣𝑣 �� 𝝁𝝁𝑖𝑖 is correlated 

with 𝑔𝑔𝑖𝑖𝑖𝑖
𝑝𝑝 + 𝑔𝑔𝑖𝑖𝑖𝑖𝑣𝑣  through 𝑦𝑦𝑖𝑖𝑖𝑖, conditioning on 𝑦𝑦𝑖𝑖𝑖𝑖 leads to 𝑏𝑏𝑖𝑖𝑎𝑎𝑠𝑠𝑎𝑎 = 0 in Eq. (17),20 as 

                                                 
19 The length of arrows is meant to represent the magnitude of the relative income change (rather than the 
absolute change) and the relative net-of-tax change measured by the rotation (rather than the vertical distance). 
20 Weber (2014) correctly argued that the base-year control function estimates are biased estimates of the two 
separate permanent and temporary income trends. However, she also argued that because of this, the control 

3:𝑔𝑔2𝑣𝑣  

2:𝑔𝑔2
𝑝𝑝 

1:𝛽𝛽2∆𝜏𝜏2 
𝛽𝛽1∆𝜏𝜏1 

𝑦𝑦2,𝑖𝑖+𝑥𝑥 

𝑦𝑦2𝑖𝑖 

𝑦𝑦1𝑖𝑖 

𝑦𝑦1,𝑖𝑖+𝑥𝑥 

𝑦𝑦 

𝑐𝑐 



13 
 

𝜎𝜎𝑔𝑔𝑖𝑖𝑖𝑖𝑝𝑝+𝑔𝑔𝑖𝑖𝑖𝑖𝑣𝑣 ,𝑐𝑐�𝑦𝑦𝑖𝑖𝑖𝑖�𝑔𝑔𝑖𝑖𝑖𝑖
𝑝𝑝+𝑔𝑔𝑖𝑖𝑖𝑖

𝑣𝑣 ��𝝁𝝁𝒕𝒕
|𝑐𝑐 �𝑦𝑦𝑖𝑖𝑖𝑖�𝑔𝑔𝑖𝑖𝑖𝑖

𝑝𝑝 + 𝑔𝑔𝑖𝑖𝑖𝑖𝑣𝑣 �� + 𝜇𝜇𝑖𝑖 = 0. Using income-year interactions as 

instruments while controlling for the non-interacted variables, therefore, overcomes the trend 
heterogeneity bias.  

In the example in Figure 2, instruments based on income-by-year variation can be used 
if we have an additional cross-section of pre-reform first-differences with the same two 
individuals experiencing no tax-rate changes. In the pre-reform first-differences, the 
individuals are also affected by the second and third horizontal trend arrows and ∆𝑦𝑦2,𝑖𝑖−𝐷𝐷𝑖𝑖 =
𝑦𝑦2𝑖𝑖 − 𝑦𝑦2,𝑖𝑖−𝐷𝐷𝑖𝑖 = 𝑔𝑔2

𝑝𝑝 + 𝑔𝑔2𝑣𝑣. We could therefore eliminate these trends from the reform first-
difference.  

Using income-by-year variation, however, does not address elasticity heterogeneity; the 
income control function identified from other pre-reform years only captures effects that are 
general across years, while 𝛽𝛽𝑖𝑖 interacts with ∆𝜏𝜏 that is year-specific. Formally, 
𝜎𝜎𝛽𝛽𝑖𝑖∆𝜏𝜏,𝑐𝑐�𝑦𝑦𝑖𝑖𝑖𝑖(𝛽𝛽𝑖𝑖)�𝝁𝝁𝒕𝒕|𝑐𝑐�𝑦𝑦𝑖𝑖𝑖𝑖(𝛽𝛽𝑖𝑖)� + 𝜇𝜇𝑖𝑖 ≠ 0 and 𝑏𝑏𝑖𝑖𝑎𝑎𝑠𝑠𝑏𝑏 ≠ 0 in Eq. (16). Year-specific income control 
functions can account for the bias but would also remove the identifying variation. In Figure 
2, the arrow numbered by 1 does not affect the individuals in the pre-reform first-difference. 
There is an elasticity heterogeneity bias even with parallel trends or with identical pre-reform 
first-differences for the two individuals.  

In the TRA86-application in Table 2 of Feldstein (1995), the top income group received 
tax reductions that increased net-of-tax rates by 42%, whereas the subsequent high-income 
group received tax reductions that increased net-of-tax rates by 25%. This provides a 
numerical example for Figure 2. The additional income increase of the top income group can 
not only be attributed to the additional 17% net-of-tax increase but also reflects a differential 
response to the first common 25% net-of-tax increase.21 Removing this differential response 
between the two groups requires pre-reform first-differences of 25% net-of-tax increase in 
each group.  

For Feldstein’s grouping method, Navratil (1995) and Saez et al. (2012) noted that 
consistency requires either the same elasticity across groups or a control group that remains 
untreated, i.e., without a tax change. The control group is, however, rarely untreated because 
tax reform typically introduces a bundle of new programs, some of which affects everybody. 
Our discussion shows that even variation in tax-rate changes that is continuous across the 
income distribution or that vary by base-year income and year is contaminated by elasticity 
heterogeneity.22  
 

                                                                                                                                                         
function cannot account for trend heterogeneity bias. We believe it can. Our extended example with two pooled 
first-differences in Figure 2 below illustrates this. 
21 The intuition is general and applies also to reduced-form tax reform evaluation methods. Eissa and Liebman 
(1996) provides an example from the labor supply literature. Lone mothers with children were affected by 
EITC+TRA86, and lone mothers with children were only affected by TRA86. A comparison of the two groups 
cannot provide the effect of EITC unless both groups responded equally to TRA86. 
22 Because controlling for income could alleviate or worsen elasticity heterogeneity bias, we cannot attribute the 
discrepancy between conditional and unconditional estimates to the trend heterogeneity bias alone. Elasticity 
heterogeneity also leads to idiosyncratic year-specific non-parallel responses to universal tax reforms in pre-
reform periods. Such reforms could be subtle, such as implicit tax code revisions due to inflation leading to 
bracket creep type of effects (Saez, 2003). This would invalidate using income control functions to account for 
the trend heterogeneity bias. 
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3.2 Net-of-tax change instruments 

Auten and Carroll (1999) and Gruber and Saez (2002) used net-of-tax change constructed 
holding real taxable income fixed at the base-year income level as an instrument: 

∆𝜏𝜏0 = ∆𝑖𝑖𝑖𝑖𝜏𝜏(𝑦𝑦𝑖𝑖𝑖𝑖;∆𝝉𝝉𝑖𝑖𝑖𝑖) = 𝜏𝜏𝑖𝑖,𝑖𝑖+𝐷𝐷𝑖𝑖(𝑦𝑦𝑖𝑖𝑖𝑖) − 𝜏𝜏𝑖𝑖𝑖𝑖(𝑦𝑦𝑖𝑖𝑖𝑖). (20) 

We propose a procedure to remove the endogenous base-year income-by-year variation by 
regressing Δ𝜏𝜏0 on year-specific income functions 𝑐𝑐(𝑦𝑦𝑖𝑖𝑖𝑖)𝝁𝝁𝑖𝑖, where we use a local polynomial 
for 𝑐𝑐(. ). Δ𝜏𝜏0 can then be decomposed into: 

∆𝜏𝜏0 = 𝑐𝑐(𝑦𝑦𝑖𝑖𝑖𝑖)𝝁𝝁𝑖𝑖 + 𝜀𝜀, (21) 

∆𝜏𝜏0
𝑦𝑦𝑖𝑖 = 𝑐𝑐(𝑦𝑦𝑖𝑖𝑖𝑖)𝝁𝝁𝑖𝑖 = ∆𝑖𝑖𝑖𝑖𝜏𝜏(𝑦𝑦𝑖𝑖𝑖𝑖, 𝜇𝜇𝑖𝑖), (22) 

∆𝜏𝜏0
−𝑦𝑦𝑖𝑖 = 𝜀𝜀 = ∆𝑖𝑖𝑖𝑖𝜏𝜏(𝑦𝑦𝑖𝑖𝑖𝑖;∆𝝉𝝉𝑖𝑖𝑖𝑖|𝑦𝑦𝑖𝑖𝑖𝑖, 𝜇𝜇𝑖𝑖). (23) 

The predicted net-of-tax change Δ𝜏𝜏0
𝑦𝑦𝑖𝑖 is conceptually the expectation of Δ𝜏𝜏0 over observations 

with the same base-year income in the same year.23 It is a nonlinear function of base-year 
income and year similar to the income-year interactions in Eq. (19).  

The residualized net-of-tax change Δ𝜏𝜏0
−𝑦𝑦𝑖𝑖 captures the remaining variation in tax-rate 

changes within each base-year income level and year. An alternative to using Δ𝜏𝜏0
−𝑦𝑦𝑖𝑖 is to use 

Δ𝜏𝜏0 and include 𝑐𝑐(𝑦𝑦𝑖𝑖𝑖𝑖)𝝁𝝁𝑖𝑖 as covariates. The residualized variation comes purely from 
differential tax-schedule changes over years across demographic groups that is uncorrelated 
with 𝑐𝑐(𝑦𝑦𝑖𝑖𝑖𝑖)𝝁𝝁𝑖𝑖. Consistency requires that conditional on income-year interactions, 
demographic status is independent of preferences. The literature did not exploit this 
conditional variation, possibly thinking it appeared insufficient. Using the NBER-TAXSIM 
model, we show that Δ𝜏𝜏0 varies substantially in TRA86 even at given income levels and 
years. 

In Figure 3, we illustrate the differences between Δ𝜏𝜏0, Δ𝜏𝜏0
𝑦𝑦𝑖𝑖, and Δ𝜏𝜏0

−𝑦𝑦𝑖𝑖. There is one 
pre-reform budget set and two post-reform budget sets 𝑘𝑘 = 𝐴𝐴,𝐵𝐵. Each budget set contains 
two tax brackets, where net-of-tax rates are 𝜏𝜏𝑖𝑖

𝑠𝑠=1,2 before the reform and 𝜏𝜏𝑘𝑘,𝑖𝑖+𝐷𝐷𝑖𝑖
𝑠𝑠=1,2  after the 

reform. Two types of individuals, with �𝛽𝛽𝑖𝑖=1,2,𝛼𝛼𝑖𝑖=1,2;𝑖𝑖� are each observed twice on each 
bracket in the pre-reform budget set and once on each bracket in each of the post-reform 
budget sets. There are eight observations with 𝑦𝑦𝑖𝑖𝑖𝑖 before the reform and 𝑦𝑦𝑖𝑖,𝑘𝑘,𝑖𝑖+𝐷𝐷𝑖𝑖 after the 
reform, generating four first-differences ∆𝑖𝑖𝑘𝑘𝑦𝑦 = 𝑦𝑦𝑖𝑖,𝑘𝑘,𝑖𝑖+𝐷𝐷𝑖𝑖 − 𝑦𝑦𝑖𝑖𝑖𝑖 indicated by the arrows in the 
figure. For clarity, individuals of type 𝑖𝑖 are observed on bracket 𝑠𝑠 = 𝑖𝑖 both before and after 
the reform, with 𝜏𝜏𝑖𝑖𝑖𝑖 = 𝜏𝜏(𝑦𝑦𝑖𝑖𝑖𝑖) = 𝜏𝜏𝑖𝑖𝑠𝑠=𝑖𝑖 and 𝜏𝜏𝑖𝑖,𝑘𝑘,𝑖𝑖+𝐷𝐷𝑖𝑖 = 𝜏𝜏�𝑦𝑦𝑖𝑖,𝑘𝑘,𝑖𝑖+𝐷𝐷𝑖𝑖� = 𝜏𝜏𝑘𝑘,𝑖𝑖+𝐷𝐷𝑖𝑖

𝑠𝑠=𝑖𝑖 , generating 
∆𝑖𝑖𝑘𝑘𝜏𝜏 = ∆𝑘𝑘𝜏𝜏𝑠𝑠=𝑖𝑖 = 𝜏𝜏𝑘𝑘,𝑖𝑖+𝐷𝐷𝑖𝑖

𝑠𝑠=𝑖𝑖 − 𝜏𝜏𝑖𝑖𝑠𝑠=𝑖𝑖. 
 

                                                 
23 Another way to implement Eq. (22) is to group observations into multiple income groups and assign the 
group-average income to each observation. To exploit the entire possibly continuous variation in tax-rate 
changes, our strategy that lets 𝑐𝑐(. ) be a local polynomial corresponds to assigning a synthetic average within an 
income band to each observation. Note that we reserve the use of “predicted net-of-tax change” for Δ𝜏𝜏0

𝑦𝑦𝑖𝑖although 
all net-of-tax change instruments are predicted (unlike ∆𝜏𝜏), and some authors use it for ∆𝜏𝜏0. 
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Figure 3. Income-by-year and residualized variation in tax-rate changes 

 
In this example, ∆𝜏𝜏0 = ∆𝑘𝑘𝜏𝜏𝑠𝑠, ∆𝜏𝜏0

𝑦𝑦𝑖𝑖 = 0.5(∆𝐿𝐿𝜏𝜏𝑠𝑠 + ∆𝐵𝐵𝜏𝜏𝑠𝑠), and ∆𝜏𝜏0
−𝑦𝑦𝑖𝑖 = 0.5(∆𝐿𝐿𝜏𝜏𝑠𝑠 − ∆𝐵𝐵𝜏𝜏𝑠𝑠). 

∆𝜏𝜏0
𝑦𝑦𝑖𝑖 groups individuals by brackets (𝑠𝑠). It compares individuals at different brackets 

receiving different average slope rotations, i.e., the changes ∆1𝐿𝐿𝑦𝑦 and ∆1𝐵𝐵𝑦𝑦 with ∆2𝐿𝐿𝑦𝑦 and 
∆2𝐵𝐵𝑦𝑦. ∆𝜏𝜏0

−𝑦𝑦𝑖𝑖 groups individuals by tax-schedule changes (𝑘𝑘). It compares individuals on the 
same bracket receiving different slope rotations, i.e., the changes ∆1𝐿𝐿𝑦𝑦 with ∆1𝐵𝐵𝑦𝑦 and ∆2𝐿𝐿𝑦𝑦 
with ∆2𝐵𝐵𝑦𝑦. ∆𝜏𝜏0

−𝑦𝑦𝑖𝑖 yields an ETI that is a weighted average of the horizontal difference over 
the rotational difference between the thin and thick arrows. 

Several studies in the literature suggested constructing instruments that are related to 
∆𝜏𝜏0 by replacing 𝑦𝑦𝑖𝑖𝑖𝑖 with other instrument income 𝑦𝑦𝑧𝑧. Weber (2014) believed that trend 
heterogeneity due to mean reversion is not satisfactorily addressed by controlling for base-
year income as suggested by Gruber and Saez (2002). She then showed that constructing net-
of-tax change instruments based on lags of base-year income 𝑦𝑦𝑖𝑖,𝑖𝑖−𝑙𝑙 mitigates this concern in 
the limit as 𝑙𝑙 increases, as 𝑦𝑦𝑖𝑖,𝑖𝑖−𝑙𝑙 becomes independent of temporary income. In our 
application, we use the Weber-type instrument where 𝑦𝑦𝑧𝑧 = 𝑦𝑦𝑖𝑖,𝑖𝑖−2: 

∆𝜏𝜏−2 = ∆𝑖𝑖𝑖𝑖𝜏𝜏�𝑦𝑦𝑖𝑖,𝑖𝑖−2;∆𝝉𝝉𝑖𝑖𝑖𝑖� = 𝜏𝜏𝑖𝑖,𝑖𝑖+𝐷𝐷𝑖𝑖�𝑦𝑦𝑖𝑖,𝑖𝑖−2� − 𝜏𝜏𝑖𝑖𝑖𝑖�𝑦𝑦𝑖𝑖,𝑖𝑖−2�. (24) 

To account for widening income distribution, Weber included a spline in lagged base-year 
income as covariates, in our case, 𝑐𝑐�𝑦𝑦𝑖𝑖,𝑖𝑖−2�, as a proxy for permanent income trends. 
Blomquist and Selin (2010) made similar remarks about mean reversion and suggested using 
mid-year income as instrument income. Even these instrument income alternatives are, 
however, endogenous to elasticity heterogeneity. In the simple example in Figure 2, it is 
entirely possible that individuals never switch tax brackets. Grouping by lagged and mid-year 
income would then yield identical estimates as grouping by base-year income. 

Demographic variables are correlated with preferences to a much lesser degree than 
income is, so variation in tax-rate changes by demographics and year is plausibly much 
cleaner. Including demographic covariates can account for any remaining trend heterogeneity 

∆2𝐿𝐿𝑦𝑦 

∆1𝐿𝐿𝑦𝑦 

∆2𝐵𝐵𝑦𝑦 

∆1𝐵𝐵𝑦𝑦 

𝑦𝑦 

𝑐𝑐 
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bias. Year-specific demographic covariates are, however, needed to account for potential 
elasticity heterogeneity bias.24 Excluded interaction terms between demographic variables 
still help identification and are likely exogenous. Even when a tax reform appears to be 
universal, random variation often exists once the entire tax system, including tax credits and 
deductions, has been accounted for in the budget sets.25 In our application, we explore the 
inclusion of general and year-specific dummies based on state of residence, marital status, and 
number of children as covariates. 

We also investigate the scope of variation in tax-rate changes by our demographic 
variables in detail. In particular, we group instruments by our demographic variables and the 
double and triple interactions between them for each year separately, while including the non-
interacted variables as covariates. 

Several grouping methods in the labor supply literature exploit variation in tax-rate 
changes across demographic characteristics. In the EITC-application in Eissa and Liebman 
(1996), grouping is based on single mothers with or without children. In the labor supply 
application in Blundell et al. (1998), grouping is based on cohort-education interactions, and 
they include the non-interacted variables as covariates. Burns and Ziliak (2016) provided a 
recent taxable income application that groups the base-year net-of-tax change instrument by 
state-cohort-education interactions, and they include the non-interacted variables as 
covariates. For these methods to yield consistent estimates, the identifying group-level 
variation in tax-rate changes must be uncorrelated with income-year interactions. Ensuring 
parallel trends is not enough. Including covariates is a good remedy, but they need to be year-
specific (in a first-difference equivalent setting) to account for elasticity heterogeneity bias.26 
 
3.3 Instruments using variation within income levels and years  

By plugging ∆𝜏𝜏0 and ∆𝜏𝜏0
−𝑦𝑦𝑖𝑖 in Eq. (20) and (23) into Eqs. (12) to (17), we show that 𝛽𝛽0𝐼𝐼𝐼𝐼 =

𝛽𝛽0𝑂𝑂𝐿𝐿𝐿𝐿𝐿𝐿 + 𝑏𝑏𝑖𝑖𝑎𝑎𝑠𝑠𝑏𝑏 + 𝑏𝑏𝑖𝑖𝑎𝑎𝑠𝑠𝑎𝑎 and 𝛽𝛽0
𝐼𝐼𝐼𝐼,−𝑦𝑦𝑖𝑖 = 𝛽𝛽0

𝑂𝑂𝐿𝐿𝐿𝐿𝐿𝐿,−𝑦𝑦𝑖𝑖. Furthermore, the two instruments have the 
same consistent local ETI, i.e.:  

𝛽𝛽0𝑂𝑂𝐿𝐿𝐿𝐿𝐿𝐿 = 𝛽𝛽0
𝑂𝑂𝐿𝐿𝐿𝐿𝐿𝐿,−𝑦𝑦𝑖𝑖 . (25) 

We can, therefore, quantify the local ETI and elasticity heterogeneity bias of ∆𝜏𝜏0 using ∆𝜏𝜏0
−𝑦𝑦𝑖𝑖. 

Instead of removing endogenous income-by-year variation from an invalid instrument 
such as ∆𝜏𝜏0, tax-rate changes within income levels (and years) can be isolated by using net-
of-tax changes at constant income levels as instruments: 

∆𝜏𝜏𝑦𝑦� = ∆𝑖𝑖𝑖𝑖𝜏𝜏�𝑦𝑦�;∆𝝉𝝉𝑖𝑖,𝑖𝑖� = 𝜏𝜏𝑖𝑖,𝑖𝑖+𝐷𝐷𝑖𝑖(𝑦𝑦�) − 𝜏𝜏𝑖𝑖,𝑖𝑖(𝑦𝑦�), (26) 

where 𝑦𝑦� is an income level that is constant across individuals. The first-dollar net-of-tax 
change is an example of an instrument. Its level version has been widely used in the literature 

                                                 
24 This conclusion rests on the same type of argument used to motivate the need of year-specific income control 
functions to account for the elasticity heterogeneity bias discussed in Subsection 3.2.  
25 This is similar to how the same universal tax code (such as the federal tax rates) often have different effects on 
tax rates once the entire tax system is accounted for. That type of level (rather than our first-difference) variation 
in tax rates is used for identification in structural nonlinear budget set methods (e.g., in the discrete-choice 
method in Dagsvik, 1994; van Soest, 1995; Hoynes, 1996; Keane and Mofitt, 1998). 
26 In contrast, ∆𝜏𝜏0

−𝑦𝑦𝑖𝑖 is by construction uncorrelated with income-year interactions.  
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on estimating tax price impact on charitable contributions, 401(k) contributions, capital gains 
realization, and labor supply. 

An important motivation for our proposed instruments is that tax reform typically 
changes entire tax schedules involving multiple tax brackets. Individuals may potentially react 
to tax-rate changes across the income distribution. Consider an individual that increases 
income in response to a base-year tax-rate change and switches to a new adjacent tax bracket. 
Such an individual may then respond to an adjacent tax-rate change that would affect the 
observed net-of-tax change. In other words, the individual partially complies with the adjacent 
net-of-tax change. 

While all instruments using variation within income levels and years potentially yield 
consistent ETI estimates, the contribution of individual elasticities to these estimates differs 
across instruments. Each instrument yields a local ETI where the weight given to each 
elasticity depends on the degree of compliance with the instrument. Varying the first-dollar 
tax change is, e.g., more likely to lead to variation in the observed tax change of individuals 
with low income compared to individuals with high income. The first-dollar instrument 
therefore gives more weight to these individuals, and they have, on average, elasticities that 
are different from other individuals.  

Like ∆𝜏𝜏𝑦𝑦� , ∆𝜏𝜏0 only uses a single tax-rate change for each individual, although this 
change is evaluated at different income levels for different individuals. For this reason, it is 
tempting to believe that the local (consistent) ETI of base-year instruments (∆𝜏𝜏0 and ∆𝜏𝜏0

−𝑦𝑦𝑖𝑖) is 
a weighted average of the local ETI of different ∆𝜏𝜏𝑦𝑦� . In Appendix A, we prove this is not the 
case. Instead, among all instruments using variation within income levels and years, the base-
year instruments minimizes the local ETI, i.e.:  

𝑎𝑎𝑎𝑎𝑔𝑔𝑎𝑎𝑖𝑖𝑎𝑎
𝑦𝑦𝑧𝑧

𝛽𝛽𝑂𝑂𝐿𝐿𝐿𝐿𝐿𝐿�𝑧𝑧 = 𝜏𝜏𝑖𝑖,𝑖𝑖+𝐷𝐷𝑖𝑖(𝑦𝑦𝑧𝑧) − 𝜏𝜏𝑖𝑖𝑖𝑖(𝑦𝑦𝑧𝑧)� = 𝑦𝑦𝑖𝑖𝑖𝑖. (27) 

The reason for this result is that the degree of compliance is the most negatively correlated 
with elasticity heterogeneity for the base-year instruments, resulting in low-elasticity 
individuals receiving the highest relative weight. This “overweighting” decreases as 𝑦𝑦𝑧𝑧 moves 
further away from base-year income. The local ETI for net-of-tax change instruments based 
on, e.g., lagged income is therefore higher than that for the base-year instruments. 

In Figure 4, we provide an example of the degree of compliance to different tax-rate 
changes. Like the example in Figure 3, there is one pre-reform budget set and two post-reform 
budget sets 𝑘𝑘 = 𝐴𝐴,𝐵𝐵, each containing two tax brackets 𝑠𝑠 = 1,2. The second bracket differs 
between the two post-reform budget sets. There is one individual of type 𝑖𝑖 = 1 and two 
individual of type 𝑖𝑖 = 2. Everyone has the same pre-reform base-year income level 𝑦𝑦𝑖𝑖𝑖𝑖 on the 
first bracket. Assume for clarity that preferences are time-fixed. After the reform, the first 
type of individual stays on the first bracket and moves to 𝑦𝑦1,𝑖𝑖+𝑥𝑥, but the second type of 
individual switches to the second bracket and moves to 𝑦𝑦2,𝑘𝑘,𝑖𝑖+𝑥𝑥, giving the three first-
differences indicated by the arrows in the figure. 
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Figure 4. Compliance to different tax-rate changes 

 
The non-switcher complies fully with the first bracket base-year net-of-tax change, as 
∆1𝜏𝜏 = ∆𝜏𝜏1 (the dashed arrow).27 If this change varies, observed net-of-tax change would 
adjust by the same amount. However, the non-switcher does not comply with the adjacent 
second bracket net-of-tax change – whether this individual faces ∆𝐿𝐿𝜏𝜏2 or ∆𝐵𝐵𝜏𝜏2 (the thick or 
thin arrows) does not affect the observed net-of-tax change. On the other hand, the switchers 
do not fully comply with the base-year net-of-tax change. However, they partially comply 
with the adjacent net-of-tax change, as the observed net-of-tax change is larger for the 
switcher receiving the larger second bracket net-of-tax change, i.e., ∆2𝐵𝐵𝜏𝜏 > ∆2𝐿𝐿𝜏𝜏 and 
∆𝐵𝐵𝜏𝜏2 > ∆𝐿𝐿𝜏𝜏2. In relative terms, compared to non-switchers, switchers comply more with the 
adjacent net-of-tax change than the base-year net-of-tax change.  

Now, the switchers receive a larger income increase but a smaller observed net-of-tax 
increase compared with the non-switcher. This is only possible if the switchers have a higher 
elasticity. In general, a more elastic individual responds more to a base-year net-of-tax change 
and is therefore more likely to be a switcher. In contrast, a completely inelastic individual 
never switches tax bracket. In other words, high-elasticity individuals are more likely to be 
switchers and comply relatively less with the base-year net-of-tax change that, on average, 
gives the greatest weight to low-elasticity individuals.28 
 
3.4 Average net-of-tax change instrument 

Each of the instruments discussed so far uses only a small part of the tax-reform variation in 
tax-rate changes across the income distribution. Discarding the remaining useful variation 
affects precision. What is more problematic is that each of the local ETIs only captures some 
of the reform effects and is, therefore, not policy relevant, even for the set of tax-rate changes 
seen in the data. One way to capture effects of changes in the entire tax structure is to use 
                                                 
27 For individuals that locate in the second bracket already before the reform, the second-bracket net-of-tax 
change is the base-year net-of-tax change. 
28 As long as the first-stage effect of ∆𝜏𝜏0 on ∆𝜏𝜏 is different from one, which is almost always the case 
empirically, there are switchers in the sample. 

𝑐𝑐 

∆1𝑦𝑦 ∆2𝐿𝐿𝑦𝑦 

𝑦𝑦 

∆2𝐵𝐵𝑦𝑦 
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multiple ∆𝜏𝜏𝑦𝑦�  at different 𝑦𝑦� as instruments. We suggest constructing a single synthetic average 
net-of-tax change instrument that is a weighted average of ∆𝜏𝜏𝑦𝑦�  across the entire income 
distribution: 

�𝑝𝑝∆𝜏𝜏  = � 𝑝𝑝∆𝜏𝜏(∆𝝉𝝉𝑖𝑖𝑖𝑖)
∞

𝑦𝑦𝑗𝑗=0

= � 𝑝𝑝�𝑦𝑦𝑗𝑗��𝜏𝜏𝑖𝑖,𝑖𝑖+𝐷𝐷𝑖𝑖�𝑦𝑦𝑗𝑗� − 𝜏𝜏𝑖𝑖𝑖𝑖�𝑦𝑦𝑗𝑗��
∞

𝑦𝑦𝑗𝑗=0

. (28) 

Empirically, we approximate the income distribution by 200 intervals of USD 1,000 each plus 
a residual top income interval. We suggest using the weight 𝑝𝑝�𝑦𝑦𝑗𝑗�, which is the empirically 
observed unconditional probability density function at 𝑦𝑦𝑗𝑗. Other weighting functions can be 
chosen. Using, e.g., 𝑝𝑝 = 1�𝑦𝑦𝑗𝑗 = 𝑦𝑦�� results in ∆𝜏𝜏𝑦𝑦� . 

In Appendix A, we show that ∑𝑝𝑝∆𝜏𝜏 yields a global ETI representing the average 
elasticity on the taxed, 𝛽𝛽𝐿𝐿𝐿𝐿𝐿𝐿, in a way that most closely resembles the average treatment 
effect on the treated (ATT) in the treatment effects literature. ∑𝑝𝑝∆𝜏𝜏 also has an intuitive 
interpretation: For a given tax schedule and income distribution, changing the tax schedule so 
that ∑𝑝𝑝∆𝜏𝜏 changes by 1% also mechanically (before any behavioral response) changes ∆𝜏𝜏 by 
1%. In the example in Figure 3, ∑𝑝𝑝∆𝜏𝜏 = 0.5(∆𝑘𝑘𝜏𝜏1 + ∆𝑘𝑘𝜏𝜏2). Like other instruments using 
variation within income levels and years, ∑𝑝𝑝∆𝜏𝜏 groups observations by tax-schedule changes.  

In the labor supply literature, the participation net wage between zero and a constant 
hours of work used by Eissa and Hoynes (2004) provides another example of a weighted-
average net-of-tax variable that can be used as an instrument (in levels or in changes). Their 
net-of-tax variable corresponds to ∑�𝑝𝑝 = 1�𝑦𝑦𝑗𝑗 < 𝑤𝑤𝑎𝑎𝑔𝑔𝑤𝑤 ∗ ℎ���𝑡𝑡 ∗ 𝑤𝑤𝑎𝑎𝑔𝑔𝑤𝑤, where 𝑤𝑤𝑎𝑎𝑔𝑔𝑤𝑤 is the 
gross wage rate.29 
 
3.5 Policy elasticities 

An important limitation of any ETI is that it is measured with respect to the observed net-of-
tax rate (𝜏𝜏∗). On the other hand, a tax schedule change is expressed in terms of tax rates at 
different income levels (𝜏𝜏(𝑦𝑦)). With progressive tax rates, lowering tax rates at each income 
level by 1% would decrease observed tax rates by less than 1% as some individuals increasing 
their income switch to new tax brackets with higher tax rates. The ETI does not incorporate 
the information on how much different tax rates in different brackets need to be changed for 
observed net-of-tax rates to change by 1%. 

It is possible to define an elasticity of taxable income with respect to each of the 
mechanical tax-rate variables under policy control or with respect to a function of these tax 
rates. We call such elasticities policy elasticities (Hendren, 2016), as they directly use the 
information on how much income changes as one or several tax rates change. The reduced-
form estimates of valid instruments yield consistent estimates of such elasticities. Because the 

                                                 
29 While we refer to ∑𝑝𝑝𝜏𝜏 in Eq. (28) with 𝑝𝑝 = 𝑝𝑝(𝑦𝑦𝑗𝑗) as “the average net-of-tax rate”, the literature sometimes 
uses this term as a synonym for the participation net-of-tax up to the observed income level, i.e., for 𝑝𝑝 =
1(𝑦𝑦𝑗𝑗 < 𝑦𝑦∗). Because the observed income is endogenous to elasticity heterogeneity, the participation net-of-tax 
change is not a valid instrument. 
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first-stage effect of a valid net-of-tax change instrument on observed net-of-tax change is less 
than one with progressive tax rates, the underlying policy elasticity is greater than the ETI.30  

Because there are many tax rates, there are many ways to construct policy elasticities, 
e.g., the policy elasticity with respect to the base-year net-of tax rate, or the policy elasticity 
with respect to the first-dollar net-of-tax rate. ∑𝑝𝑝∆𝜏𝜏 accounts for the policy effects of each of 
the marginal tax rates. It yields a reduced-form estimate that measures the behavioral taxable 
income responses relative to the mechanical observed net-of-tax responses in the data. As 
discussed by Saez et al. (2012), the ratio between behavioral and mechanical tax revenue 
effects is directly related to the marginal deadweight loss, which is an efficiency measure 
comparable across tax reforms. With linear budget sets without individuals moving between 
tax brackets, the standard ETI provides a sufficient statistic for efficiency analysis. With 
nonlinear budget sets, Blomquist and Simula (2016) showed that the marginal deadweight 
loss is lower when individuals switch tax brackets. Our policy elasticity accounts for such 
behavioral effects and provides a better efficiency measure for tax reforms generating the type 
of tax-rate changes seen in the data.31 

In the labor supply literature, Eissa and Hoynes (2004) estimated the reduced-form 
effect of the participation net wage on employment rather than using it as an instrument. This 
yields a policy elasticity with respect to the participation net wage.32 

 
 

4. Data and graphical analysis 
4.1 Data 

We use data from the NBER panel of tax returns from 1979 to 1990, also known as the 
Continuous Work History File, which is the same data as used in a series of recent papers, 
e.g., Gruber and Saez (2002), Kopczuk (2005), and Weber (2014). It contains detailed 
administrative information on taxes and income variables and includes a limited set of 
demographic background variables. See Gruber and Saez (2002) for a detailed description of 
the data set. 

An important source of variation in the data comes from the Tax Reform Act of 1986 
(TRA86), which was the major reform that simplified the tax structure by reducing the 
number of tax brackets from 15 in 1986 to five in 1987 and just two in 1988, with the top 
marginal tax rate declining from 50% to 28%. The act also eliminated the second earner 
deduction and income averaging, and it increased the personal exemption from USD 2,160 in 

                                                 
30 Another way to say this is that switchers attenuate the first-stage effect of the policy tax-rate change; therefore, 
the structural elasticity contains an attenuation bias unlike the reduced-form elasticity. 
31 Because taxable income elasticities are only indicative of tax revenue effects with nonlinear budget sets, they 
cannot generally be a sufficient statistic for efficiency analysis. Liang (2014) developed a method for estimating 
tax revenue elasticities and showed that, in his application, inferring the marginal deadweight loss from taxable 
income policy elasticities leads to similar conclusions. 
32 Estimates of preference parameters from structural methods are typically used to construct policy elasticities. 
Blundell and Shephard (2012) provide an example where all net-of-tax rates are increased by 1%, which 
corresponds to changing a flat consumption tax rate. Furthermore, scaling reduced-form tax-reform estimates, 
such as the EITC-effect estimate by Eissa and Liebman (1996), by a function of tax rates yields policy 
elasticities.  
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1986 to USD 3,800 in 1987 and the standard deduction from USD 3,760 in 1987 to USD 
5,000 in 1988. 

We construct the individual budget sets by computing marginal tax rates accounting for 
federal, state, and payroll tax rates at different income levels using NBER-TAXSIM. We vary 
earnings in steps of USD 1,000, keeping income from other sources fixed. 
Deductions/itemizations that vary between individuals are accounted for in the construction of 
the budget sets.  

We use two of the most common measures of taxable income previously used in the 
literature: actual taxable income (almost exactly as technically defined in the tax forms) and 
broad income. Broad income is a comprehensive definition of gross income that includes, 
among other things, wage income, interest income, dividends, and business income. Taxable 
income consists of broad income minus a number of deductions. We use the constant 
definition of taxable income, as applicable to the year 1990, and include all adjustments that 
can be computed from the data for all sample years. The taxable income measures are 
identical to the ones used by Gruber and Saez (2002) and Weber (2014). 

One margin of behavioral response to tax reform is to shift income between different 
sources, e.g., between taxable income and other components of broad income. If income 
composition is endogenous to tax-rate changes, estimates based on taxable income could be 
misleading, but those based on broad income would still be largely valid. The taxable income 
estimates do, however, incorporate the effects of tax avoidance, which is also a margin of 
interest for policy and welfare evaluations. In the presence of income shifting, Chetty (2009) 
showed that the marginal deadweight loss depends on a weighted average of the taxable 
income and broad income elasticities.33 

Our sample selection criteria are similar to the ones in Gruber and Saez (2002). We 
drop filers that change filing status and observations with missing values. In the baseline 
specification, we also truncate our data from below by dropping observations with less than 
USD 10,000 (1990 price level) to avoid issues with filing thresholds. 

Following Weber (2014), we use two-year differences for the first-differenced 
variables.34 When lagged base-year income is used to construct instruments or control 
functions, we use two-year lags, which allows use of data only with base years from 1981 to 
1988. 

Table 1 reports means and standard deviations for our main sample. The first section 
reports the statistics for the dependent variables: changes in taxable income and broad income 
and for base-year taxable and broad incomes. In the second section of rows, we first report 
statistics for the main observed net-of-tax change regressor, ∆𝜏𝜏. We then report the statistics 
for the instruments: base-year net-of-tax change ∆𝜏𝜏0, its predicted version ∆𝜏𝜏0

𝑦𝑦𝑖𝑖, its 
residualized version ∆𝜏𝜏0

−𝑦𝑦𝑖𝑖, and for the 2-lag net-of-tax change ∆𝜏𝜏−2. The instruments are 
described in Eqs. (20) to (24).  

 
  

                                                 
33 Doerrenberg et al. (2014) showed similar consequences when deductions are endogenous to tax-rate changes. 
34 Our results are insensitive to using three-year differences. Some of those results were reported in Kumar and 
Liang (2015), which is a previous version of this paper.  
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Table 1. Sample statistics 
Variable Logged variables Non-logged variables 
 Mean Std. dev. Mean Std. dev. 
∆ taxable income -0.078 0.589 586 34,143 
∆ broad income -0.029 0.297 383 35,747 
Base-year taxable income 10.295 0.622 37,325 42,166 
Base-year broad income 10.756 0.518 55,262 50,740 
∆𝜏𝜏  0.029 0.137 1.708 8.061 
∆𝜏𝜏0  0.030 0.080 1.678 4.461 
∆𝜏𝜏0

𝑦𝑦𝑖𝑖  0.028 0.035   
∆𝜏𝜏0

−𝑦𝑦𝑖𝑖  0.002 0.070   
∆𝜏𝜏−2  0.026 0.075 1.480 4.303 
∑𝑝𝑝∆𝜏𝜏  0.060 0.107 3.432 7.066 
∆𝜏𝜏𝑦𝑦�=10  0.056 0.137 3.298 9.201 
∆𝜏𝜏𝑦𝑦�=25  0.061 0.133 3.378 8.633 
∆𝜏𝜏𝑦𝑦�=50  0.068 0.117 3.743 7.345 
∆𝜏𝜏𝑦𝑦�=100  0.068 0.121 3.751 7.150 
Single-filing singles   0.279 0.448 
Joint-filing married   0.668 0.471 
Other filing status   0.053 0.224 
0 children   0.570 0.495 
1 child   0.155 0.362 
2 children   0.187 0.390 
3 children   0.087 0.282 
Notes: Monetary outcomes are in USD at the 1990 price level. Change in tax rate variables are in %-points. 
 
In the third section of rows, we report the statistics for our (density-weighted) average net-of-
tax change instrument ∑𝑝𝑝∆𝜏𝜏 and the net-of-tax changes ∆𝜏𝜏𝑦𝑦�  at four constant income levels of 
𝑦𝑦�: USD 10,000, 25,000, 50,000, and 100,000. These instruments are described in Eqs. (28) 
and (26). While we report logarithmic versions of the variables used in the regressions in 
columns two and three, we report the non-logarithmic versions in columns four and five to 
give a better sense of magnitudes, when applicable. In the fourth section of rows, we report 
the shares of individuals with different filing status and number of children (dependents). 

Mean taxable income is USD 37,325, which is considerably lower than mean broad 
income of USD 55,262. The standard deviations are similar in size to the means. The mean 
changes in these variables are small, but the standard deviations of the changes are almost as 
large as their level versions. The mean of ∆𝜏𝜏 is 1.708 %-points, which is similar to the means 
of ∆𝜏𝜏0 and ∆𝜏𝜏−2. Standard deviations are four times the mean for the regressor and half of 
that for the instruments.  

The standard deviation of ∆𝜏𝜏0
−𝑦𝑦𝑖𝑖 (0.070) is double that of ∆𝜏𝜏0

𝑦𝑦𝑖𝑖 (0.035). Contrary to 
conventional belief, the main variation in tax-rate changes in ∆𝜏𝜏0 does not come from 
variation across base-year income levels and years but rather from variation within base-year 
income levels and years. 

The means of ∆𝜏𝜏𝑦𝑦�  are between 3.298 and 3.751 %-points and are increasing in 𝑦𝑦�. The 
standard deviations are all higher than the means, indicating that there is plenty of variation in 
tax-rate changes at constant income levels. The mean of ∑𝑝𝑝∆𝜏𝜏 is 3.432 %-points, which is a 
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weighted average of the different ∆𝜏𝜏𝑦𝑦�  and closest to the mean change at USD 25,000. In terms 
of the standard deviation, the ∑𝑝𝑝∆𝜏𝜏 contains a similar amount of variation as ∆𝜏𝜏0. 

The demographic variables show that most of the sample consists of married joint filers 
and filers without children. 
 
4.2 Reduced-form and first-stage relationships 

In Figure 5, we explore the structural and reduced-form relationships. We plot local 
polynomial fits of taxable income change against ∆𝜏𝜏, ∆𝜏𝜏0, ∆0

𝑦𝑦𝑖𝑖, ∆0
−𝑦𝑦𝑖𝑖, and ∑𝑝𝑝∆𝜏𝜏. The x-axis 

ranges from -0.2 to 0.2 and covers over 90% of the sample for each variable. We use a thick 
dashed-dotted line for ∆𝜏𝜏, a thick long-dashed line for ∆𝜏𝜏0, and a thick solid line for ∑𝑝𝑝∆𝜏𝜏. 
We use thin dashed lines ∆0

𝑦𝑦𝑖𝑖 and ∆0
−𝑦𝑦𝑖𝑖, with shorter dashes for the latter.  

 

 
Figure 5. Reduced-form relationships 

 
Figure 5 shows that changes in taxable income and observed net-of-tax rate are negatively 
correlated (thick dashed-dotted line), reflecting that, with progressive tax rates, random 
shocks in income changes mechanically lead to observed net-of-tax changes in the opposite 
direction. 

For ∆𝜏𝜏0 (thick long-dashed line), the correlation with taxable income change is close to 
zero. That correlation is negative for ∆0

𝑦𝑦𝑖𝑖 (long-dashed line) and positive for ∆0
−𝑦𝑦𝑖𝑖 (short-

dashed line). The negative correlation for ∆0
𝑦𝑦𝑖𝑖 likely indicates mean reversion. 

For ∑𝑝𝑝∆𝜏𝜏 (thick line), the correlation with taxable income change is positive. The slope 
coefficient in this reduced-form relationship is around 0.5 in the central region with higher 
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probability density. This coefficient can be interpreted as a policy elasticity estimate (see 
Subsection 3.5). 

In Figure 6, we instead explore the first-stage relationships by moving the observed net-
of-tax change to the y-axis. The figure shows that all first-stage slope coefficients between ∆𝜏𝜏 
and the instruments are positive and in the region of 0.5 to 1. The instruments seem to be 
relevant. The ratio of the reduced-form and first-stage estimates yields a structural ETI 
estimate in the region of 1 for ∑𝑝𝑝∆𝜏𝜏. 

 

 
Figure 6. First-stage relationships 

 
In Figure A1 in Appendix B, we plot the reduced-form relationship for ∑𝑝𝑝∆𝜏𝜏 in each of the 
sample years. We also provide the probability density of  ∑𝑝𝑝∆𝜏𝜏. The figure shows that the 
slope coefficients are positive over most parts of the support in all years. 

 
4.3 Relationships by income levels and years 

In Figure 7, we explore the base-year income-by-year variation by plotting the relationship 
between changes in taxable income and observed net-of-tax rate against base-year income. 
We do so for the post-reform first-difference generated by TRA86 in 1986 where tax-rate 
change was increasing in income and for the pre-reform first-difference in 1984 without such 
variation. We use thick lines for the reduced-form relationships and dashed lines for 1984. 
The first-stage relationships have the y-axis on the right. We have cut the x-axis at the 5th and 
95th base-year income percentiles. 
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Figure 7. Base-year income-by-year variation in tax-rate changes 

 
The thin lines show a positive slope coefficient for the post-reform change, unlike for the pre-
reform change. The difference between slope coefficients yields a first-stage estimate of 
approximately 0.03 ((0.06-0)/2). On the other hand, the thick lines show a positive slope 
coefficient for the post-reform change, unlike for the pre-reform change, in which the slope 
coefficient is negative, likely due to mean reversion. The difference between the slope 
coefficients yields a reduced-form estimate of approximately 0.05 ((0.02-(-0.08))/2). The ratio 
of the reduced-form and first-stage estimates yields a structural ETI estimate of 1.7. Part of 
the variation in taxable income change across base-year income levels could reflect that high-
income individuals respond more to net-of-tax increases received by everybody because they 
have higher elasticities. The estimate of 1.7 could therefore contain a positive elasticity 
heterogeneity bias. 

If we use a single first-difference approach with only 1986, the reduced-form estimate is 
0.01 (0.02/2). This gives an ETI estimate of 0.3 (0.01/0.03). This continuous ungrouped 
version of the grouping estimate in Feldstein (1995) is much lower than ETI estimates 
between 1 and 3 found in that paper (with three-year differences). This supports the view that 
inclusion of minor individual-level variation in tax-rate changes leads to lower estimates. 
However, accounting for trend heterogeneity with pooled first-differences increases the 
estimate from 0.3 to 1.7 – similar in magnitude to grouping estimates.  

The net-of-tax change instruments used in the literature, believed to mainly exploit 
income-by-year variation in tax-rate changes, yield ETI estimates ranging from 0.2 to 1.0 
(e.g., Auten and Carroll, 1999; Mofitt and Wilhelm, 2000, Gruber and Saez, 2002; Kopczuk, 
2005; Weber; 2014), which are much lower than Feldstein’s estimates. Saez et al. (2014) 
mentioned the introduction of individual-level variation and the accounting of trend 
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heterogeneity as potential explanations for the lower ungrouped estimates. Our estimate of 1.7 
shows that, jointly, these explanations cannot reconcile the discrepancy. 

However, unlike Feldstein’s method, the ungrouped net-of-tax change instruments also 
use tax-rate variation within income levels and years (see Eqs. (21) to (23)). In Figure 8, we 
group observations in 1986 by the sign of ∆𝜏𝜏0

−𝑦𝑦𝑖𝑖 and reproduce the reduced-form and first-
stage relationships for each group separately. We first reproduce the relationships for the two 
groups jointly using solid lines. We then use short-dashed lines for the group with low ∆𝜏𝜏0

−𝑦𝑦𝑖𝑖 
(-) and long-dashed lines for the group with high ∆𝜏𝜏0

−𝑦𝑦𝑖𝑖 (+).  
 

 
Figure 8. Variation in tax-rate changes within base-year income levels and years 

 
At each income level in 1986, we can compute a reduced-form and a first-stage estimate 
based on the difference between the two groups exploiting only the base-year income-by-year 
residualized variation in tax-rate changes. At log base-year income 10.5, we see that the first-
stage difference between the thin long-dashed and short-dashed lines is approximately 0.12 
(0.15-0.03). At the same time, the reduced-form difference between the thick long-dashed and 
dotted lines is 0.04 (-0.08-(-0.12)). The ratio of the reduced-form and first-stage estimates 
yields a structural ETI estimate of 0.3. Accounting for the positive elasticity heterogeneity 
bias (as ∆𝜏𝜏0

−𝑦𝑦𝑖𝑖 is more likely exogenous) decreases the ETI estimate (from 1.7 to 0.3).  
∆𝜏𝜏0 uses both the variation across and within income levels and years. It should 

therefore yield an ETI estimate between 0.3 and 1.7. We can compare the scope of variation 
from the two sources in Figure 8. At log base-year income 10.5, the first-stage difference 
between the groups with high and low ∆𝜏𝜏0

−𝑦𝑦𝑖𝑖 is 0.12. This difference is almost double the 
first-stage difference of 0.06 (0.11-0.05) between individuals with base-year income of 9.5 
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and 11.5, respectively. Furthermore, Figures 7 and 8 show that the reduced-form and first-
stage relationships for ∆𝜏𝜏0 more closely follow those for ∆𝜏𝜏0

−𝑦𝑦𝑖𝑖 than those for ∆𝜏𝜏0
𝑦𝑦𝑖𝑖. We 

therefore expect ∆𝜏𝜏0 to yield an ETI estimate closer to 0.3 than 1.7. 
In Figure A2 in Appendix B, we explore the relationships between ∆𝜏𝜏0 and base-year 

income in 1986 and 1984. We also plot the relationships for ∑𝑝𝑝∆𝜏𝜏. The positive relationship 
between base-year income in 1986 and ∆𝜏𝜏0 reflects income-by-year variation. On the other 
hand, ∑𝑝𝑝∆𝜏𝜏 is uncorrelated with income-year interactions, indicating its plausible validity. 

In Figure A3, we show the relationships between ∆𝜏𝜏0 and base-year income for each 
year in the data. The correlation with base-year income is highest in 1986 and 1987.  

In Figures A4 and A5, we group ∑𝑝𝑝∆𝜏𝜏 by state as well as by state-filing-children 
interactions for each year separately and plot the group-level reduced-form relationships. To 
account for macroeconomic shocks, we year-demean all observations. The group-level 
correlations seem to be of the same order as the correlation in Figure 5 that includes the 
variation in tax-rate changes within groups. 
 
 
5. Estimation results 
5.1 Main IV estimates  

In Table 2, we report structural IV estimates of the ETI. In the first section, we report 
estimates for the following instruments: ∆𝜏𝜏0, ∆𝜏𝜏0

𝑦𝑦𝑖𝑖, 𝒛𝒛0
𝑦𝑦𝑖𝑖, ∆𝜏𝜏0

−𝑦𝑦𝑖𝑖, and ∆𝜏𝜏−2. In the second 
section, we report estimates using ∑𝑝𝑝∆𝜏𝜏 and ∆𝜏𝜏𝑦𝑦�  at 𝑦𝑦� equals USD 10,000, 25,000, 50,000, 
and 100,000. We also report estimates using all four ∆𝜏𝜏𝑦𝑦� . The instruments are described in 
Eqs. (19) to (24), (26), and (28). 

In column (1), we provide estimates without covariates. In column (2), we add year-
fixed effects, which we keep in columns (3) to (8). In column (3), we add a five-piece spline 
in base-year income, whereas in column (4), we add a five-piece spline in base-year income 
lagged two years. In column (5), we include both splines. In column (6), we include 
additional covariates – dummies for state of residence, filing status, and number of children. 
In column (7), we replace the splines by year-specific splines. In column (8), we additionally 
replace the demographic covariates by year-specific covariates. 

The raw ETI estimate for ∆𝜏𝜏0 in column (1) is negative. It turns positive when 
accounting for time effects in column (2). It increases to a statistically significant estimate of 
0.277 in column (3), which includes the base-year spline to account for trend heterogeneity 
bias, and it is then quite stable as additional demographic covariates are included in columns 
(5) and (6). The estimates in columns (5) and (6), of approximately 0.26, are of the same 
magnitude as the estimate of 0.4 from the preferred specification in Gruber and Saez (2002) 
using the same instrument, although three-year differences were used in that case. We discuss 
the estimates in columns (7) and (8) shortly. 
  



Table 2. Structural IV estimates of the ETI 
Instrument (1) (2) (3) (4) (5) (6) (7) (8) 
∆𝜏𝜏0  -0.064 0.096 0.277** 0.140 0.263** 0.262** 0.183* 0.129 
 (0.065) (0.072) (0.078) (0.075) (0.077) (0.076) (0.079) (0.082) 
∆𝜏𝜏0

𝑦𝑦𝑖𝑖  -0.753** -0.655** 1.245** -0.603* 1.247** 1.285**   
 (0.120) (0.205) (0.284) (0.268) (0.278) (0.280)   
𝒛𝒛0
𝑦𝑦𝑖𝑖  -0.811** -0.660** 0.987** -0.690** 0.970** 0.962**   

 (0.113) (0.171) (0.253) (0.215) (0.248) (0.247)   
∆𝜏𝜏0

−𝑦𝑦𝑖𝑖  0.170* 0.178* 0.230** 0.192* 0.215** 0.213** 0.183* 0.130 
 (0.076) (0.077) (0.079) (0.078) (0.078) (0.077) (0.079) (0.082) 
∆𝜏𝜏−2  -0.198 0.196 0.874** 0.385 0.527* 0.467 0.115 -0.063 
 (0.135) (0.206) (0.274) (0.248) (0.258) (0.259) (0.307) (0.365) 
∑𝑝𝑝∆𝜏𝜏  0.622** 0.834** 0.832** 0.842** 0.819** 0.696** 0.678** 0.691** 
 (0.084) (0.099) (0.098) (0.100) (0.097) (0.093) (0.093) (0.095) 
∆𝜏𝜏𝑦𝑦�=10   0.354** 0.398** 0.393** 0.401** 0.380** 0.276** 0.220* 0.223* 
 (0.096) (0.101) (0.100) (0.101) (0.098) (0.096) (0.097) (0.099) 
∆𝜏𝜏𝑦𝑦�=25  0.765** 1.049** 1.071** 1.067** 1.060** 0.919** 0.904** 0.922** 
 (0.098) (0.117) (0.117) (0.118) (0.116) (0.111) (0.110) (0.113) 
∆𝜏𝜏𝑦𝑦�=50  1.009** 1.356** 1.313** 1.353** 1.300** 1.182** 1.189** 1.205** 
 (0.106) (0.135) (0.130) (0.134) (0.128) (0.124) (0.123) (0.123) 
∆𝜏𝜏𝑦𝑦�=100  0.697** 1.425** 1.324** 1.387** 1.302** 1.330** 1.361** 1.346** 
 (0.137) (0.202) (0.189) (0.197) (0.185) (0.186) (0.178) (0.177) 
∆𝜏𝜏𝑦𝑦�=10,25,50,100  0.643** 0.851** 0.845** 0.857** 0.832** 0.727** 0.723** 0.741** 
 (0.087) (0.103) (0.102) (0.103) (0.100) (0.097) (0.097) (0.099) 
Year No Yes Yes Yes Yes Yes Yes Yes 
Base-year spline No No Yes No Yes Yes Yes Yes 
2-lag spline No No No Yes Yes Yes No No 
Demographics No No No No No Yes No No 
Year*base-year spline No No No No No No Yes Yes 
Year*2-lag spline No No No No No No Yes Yes 
Year*demographics No No No No No No No Yes 
Notes: Each cell reports an estimate from one regression. Two-year differences are used. The splines each contain five pieces. Demographic covariates include fixed effects 
for state of residence, filing status, and number of children. Each regression contains 29,085 observations. Standard errors are clustered at the individual level. * p<0.05; ** 
p<0.01.  



The estimates using ∆𝜏𝜏0
𝑦𝑦𝑖𝑖 are approximately 1.3 in columns (5) and (6) when a base-year 

spline is included. Exploiting income-by-year variation in tax-rate changes more flexibly by 
directly using year-specific base-year income splines as instruments (∆𝒛𝒛0

𝑦𝑦𝑖𝑖) yields estimates of 
approximately 1.0. These estimates are of the same magnitude as the estimate of 1.7 in the 
graphical analysis in Figure 7 with post-reform first-differences from 1986 and with pre-
reform first-differences from 1984. They contain the same type of positive elasticity 
heterogeneity bias because high-income individuals receiving higher net-of-tax changes also 
are more elastic. 

The estimates using ∆𝜏𝜏0
−𝑦𝑦𝑖𝑖 are about 0.20, ranging from 0.170 without covariates in 

column (1) to an estimate of 0.213 with all non-interacted covariates in column (6). These are 
of the same magnitude as the estimate of 0.3 in the graphical analysis in Figure 8 using only 
first-differences from 1986.  

Because ∆𝜏𝜏0
−𝑦𝑦𝑖𝑖 is uncorrelated with income-year interactions by construction, it is more 

likely to be independent of preferences and satisfy the identifying assumption. The fact that 
adding covariates such as the base-year spline and demographic covariates do not affect the 
estimates is reassuring for instrument validity. 

The estimate of 0.26 for ∆𝜏𝜏0 is between the estimate of 1.3 for ∆𝜏𝜏0
𝑦𝑦𝑖𝑖 and the estimate of 

0.21 for ∆𝜏𝜏0
−𝑦𝑦𝑖𝑖. While the positive elasticity heterogeneity bias is large in the estimate of 1.3, 

the estimate of 0.26 is closer to the likely consistent estimate of 0.21.35 This is in line with the 
graphical analysis in Figure 8 showing that the variation in tax-rate changes is larger within 
income levels and years than across income levels and years. The analysis shows that the 
main reason for ∆𝜏𝜏0 producing much lower estimates than instruments that exploit only 
income-by-year variation is because ∆𝜏𝜏0 contains substantial income-by-year residualized 
variation. This pattern can also be seen from estimates on the 1993 tax-rate increase presented 
in Table 2 of Saez et al. (2012), where ∆𝜏𝜏0 yields ETI estimates of 0.143 and 0.237, while a 
corresponding grouped instrument yields estimates of 0.564 and 0.732. We believe we have 
convincingly shown that the residualized variation that is uncorrelated with elasticity 
heterogeneity explains the lower estimates for ∆𝜏𝜏0.  

The estimates using ∆𝜏𝜏−2 are considerably higher than the estimates using ∆𝜏𝜏0 when 
including income splines. Standard errors are three times larger, and the ETI estimates are 
more volatile to the set of covariates used. The estimates with the wider sets of covariates in 
columns (5) and (6) are approximately 0.5 and lower than the preferred estimate of 
approximately 0.9 in Weber (2014). However, the pattern whereby replacing base-year 
income with lagged income in constructing the instrument leads to higher estimates is the 
same.36 The reason is that the underlying consistent local ETI underweights high-elasticity 
individuals less as high-elasticity individuals comply more with tax-rate changes at income 
levels further away from base-year income (see Subsection 3.3). Our estimates are lower than 

                                                 
35 One may argue that precision is too low and that the estimates of 0.26 and 0.21 are not statistically 
significantly different from each other. We could still assert that there is a positive elasticity heterogeneity bias 
because the estimate of 1.3 is statistically significantly different from the estimates of 0.26 and 0.21. 
36 We could have decomposed ∆𝜏𝜏−2 into a predicted and a residualized instrument. These instruments yield even 
more imprecise and volatile estimates, and we omit reporting them here. 
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those in Weber (2014) because we use a single lagged base-year instrument whereas she used 
multiple lagged base-year instruments.37 

For ∑𝑝𝑝∆𝜏𝜏, which accounts for and exploits tax-rate changes across the entire income 
distribution, the ETI estimate is 0.622 without covariates. This estimate is of the same 
magnitude as the estimate of 1 in the graphical analysis in Figures 7 and 8. It increases to 
0.834 when accounting for time effects. The fact that adding income splines to account for 
trend heterogeneity bias does not change estimates supports instrument validity. The stability 
of estimates is a result of the underlying tax-rate changes used to construct the instrument, 
being uncorrelated with income-year interactions, as we saw graphically in Figure A2 in 
Appendix B. The estimates decrease a bit to 0.696 as additional demographic covariates are 
included. 

In general, precision is much higher when using ∑𝑝𝑝∆𝜏𝜏 than when using the other 
instruments. The higher and possibly consistent ETI estimate of around 0.70 compared to the 
local ETI estimate of 0.21 for ∆𝜏𝜏0

−𝑦𝑦𝑖𝑖 reflects that ∑𝑝𝑝∆𝜏𝜏 appropriately weights all individual 
responses to tax-rate changes. The large difference suggests that individuals reacting to tax-
rate changes at other income levels than the base-year income level have substantially higher 
elasticities. In comparison, the elasticity heterogeneity bias could only explain the 
discrepancy between the estimate of 0.26 for ∆𝜏𝜏0 and the estimate of 0.21 for ∆𝜏𝜏0

−𝑦𝑦𝑖𝑖. 
Therefore, differences in sets of compliers and the correlation between the degree of 
compliance and elasticity heterogeneity lead to a substantially larger discrepancy.   

∆𝜏𝜏𝑦𝑦�  with different 𝑦𝑦� yield ETI estimates between 0.276 and 1.330 with income splines 
and demographic covariates. The estimate increases as 𝑦𝑦� increases. The ETI estimate using 
∑𝑝𝑝∆𝜏𝜏 is, in principle, a weighted average of these local ETI estimates. Using several ∆𝜏𝜏𝑦𝑦�  
instruments as an alternative way to exploit multiple tax-rate changes yields an ETI estimate 
of 0.727 with income splines and demographic covariates, which is close to the estimate of 
0.696 for the single synthetic instrument.38 

ETI estimates for ∆𝜏𝜏𝑦𝑦�  with different 𝑦𝑦� can be used to approximate 𝛽𝛽𝑖𝑖 at different base-
year income levels. It is then possible to simulate the elasticity heterogeneity bias of using 
variation in ∆𝜏𝜏0

𝑦𝑦𝑖𝑖 to investigate whether our theoretical and empirical results are consistent 
with each other. We run a minimalistic simulation assuming that TRA86 can be approximated 
by the two-group example with one cross section of first-differences in Figure 2. In Appendix 
A, we show that 𝜏𝜏0

𝑦𝑦𝑖𝑖 yields a simulated ETI estimate of 1.823, which is of the same magnitude 
as the actual estimate of 1.285 in column (6). 

While covariates that are general across years mitigate concerns due to trend 
heterogeneity, they cannot fully address elasticity heterogeneity that interacts with the year-
                                                 
37 Weber’s (2014, Table 2) estimates show that dropping ∆𝜏𝜏0 from the sets of instruments increases the ETI 
estimates the most, whereas introducing additional lagged instruments has smaller effects. This supports our 
compliance explanation; see the next footnote. 
38 With multiple lagged-income instruments, Weber (2014) obtained ETI estimates between 0.8 and 1.3. She 
interpreted the higher estimates compared to base-year estimates as the consequence of lagged-income 
instruments accounting for the trend heterogeneity bias better. We offer a different explanation: Her 
specifications are close to our multiple-instrument specification and therefore yield similar higher estimates due 
to a more representative weighting of individuals with different elasticities (compared to base-year instruments). 
Unlike our instruments, her instruments are, however, not valid, as they do not account for the elasticity 
heterogeneity bias. Her confidence intervals are also much wider. 
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specific observed net-of-tax change. Biases due to elasticity heterogeneity can be mitigated by 
including year-specific covariates (see Subsection 3.2). The estimate using ∆𝜏𝜏0 decreases to 
0.183 when including year-specific base-year splines in column (7). This estimate is similar to 
the estimate of 0.213 when using ∆𝜏𝜏0

−𝑦𝑦𝑖𝑖 with a general base-year spline in column (6). Both 
methods remove the income-by-year variation producing the elasticity heterogeneity bias. The 
estimate decreases a bit when additionally including year-specific demographic covariates.  

For ∑𝑝𝑝∆𝜏𝜏, the elasticity estimate of 0.691 shows that it is remarkably robust to 
addressing potential remaining elasticity heterogeneity issues by adding year-specific base-
year splines and demographic covariates. 
 
5.2 Grouped estimates 

Variation in tax-rate changes between demographic groups could possibly be less 
contaminated by preferences than the variation within demographic groups. Using such 
group-level variation could therefore serve as a sensitivity test. In comparing grouped and 
ungrouped estimates, it is, however, important to keep in mind that a discrepancy may reflect 
both differences in bias and (weighting functions of) the underlying consistent ETIs. 

We construct groups based on state of residence, filing status, number of children, and 
the double and triple interactions between these variables. In Table 3, we report estimates 
using net-of-tax change instruments averaged within each group. We control for the non-
interacted variables. The specification using ∆𝜏𝜏0 is similar in spirit to the instrument used by 
Burns and Ziliak (2016). Columns denote instruments and rows denote groupings. 
 
Table 3. Grouping estimates 
Grouping (1) (2) (3) (4) (5) 
 ∆𝜏𝜏0 ∆𝜏𝜏0

𝑦𝑦𝑖𝑖 ∆𝜏𝜏0
−𝑦𝑦𝑖𝑖 ∆𝜏𝜏−2 ∑𝑝𝑝∆𝜏𝜏  

State  1.521** 1.478* 1.537** 1.058* 0.905** 
 (0.402) (0.645) (0.425) (0.472) (0.343) 
Filing 0.740 -0.044 0.902 0.784 -2.646 
 (0.479) (0.864) (0.551) (0.484) (3.642) 
Children 1.038** 0.787 1.056** 1.000** 0.938** 
 (0.322) (0.766) (0.325) (0.329) (0.348) 
State-Filing 0.847** 1.246* 0.760** 0.749* 0.530* 
 (0.263) (0.539) (0.273) (0.363) (0.255) 
State-Children 0.806** 1.351* 0.720** 0.874** 0.825** 
 (0.233) (0.580) (0.239) (0.335) (0.214) 
Filing-Children 0.618 0.118 0.682 0.855* 1.224* 
 (0.328) (0.777) (0.349) (0.361) (0.515) 
State-Filing-Children 0.709** 1.733** 0.571** 1.050** 0.633** 
 (0.209) (0.552) (0.219) (0.341) (0.190) 
Each cell reports an estimate from one regression. Two-year differences are used. All regressions include five-
piece splines in base-year and lagged base-year incomes, as well as fixed effects for state of residence, filing 
status, and number of children. Each regression contains 29,085 observations. Standard errors are clustered at the 
individual level. * p<0.05; ** p<0.01. 
 
While ETI estimates using filing groups are imprecise, the other estimates using ∑𝑝𝑝∆𝜏𝜏 in 
column (5) vary between 0.530 and 1.224, which are comparable to the preferred ungrouped 
estimate of around 0.7. Standard errors are large; the estimate of 0.633 using the triple 
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interaction is the most precise with standard errors that are double those of the ungrouped 
estimates.  

Turning to the base-year and 2-lag instruments in columns (1) to (4), the estimates using 
∆𝜏𝜏0 are now closer to the estimates using ∆𝜏𝜏0

𝑦𝑦𝑖𝑖 and ∆𝜏𝜏0
−𝑦𝑦𝑖𝑖. This can be explained by base-year 

income differences within years being smaller across groups than within groups, which leads 
to a smaller elasticity heterogeneity bias. The estimates are higher than the ungrouped 
estimates for ∆𝜏𝜏0 and ∆𝜏𝜏0

−𝑦𝑦𝑖𝑖. Except for grouping by filing status, they are all between 0.571 
and 1.537, and they are not that different from estimates using ∑𝑝𝑝∆𝜏𝜏. This indicates that the 
grouped estimates overweigh low-elasticity individuals less than the ungrouped estimates. A 
potential explanation is that individuals are less likely to move between tax brackets due to 
the smaller across-group variation in tax-rate changes. More complying high-elasticity 
individuals staying in the base-year bracket leads to higher estimates. 

In Table A1 in Appendix B, we report subsample estimates dropping individuals with 
more than 60,000 USD and dropping outliers in the dependent variable, the main regressor, 
and instruments, as well as for each year separately. The main conclusion is that the estimates 
using ∑𝑝𝑝∆𝜏𝜏 in column (5) are much more stable across specifications compared to the 
estimates for the other instruments. Similar to the grouped estimates, these estimates reflect 
that the correlation between degree of compliance and elasticity heterogeneity vary more 
across subsamples for the other instruments. 
 
5.3 Reduced-form, first-stage, and broad income estimates 

In the first section of Table 4, we report reduced-form and first-stage taxable income 
estimates, in addition to the structural estimates. The reduced-form estimates yield policy 
elasticity estimates (see Subsection 3.5). In the second section of Table 4, we report broad 
income estimates. These are important as the marginal deadweight loss depends on both 
taxable income and broad income elasticities (Chetty, 2009). 

For taxable income, the policy elasticity estimate for ∑𝑝𝑝∆𝜏𝜏 is 0.455, which is roughly 
two-thirds of the structural estimate of 0.696. The first-stage estimate is 0.653. To get more 
clarity, consider changing tax schedules in the same way as they vary in the data. The policy 
elasticity roughly implies that when such changes lead to a mechanical increase in observed 
net-of-tax rates of 1% with an associated increase in tax revenues, taxable income increases 
by 0.455%. 

The broad income structural elasticity estimate is 0.082 for ∆𝜏𝜏0. The estimate using 
∆𝜏𝜏0

−𝑦𝑦𝑖𝑖 is similar. The estimate of 0.172 for ∆𝜏𝜏−2 is larger but not statistically significant. 
∑𝑝𝑝∆𝜏𝜏 yields a broad income elasticity estimate of 0.205. As for taxable income, this 
instrument yields the highest estimate indicating that the other estimates underweight high-
elasticity individuals. ∑𝑝𝑝∆𝜏𝜏 also yields a broad income policy elasticity of 0.133. 
 
  



33 
 

Table 4. Reduced-form, first-stage, and broad income estimates 
 (1) (2) (3) (4) (5) 
 ∆𝜏𝜏0 ∆𝜏𝜏0

𝑦𝑦𝑖𝑖 ∆𝜏𝜏0
−𝑦𝑦𝑖𝑖 ∆𝜏𝜏−2 ∑𝑝𝑝∆𝜏𝜏  

Dependent variable: taxable income change 
IV 0.262** 1.285** 0.213** 0.467 0.696** 
 (0.076) (0.280) (0.077) (0.259) (0.093) 
Reduced form 0.183** 1.656** 0.148** 0.099 0.455** 
 (0.052) (0.357) (0.053) (0.053) (0.055) 
First stage 0.697** 1.288** 0.695** 0.211** 0.653** 
 (0.015) (0.074) (0.015) (0.017) (0.017) 

Dependent variable: broad income change 
IV 0.082* 0.021 0.086* 0.172 0.205** 
 (0.041) (0.181) (0.041) (0.137) (0.052) 
Reduced form 0.058* 0.027 0.060* 0.036 0.133** 
 (0.028) (0.233) (0.029) (0.028) (0.032) 
First stage 0.701** 1.283** 0.697** 0.210** 0.650** 
 (0.015) (0.074) (0.015) (0.017) (0.017) 
Each cell reports an estimate from one regression. Two-year differences are used. All regressions include five-
piece splines in base-year and lagged base-year incomes, as well as fixed effects for state of residence, filing 
status, and number of children. Each regression contains 29,085 observations. Standard errors are clustered at the 
individual level. * p<0.05; ** p<0.01. 
 
From an efficiency point of view, our taxable income and broad income policy elasticities of 
0.455 and 0.133 are the estimates that are the most indicative of the marginal deadweight 
loss.39 
 
 
6. Conclusion  
We introduced elasticity heterogeneity in the estimation of the ETI in the standard IV setting 
in first-differences. We showed that elasticity heterogeneity, in addition to trend 
heterogeneity, is an important source of bias. Instruments used in the literature are invalid 
because they are by construction contaminated by elasticity heterogeneity. In particular, 
income-by-year variation in tax-rate changes is endogenous to elasticity heterogeneity. We 
identified income-by-year residualized and constant-income net-of-tax changes as two types 
of potentially valid instruments. We also explicitly derived the weights given to different 
individual elasticities in the different local consistent ETIs that IV could yield. Most 
instruments do not yield a policy relevant ETI. In particular, we proved that compared with 
other instruments, the base-year net-of-tax change gives the greatest weight to relatively 
inelastic individuals.  

Based on the insights of our theoretical analysis that identified problems of existing 
instruments, we proposed constructing an average net-of-tax rate change instrument that 
weights each constant-income net-of-tax rate change by the income level’s empirically 
observed probability density. This instrument exploits and accounts for effects of changes in 

                                                 
39 These estimates are not that different from the biased ETI estimates of around 0.4 for taxable income and 0.1 
for broad income reported by Saez et al. (2002). The reason is that the bias, the overweighting of low-elasticity 
individuals, and the disregarding of switchers in their estimates lead to effects in different directions that roughly 
cancel each other out.   
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the entire tax structure and yields a consistent average ETI on the taxed. Furthermore, this 
instrument’s reduced-form estimate represents a policy elasticity reflective of taxable income 
and efficiency effects of tax-rate changes in the data.  

We illustrated the importance of our theoretical analysis using the NBER tax panel for 
1979-1990. The average net-of-tax rate change yielded an ETI of around 0.7. The estimate is 
robust to inclusion of income splines and demographic controls, and even to inclusion of 
year-specific versions of these covariates. Furthermore, it is relatively insensitive to the sole 
use of demographic group-level variation in tax-rate changes for identification. We interpret 
these results as evidence of instrument validity. We also found a taxable income policy 
elasticity of 0.46. For broad income, we found an elasticity of 0.21 and a policy elasticity of 
0.13. 

Reconciling estimates in the literature based on different methods was an important aim 
of our empirical analysis. We estimated an ETI of 0.26 using the base-year net-of-tax rate 
change instrument. We then isolated the continuous base-year income-by-year variation and 
obtained estimates of 1.0 to 1.3. On the other hand, using the base-year income-by-year 
residualized variation yielded a consistent ETI of around 0.2. The discrepancy between the 
estimates of 0.2 and 1.0 to 1.3 reflects a large positive elasticity heterogeneity bias. On the 
other hand, the discrepancy between the consistent base-year ETI of 0.2 and the ETI of 0.7 for 
our newly suggested average net-of-tax change instrument reflects that the base-year 
instrument significantly overweights low-elasticity individuals.  

In light of our analysis, we have to reinterpret the divergence between estimates in the 
literature. The grouping estimates (1 to 3 in, e.g., Feldstein, 1995) were larger than the 
subsequent ungrouped estimates (0.2 to 1.5 in, e.g., Gruber and Saez, 2002; Weber, 2014) 
because grouping methods exclude tax-rate variation within given income levels and years, 
and therefore, suffer from a larger elasticity heterogeneity bias. The discrepancies between the 
ungrouped estimates are, on the other hand, primarily due to differences in how each elasticity 
is weighted. 
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Appendices 
Appendix A. Derivation of theoretical results 

Proof of IV providing a local elasticity 𝜷𝜷𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳 in Eq. (14). Assuming that ∆𝝉𝝉 is independent 
of 𝒆𝒆, we have the following covariances: 

𝜎𝜎𝐿𝐿𝒆𝒆(∆𝑦𝑦|∆𝝉𝝉),𝐿𝐿𝒆𝒆(𝑧𝑧|∆𝝉𝝉) = 𝐸𝐸𝑖𝑖𝑖𝑖[𝐸𝐸𝒆𝒆(∆𝑦𝑦|∆𝝉𝝉)𝐸𝐸𝒆𝒆(𝑧𝑧|∆𝝉𝝉)] − 𝐸𝐸𝑖𝑖𝑖𝑖[𝐸𝐸𝒆𝒆(∆𝑦𝑦|∆𝝉𝝉)]𝐸𝐸𝑖𝑖𝑖𝑖[𝐸𝐸𝒆𝒆(𝑧𝑧|∆𝝉𝝉)] 
= 𝐸𝐸∆𝝉𝝉[𝐸𝐸𝒆𝒆(∆𝑦𝑦|∆𝝉𝝉)𝐸𝐸𝒆𝒆(𝑧𝑧|∆𝝉𝝉)] − 𝐸𝐸∆𝝉𝝉[𝐸𝐸𝒆𝒆(∆𝑦𝑦|∆𝝉𝝉)]𝐸𝐸∆𝝉𝝉[𝐸𝐸𝒆𝒆(𝑧𝑧|∆𝝉𝝉)] 
= 𝐸𝐸∆𝝉𝝉 �𝐸𝐸𝒆𝒆(∆𝑦𝑦|∆𝝉𝝉)�𝐸𝐸𝒆𝒆(𝑧𝑧|∆𝝉𝝉) − 𝐸𝐸∆𝝉𝝉[𝐸𝐸𝒆𝒆(𝑧𝑧|∆𝝉𝝉)]�� 

= 𝐸𝐸∆𝝉𝝉 �𝐸𝐸𝒆𝒆(𝛽𝛽𝑖𝑖∆𝜏𝜏|∆𝝉𝝉)�𝐸𝐸𝒆𝒆(𝑧𝑧|∆𝝉𝝉) − 𝐸𝐸∆𝝉𝝉[𝐸𝐸𝒆𝒆(𝑧𝑧|∆𝝉𝝉)]�� 
= 𝐸𝐸𝑖𝑖𝑖𝑖�𝛽𝛽𝑖𝑖∆𝜏𝜏[𝐸𝐸𝒆𝒆(𝑧𝑧|∆𝝉𝝉) − 𝐸𝐸𝑖𝑖𝑖𝑖(𝑧𝑧)]�, 

(A1) 

𝜎𝜎𝐿𝐿𝒆𝒆(∆𝜏𝜏|∆𝝉𝝉),𝐿𝐿𝒆𝒆(𝑧𝑧|∆𝝉𝝉) = 𝐸𝐸𝑖𝑖𝑖𝑖�∆𝜏𝜏[𝐸𝐸𝒆𝒆(𝑧𝑧|∆𝝉𝝉) − 𝐸𝐸𝑖𝑖𝑖𝑖(𝑧𝑧)]�, (A2) 

which leads to the equality in Eq. (14). ∎ 
 
Definition of 𝜷𝜷𝑳𝑳𝑳𝑳𝑳𝑳. We define it through the weighting function: 

𝑤𝑤𝑖𝑖𝑖𝑖𝐿𝐿𝐿𝐿𝐿𝐿 =
∆𝜏𝜏[𝐸𝐸𝒆𝒆(∆𝜏𝜏|∆𝝉𝝉) − 𝐸𝐸𝑖𝑖𝑖𝑖(∆𝜏𝜏)]

∑ ∆𝜏𝜏[𝐸𝐸𝒆𝒆(∆𝜏𝜏|∆𝝉𝝉) − 𝐸𝐸𝑖𝑖𝑖𝑖(∆𝜏𝜏)]𝑖𝑖𝑖𝑖
.  (A3) 

 
Proof of ∆𝝉𝝉𝟎𝟎 providing the smallest 𝜷𝜷𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳 in Eq. (27). We can investigate the effect of 𝑦𝑦𝑧𝑧 
on 𝛽𝛽𝑂𝑂𝐿𝐿𝐿𝐿𝐿𝐿 by investigating the effect of 𝑦𝑦𝑧𝑧 on 𝑤𝑤𝑖𝑖𝑖𝑖𝑂𝑂𝐿𝐿𝐿𝐿𝐿𝐿. Let us start by investigating the effect of 
increasing 𝑦𝑦𝑧𝑧 when 𝑦𝑦𝑧𝑧 ≥ 𝑦𝑦𝑖𝑖𝑖𝑖. For a data set with a given collection of budget set changes, let 
us first restrict ourselves to observations with the same 𝑦𝑦𝑖𝑖𝑖𝑖 and 𝝉𝝉𝑖𝑖𝑖𝑖 in the same year with 
∆𝛼𝛼 = 0. Let 𝜏𝜏𝑦𝑦𝑧𝑧 = 𝜏𝜏(𝑦𝑦𝑧𝑧). For observations with 𝑦𝑦𝑖𝑖,𝑖𝑖+𝐷𝐷𝑖𝑖 < 𝑦𝑦𝑖𝑖𝑖𝑖, ∆𝜏𝜏𝑦𝑦

𝑧𝑧 is ceteris paribus 
uncorrelated with ∆𝜏𝜏 because ∆𝑦𝑦 < 0, and changing 𝑦𝑦𝑧𝑧 does therefore not affect 𝑤𝑤𝑖𝑖𝑖𝑖𝑂𝑂𝐿𝐿𝐿𝐿𝐿𝐿. We 
therefore only need to consider observations with 𝑦𝑦𝑖𝑖,𝑖𝑖+𝐷𝐷𝑖𝑖 ≥ 𝑦𝑦𝑖𝑖𝑖𝑖 and ∆𝑦𝑦 ≥ 0 for which ∆𝜏𝜏 ≥ 0  
because ∆𝛼𝛼 = 0. 

Because 𝑦𝑦𝑖𝑖𝑖𝑖 and 𝝉𝝉𝑖𝑖𝑖𝑖 are fixed: 

∆𝜏𝜏 = 𝜏𝜏𝑖𝑖,𝑖𝑖+𝐷𝐷𝑖𝑖
𝑦𝑦𝑖𝑖,𝑖𝑖+𝐷𝐷𝑖𝑖 − 𝜏𝜏𝑖𝑖𝑖𝑖

𝑦𝑦𝑖𝑖𝑖𝑖 = ∆𝜏𝜏�𝜏𝜏𝑖𝑖,𝑖𝑖+𝐷𝐷𝑖𝑖
𝑦𝑦𝑖𝑖,𝑖𝑖+𝐷𝐷𝑖𝑖�, (A4) 

∆𝜏𝜏𝑦𝑦𝑧𝑧 = 𝜏𝜏𝑖𝑖,𝑖𝑖+𝐷𝐷𝑖𝑖
𝑦𝑦𝑧𝑧 − 𝜏𝜏𝑖𝑖𝑖𝑖

𝑦𝑦𝑧𝑧 = ∆𝜏𝜏𝑦𝑦𝑧𝑧 �𝜏𝜏𝑖𝑖,𝑖𝑖+𝐷𝐷𝑖𝑖
𝑦𝑦𝑧𝑧 �. (A5) 

With progressive tax rates, ∆𝜏𝜏𝑦𝑦𝑧𝑧 is stronger correlated with ∆𝜏𝜏 the closer 𝑦𝑦𝑧𝑧 is to 𝑦𝑦𝑖𝑖,𝑖𝑖+𝐷𝐷𝑖𝑖 
because: 

𝑑𝑑 �𝜏𝜏𝑖𝑖,𝑖𝑖+𝐷𝐷𝑖𝑖
𝑦𝑦𝑖𝑖,𝑖𝑖+𝐷𝐷𝑖𝑖 − 𝜏𝜏𝑖𝑖,𝑖𝑖+𝐷𝐷𝑖𝑖

𝑦𝑦𝑧𝑧 �
𝑑𝑑𝑦𝑦𝑧𝑧

= �≤ 0
≥ 0   

if 𝑦𝑦𝑧𝑧 ≤ 𝑦𝑦𝑖𝑖,𝑖𝑖+𝐷𝐷𝑖𝑖
if 𝑦𝑦𝑧𝑧 > 𝑦𝑦𝑖𝑖,𝑖𝑖+𝐷𝐷𝑖𝑖

,  (A6) 

Now, as 𝑦𝑦𝑧𝑧 changes: 

𝑠𝑠𝑖𝑖𝑔𝑔𝑎𝑎 �
𝑑𝑑𝑤𝑤𝑖𝑖𝑖𝑖𝑂𝑂𝐿𝐿𝐿𝐿𝐿𝐿

𝑑𝑑𝑦𝑦𝑧𝑧 � = 𝑠𝑠𝑖𝑖𝑔𝑔𝑎𝑎 �∆𝜏𝜏�∆𝜏𝜏𝑦𝑦𝑧𝑧 − 𝐸𝐸𝑖𝑖𝑖𝑖�∆𝜏𝜏𝑦𝑦
𝑧𝑧��� 

= �≥ 0
≤ 0 

if 𝑦𝑦𝑧𝑧 ≤ 𝑦𝑦𝑖𝑖,𝑖𝑖+𝐷𝐷𝑖𝑖
if 𝑦𝑦𝑧𝑧 > 𝑦𝑦𝑖𝑖,𝑖𝑖+𝐷𝐷𝑖𝑖

. 
(A7) 
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When 𝑦𝑦𝑧𝑧 increases, observations with 𝑦𝑦𝑖𝑖,𝑖𝑖+𝐷𝐷𝑖𝑖 > 𝑦𝑦𝑧𝑧 gain weight at the expense of observations 
with 𝑦𝑦𝑖𝑖,𝑖𝑖+𝐷𝐷𝑖𝑖 ≤ 𝑦𝑦𝑧𝑧. With fixed 𝑦𝑦𝑖𝑖𝑖𝑖 and ∆𝛼𝛼 = 0: 

𝑦𝑦𝑖𝑖,𝑖𝑖+𝑑𝑑𝑖𝑖 =  𝑦𝑦𝑖𝑖𝑖𝑖 + 𝛽𝛽𝑖𝑖∆𝜏𝜏 
𝑑𝑑𝛽𝛽𝑖𝑖

𝑑𝑑𝑦𝑦𝑖𝑖,𝑖𝑖+𝑑𝑑𝑖𝑖
=

1
∆𝜏𝜏

> 0. (A8) 

Observations with 𝑦𝑦𝑖𝑖,𝑖𝑖+𝐷𝐷𝑖𝑖 > 𝑦𝑦𝑧𝑧 that gain weight are therefore relatively more elastic. 
Therefore, for 𝑦𝑦𝑧𝑧 ≥ 𝑦𝑦𝑖𝑖𝑖𝑖, increasing 𝑦𝑦𝑧𝑧 increases 𝛽𝛽𝑂𝑂𝐿𝐿𝐿𝐿𝐿𝐿.  

For 𝑦𝑦𝑧𝑧 < 𝑦𝑦𝑖𝑖𝑖𝑖, the reverse pattern emerges. Increasing 𝑦𝑦𝑧𝑧 decreases 𝛽𝛽𝑂𝑂𝐿𝐿𝐿𝐿𝐿𝐿 as relatively 
less elastic individuals gain weight. It follows that 𝛽𝛽𝑂𝑂𝐿𝐿𝐿𝐿𝐿𝐿 is minimized when 𝑦𝑦𝑧𝑧 = 𝑦𝑦𝑖𝑖𝑖𝑖. The 
argument applies for each 𝑦𝑦𝑖𝑖𝑖𝑖 and 𝝉𝝉𝑖𝑖𝑖𝑖 in each year, and allowing for ∆𝛼𝛼 ≠ 0 is unproblematic 
as it just adds noise, which proves Eq. (27). ∎    
 
∑𝒑𝒑∆𝝉𝝉 in Eq. (28) providing the best approximation of 𝜷𝜷𝑳𝑳𝑳𝑳𝑳𝑳. Let 𝜏𝜏𝑦𝑦𝑗𝑗 = 𝜏𝜏�𝑦𝑦𝑗𝑗�.We have: 

𝐸𝐸𝒆𝒆(∆𝜏𝜏|∆𝝉𝝉) = � ∆�𝜏𝜏𝑦𝑦𝑗𝑗𝑝𝑝 �𝑦𝑦𝑗𝑗|𝜏𝜏𝑦𝑦𝑗𝑗��
∞

𝑦𝑦𝑗𝑗=0

, (A9) 

𝐸𝐸𝒆𝒆 ��𝑝𝑝∆𝜏𝜏 �∆𝝉𝝉� = � ∆�𝜏𝜏𝑦𝑦𝑗𝑗𝑝𝑝�𝑦𝑦𝑗𝑗��
∞

𝑦𝑦𝑗𝑗=0

. (A10) 

Among unconditional observed probability densities at different income levels, 𝑝𝑝�𝑦𝑦𝑗𝑗�, is 
clearly that best approximation of the conditional probability density 𝑝𝑝�𝑦𝑦𝑗𝑗�𝜏𝜏𝑗𝑗�. Replacing 
𝐸𝐸𝒆𝒆(∆𝜏𝜏|∆𝝉𝝉) by 𝐸𝐸𝒆𝒆(∑𝑝𝑝∆𝜏𝜏 |∆𝝉𝝉) therefore leads to a weighting function that closest resembles 
the 𝑤𝑤𝑖𝑖𝑖𝑖𝐿𝐿𝐿𝐿𝐿𝐿 is Eq. (A3). Of course, it may be possible to develop a method that estimates 
𝑝𝑝�𝑦𝑦𝑗𝑗�𝜏𝜏𝑗𝑗� and recover 𝛽𝛽𝐿𝐿𝐿𝐿𝐿𝐿 more precisely. Such a method would likely be much more 
complicated to implement and need distributional assumptions. The setting needed would 
unlikely nest the just-identified standard first-difference IV setting.  
 
Simulation of the elasticity heterogeneity bias using the example in Figure 2: According 
to the discussion in connection to Figure 2: 𝛽𝛽0

𝑦𝑦𝑖𝑖 = (𝛽𝛽2∆𝜏𝜏2 − 𝛽𝛽1∆𝜏𝜏1) (∆𝜏𝜏2 − ∆𝜏𝜏1)⁄ ≥ 𝛽𝛽2 ≥
𝛽𝛽1. We simulate 𝛽𝛽0

𝑦𝑦𝑖𝑖 using the subsample with 1986 as base-year. Dividing it into two groups 
with the same number of observations by base-year income, we find that the median income 
is USD 43,000 for the high-income treated group (group 2), and it is USD 18,000 for the low-
income control group (group 1). We approximate 𝛽𝛽2 = 1.233 and 𝛽𝛽1 = 0.621 with the ETI 
estimates obtained using ∆𝜏𝜏𝑦𝑦�=43 and ∆𝜏𝜏𝑦𝑦�=18 as instruments, respectively. Furthermore, 
sample statistics show that ∆𝜏𝜏2 = 0.116 and ∆𝜏𝜏1 = 0.057. Therefore, 𝛽𝛽0

𝑦𝑦𝑖𝑖 = 
(𝛽𝛽2∆𝜏𝜏2 − 𝛽𝛽1∆𝜏𝜏1) (∆𝜏𝜏2 − ∆𝜏𝜏1)⁄ = 1.823 in the simulation, which is of the same magnitude as 
the estimated 𝛽𝛽0

𝑦𝑦𝑖𝑖 = 1.285 (estimated using the full sample). 
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Appendix B. Additional empirical results 

 

 
Figure A1. Yearly reduced-form relationships for the average net-of-tax change 

 

 
Figure A2. Relationships between instruments and base-year income 
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Figure A3. The base-year net-of-tax change by base-year income levels and years 

 

 
Figure A4. Reduced form for the average net-of-tax change by state 
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Figure A5. Reduced form for the average net-of-tax change by state, filing, and children 

 
Table A1. Subsample estimates 
Subsample (1) (2) (3) (4) (5) 
 ∆𝜏𝜏0 ∆𝜏𝜏0

𝑦𝑦𝑖𝑖 ∆𝜏𝜏0
−𝑦𝑦𝑖𝑖 ∆𝜏𝜏−2 ∑𝑝𝑝∆𝜏𝜏  

Income < 60,000 0.196* 1.449** 0.168 0.246 0.675** 
 (0.085) (0.444) (0.086) (0.309) (0.104) 
No outliers 0.330** 1.365** 0.278** 0.548* 0.759** 
 (0.079) (0.293) (0.080) (0.248) (0.102) 
1981 -0.020 0.785 -0.028 1.023 0.076 
 (0.119) (0.850) (0.120) (1.091) (0.151) 
1982 -0.168 -2.034 -0.152 -0.943 0.972** 
 (0.221) (1.859) (0.223) (1.050) (0.332) 
1983 0.405 0.068 0.407 -3.445 0.771* 
 (0.521) (3.892) (0.524) (3.815) (0.300) 
1984 0.837 -1.749 0.835 4.206 0.612* 
 (0.563) (3.355) (0.563) (9.236) (0.282) 
1985 0.410 35.256 0.421 -0.017 0.956** 
 (0.227) (183.814) (0.228) (0.979) (0.190) 
1986 0.115 0.328 0.116 -0.450 0.862** 
 (0.196) (1.457) (0.196) (0.487) (0.173) 
1987 0.190 -0.122 0.191 0.112 1.107** 
 (0.251) (6.123) (0.251) (1.343) (0.334) 
1988 0.109 6.274 0.112 -0.041 1.476** 
 (0.253) (22.127) (0.253) (1.146) (0.435) 
Each cell reports an estimate from one regression. Two-year differences are used. All regressions include five-
piece splines in base-year and lagged base-year incomes, as well as fixed effects for state of residence, filing 
status, and number of children. Standard errors are clustered at the individual level. * p<0.05; ** p<0.01. 
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