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This Online Appendix has 2 sections. The first section presents various analyt-

ical proofs for results in Sections 2 and 3 of the paper. The second section presents

some additional details related to the numerical model in Section 4 of the paper,

including a more complete discussion of the calibration of the within-country het-

erogeneity parameters Γ and κ. Throughout this Online Appendix any equation

references that are not preceded by a letter refer to equations in the main text of

the paper. Equation references that are preceded by a letter refer to equations in

this Online Appendix.

A Proofs from paper

A.1 Proof of Theorem 1

With period 1 dividends of 1, R0 = (1 + a)/a and Qn,0 = Qn,1 = a, (7) implies

that Rp,i,n
1 = (1 + a)/a. We have W i

n,0 − Ci
n,0 = βW i

n,0 = a/z̄, so that from (6)

W i
n,1 = (1 + a)/z̄ for all investors. Substituting D̄ from Assumption 1, as well

as Qn = a and R = (1 + a)/a, into the portfolio expressions (16)-(17) gives time

1 portfolio shares that are the same as the time zero portfolio shares (21)-(22).

Substituting these portfolio expressions, as well as W i
n = (1 + a)/z̄ and Qn = a,

into the risky asset market clearing conditions (19), the markets clear in period

1 under Assumption 1 about Kn. The aggregate asset market clearing condition

(20) also holds in period 1, after substituting B1 = B0, W
i
n = (1 + a)/z̄, Qn,1 = a

and the expression for B0 in Assumption 1.

Since Rt = 1/β for all t ≥ 1, first-order condition (3) implies that borrower

consumption is constant over time. Since income is constant, this implies Cb
t = Y −

B0/a. The borrower budget constraint (2) then implies Bt = B0 for all t ≥ 1. Since

there is no uncertainty starting in period 2, we must have Rt = (Qn,t+1+Dn,2)/Qn,t

for t ≥ 2. This is satisfied when Rt = (1 + a)/a, Qn,t = Qn,t+1 = (a/(1 + a))Dn =

aDn,2. Investor wealth remains constant after period 2 since W i
n,t+1 = βRtW

i
n,t for

t ≥ 2 and Rt = 1/β.
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We finally need to check the aggregate asset market clearing condition (20) for

t ≥ 2. Since borrower safe asset holdings, investor wealth and asset prices remain

constant from period 2 onward, we only need to check it for t = 2. We have

N+1∑
n=1

∫ 1

0

W i
n,2di = β

1 + a

z̄

N+1∑
n=1

∫ 1

0

Rp,i,ndi =
a

z̄
R(N+1)+

a

z̄

N+1∑
n=1

N+1∑
m=1

∫ 1

0

zin,mdi
Dm −RQm

Qm

From (21)-(22),
∑N+1

n=1

∫ 1

0
zin,mdi = z̄Km. Therefore

N+1∑
n=1

∫ 1

0

W i
n,2di =

(1 + a)(N + 1)

z̄
+

N+1∑
m=1

Km (Dm − (1 + a))

Using B2 = B0, the period 2 aggregate asset market equilibrium can then be

written as

1

z̄
a(N + 1) +

a

1 + a

N+1∑
n=1

DnKn − a
N+1∑
n=1

Kn =
N+1∑
n=1

Qn,2Kn + (N + 1)B0

Using Qn,2 = (a/(1 + a))Dn and the expression for B0 in Assumption 1, it is

immediate that this is satisfied.

We finally point out that the conjectured value functions are correct. We

conjectured V i
n,1 = α1,iW

i
n,1 and V i

n,t = α2W
i
n,t for t ≥ 2. First substituting the

latter into the Bellman equation (8) for t ≥ 2, together with Ci
n,t = (1−β)W i

n,t and

W i
n,t+1 = W i

n,t, we have α2 = 1− β. Substituting V i
n,1 = α1,iW

i
n,1 into the Bellman

equation (8) at time 1, together with Ci
n = (1 − β)W i

n and W i
n,2 = βRp,i,nW i

n, we

have

ln(α1,i) = ln(1− β) +
β

1− β
ln(β) +

β

1− β

1

1− γi
ln
(
E(Rp,i,n)1−γi

)
Substituting the portfolio shares (21)-(22), Qm = a and R = a/(1 + a) into the

portfolio return expression (15), α1,i becomes a function of structural model pa-

rameters.

A.2 Asset Price Changes

Here we will derive equations (25) and (26), which show the derivatives of asset

prices with respect to G at G = 1. Since all risky asset prices are identical, they

are denoted Q. The risky asset price Q and interest rate R can be jointly solved
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from the asset market clearing conditions. After substituting optimal portfolio

shares, investor wealth

W i
n =

1

z̄

(
1 + a+ zin(Q− a)

)
(A.1)

and the borrower budget constraint (2), the asset market clearing conditions be-

come

G

σ2

(
1 + a

z̄
+
Eψ2

i

ψ̄2
(Q− a)

)(
D̄ −RQ

)
=

1 + a

aψ̄
(A.2)

(1−R0)B0 + Y − Cb
1 −

Q− a

1 + a
= 0 (A.3)

Equation (A.2) is the risky asset market equilibrium condition. The left hand

side of (A.2) shows that demand for risky assets depends both positively and

negatively on the risky asset price. On the one hand, a rise in Q lowers the

expected return on risky assets, lowering its demand. On the other hand, it raises

wealth, which raises demand for risky assets. We adopt a rather weak assumption

to make sure that the first effect dominates:

ψ̄3

Eψ2
(1 + a)2 > z̄2σ2 (A.4)

In the absence of within-country heterogeneity, it implies that in the pre-shock

equilibrium D̄
Q
− R < R2

0/z̄. With z̄ < 1, this condition says that the expected

excess return on risky assets must be less than a number that is above 1, or 100

percent. This is evidently a very weak condition.

Equation (A.3) is the aggregate asset market clearing condition. Using Cb
2 =

Y − (R/(1 + a))B1, the first-order condition of borrowers and their budget con-

straint, we can derive the following period 1 consumption of borrowers:

Cb =
1

1 + aρ(1 + a)1−ρRρ−1

(
Y +

1 + a

R
Y − 1 + a

a
B0

)
(A.5)

Taking the derivative of (A.5) at the pre-shock equilibrium, we have

∂Cb
1

∂R
= −

(
Y + (ρ− 1)Cb

) a2

(1 + a)2
≡ −λ (A.6)

where Cb = Y + 1 − (1/z̄) is constant borrower consumption in the pre-shock

equilibrium. Assuming z̄ < 1, and of course Cb > 0, it is easily checked that

λ > 0.
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Taking derivatives of the market clearing conditions, the changes in Q and R

in response to a change in G are:

dQ

dG
=

z̄(1 + a)σ
2

ψ̄

(1 + a)2 − Eψ2

ψ̄2
z̄2σ2

ψ̄
+ a2

λ

(A.7)

dR

dG
=

1

λ (1 + a)

dQ

dG
(A.8)

Here Eψ2 is the mean of ψ2
i across investors. If assumption (A.4) holds, the

denominator of (A.7) is clearly positive. Since λ > 0, it follows that both Q and

R drop in response to a drop in G.

A.3 Proof of Theorem 3

Use that zi = αiz̄ with αi = ψi/ψ̄. (23)-(24) can then be written as

OF risky
n = IF risky

n =
a

1 + a
Qψ̄G

D̄ −RQ

σ2

∫ 1

0

ziFα
i

(
1 + a

z̄
+ αi(Q− a)

)
di−QE(zFα)

(A.9)

with z and zF defined in (27) and (31). Substituting (A.2), we have

OF risky
n = IF risky

n = Q
1+a
z̄
E(zFα) + (Q− a)E(zFα

2)
1+a
z̄

+ (1 + var(α))(Q− a)
−QE (zFα) (A.10)

This uses that 1 + var(α) = E(α2) = E(ψ/ψ̄)2 = (Eψ2)/ψ̄2. Differentiating with

respect to Q at Q = a gives

dOF risky
n = dIF risky

n =
a

1 + a
z̄ (EzFα(α− 1− var(α))) dQ (A.11)

It follows that both outflows and inflows of risky assets go down equally in response

to an increase in global risk-aversion as long as EzFα(α− 1− var(α)) > 0. Using

that the expectation of α(α − 1 − var(α)) is equal to zero, this is the case when

cov(zF , α(α − 1 − var(α))) > 0 or cov(zF , Z) > 0, which is Assumption 2. This

establishes that gross capital flows drop in response to the shock.

We finally show that cov(zF , Z) > 0 is satisfied under a specific set of as-

sumptions about the distributions of κ and Γ discussed in Section 3. Assume that

κi = κ̄+ϵκi and Γi = Γ̄+ωϵκi +ϵ
Γ
i , where ϵ

κ
i and ϵ

Γ
i are uncorrelated, have symmetric

distributions, and have mean zero. They are also such that Γi and κi are always

positive. We then show that cov(zF , Z) > 0 as long as ω ≥ 0 and var(ϵκ) > 0.
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This means that we must have cross-sectional variation in home bias. We do not

necessarily need cross-sectional variation in risk-aversion.

Define η = NΓκ. Using that α = ψ/E(ψ) and zFα = η/E(ψ), we can write

the condition cov(zF , Z) > 0 as

cov(η, ψ)E(ψ)− var(ψ)Eη > 0 (A.12)

Using that κ = κ̄+ ϵκ and Γ = Γ̄ + ωϵκ + ϵΓ, we have

ψ = Γ̄(1 +Nκ̄) + (ω +Nωκ̄+N Γ̄)ϵκ + (1 +Nκ̄)ϵΓ +NϵκϵΓ + ωN (ϵκ)2(A.13)

η = N Γ̄κ̄+N(ωκ̄+ Γ̄)ϵκ +Nκ̄ϵΓ +NϵκϵΓ + ωN (ϵκ)2 (A.14)

Using the assumed properties of ϵκ and ϵΓ (independent, symmetric distributions),

it follows that

var(ψ) = (ω +Nωκ̄+N Γ̄)2var(ϵκ) + (1 +Nκ̄)2var(ϵΓ)

+N2var(ϵΓ)var(ϵκ) + ω2N2E (ϵκ)4 − ω2N2 [var(ϵκ)]2

cov(η, ψ) = (ω +Nωκ̄+N Γ̄)N(ωκ̄+ Γ̄)var(ϵκ) + (1 +Nκ̄)Nκ̄var(ϵΓ)

+N2var(ϵΓ)var(ϵκ) + ω2N2E (ϵκ)4 − ω2N2 [var(ϵκ)]2

E(ψ) = Γ̄(1 +Nκ̄) + ωNvar(ϵκ)

E(η) = N Γ̄κ̄+ ωNvar(ϵκ)

Then collecting terms, we have

cov(η, ψ)E(ψ)− var(ψ)Eη = (ω +Nωκ̄+N Γ̄)N Γ̄2var(ϵκ) + Γ̄N2var(ϵΓ)var(ϵκ) + Γ̄ω2N2E (ϵκ)4

−ω2N(ω +Nωκ̄+ 2N Γ̄) [var(ϵκ)]2 − ωN(1 +Nκ̄)var(ϵΓ)var(ϵκ)

Rewrite this as

cov(η, ψ)E(ψ)− var(ψ)Eη = Γ̄N2var(ϵΓ)var(ϵκ) +
(
Γ̄2 − var(ϵΓ)− ω2var(ϵκ)

)
(1 +Nκ̄)Nωvar(ϵκ)(

ω2E (ϵκ)4 − 2ω2 [var(ϵκ)]2 + Γ̄2var(ϵκ)
)
N2Γ̄ (A.15)

The first term of (A.15) is clearly greater than or equal to zero. Next consider

the second term in the first line of (A.15). Since Γ is assumed to be positive, we

have ωϵκ + ϵΓ > −Γ̄. Since ϵκ and ϵΓ are symmetrically distributed and have a

mean of zero, it follows that (ωϵκ + ϵΓ)2 < Γ̄2. Taking the expectation, we have

ω2var(ϵκ) + var(ϵΓ) < Γ̄2 (A.16)
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This implies that the second term of the first line of (A.15) is positive since

var(ϵκ) > 0. Finally consider the last term of (A.15). We have

E (ϵκ)4 = var
(
(ϵκ)2

)
+ [var(ϵκ)]2 ≥ [var(ϵκ)]2

Therefore the term in brackets in the last term of (A.15) is

ω2E (ϵκ)4 − 2ω2 [var(ϵκ)]2 + Γ̄2var(ϵκ) ≥
(
Γ̄2 − ω2var(ϵκ)

)
var(ϵκ)

From (A.16) this is positive, which completes the proof that cov(η, ψ)E(ψ) −
var(ψ)Eη > 0 and therefore cov(zF , Z) > 0.

A.4 Period 2 Equilibrium

The paper focuses on the period 1 equilibrium, taken as given that the period 2

risky asset prices are equal to Qn,2 = (a/(1 + a))Dn. This affects returns of risky

assets from period 1 to 2, which affects portfolios. We will show that this indeed

holds, even after a shock to G.

We will show that Qn,t = (a/(1+a))Dn and Rt = (1+a)/a is an equilibrium for

all t ≥ 2. We need to check two things. First, since there is no uncertainty from

time 2 onwards, all assets need to have the same deterministic return. Second,

the aggregate asset market clearing condition needs to hold from time 2 onwards.

Regarding the first, the return on “risky” assets is

Qn,t+1 +Dn,2

Qn,2

(A.17)

Here Dn,2 is the period 2 dividend that is constant from then on. Recall that

Dn = Dn,2/(1− β) = (1 + a)Dn,2. Substituting Qn,t = (a/(1 + a))Dn for all t ≥ 2

and Dn,2 = Dn/(1+a), (A.17) becomes (1+a)/a, which is Rt from time 2 onwards.

So the first part checks out.

For the second part we need to check that

a

1 + a

N+1∑
n=1

∫ 1

0

W i
n,tdi =

N+1∑
n=1

Qn,tKn + (N + 1)Bt (A.18)

for t ≥ 2.

First consider borrower debt. Assuming that our conjecture that the interest

rate is (1 + a)/a from time 2 onward is correct, we have

B2 = R1B1 − Y + Cb
2 (A.19)

Bt =
1 + a

a
Bt−1 − Y + Cb

t t ≥ 3 (A.20)
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We also know from the first-order condition for consumption that consumption

will be constant from time 2 onwards. The solution is

Bt = B2 =
a

1 + a
R1B1 (A.21)

Cb
t = Y − 1

a
B2 (A.22)

for t ≥ 2.

Now return to (A.18). Start with t = 2. The term
∑N+1

n=1

∫ 1

0
W i
n,2di is the value

of the wealth of all investors at the start of period 2, before consumption. This

includes all investors within and across countries. We know that in the aggregate

they hold the following quantities of assets in period 1. They hold Kn of country n

risky assets. Since the global supply of safe assets is zero, their safe asset holdings

in period 1 are equal to total borrower debt, so (N + 1)B1. Each safe asset earns

a return of R1 in period 2. Each country n risky asset earns Qn,2 +Dn,2 in period

2. Therefore we have

N+1∑
n=1

∫ 1

0

W i
n,2di = (N + 1)B1R1 +

N+1∑
n=1

Kn(Qn,2 +Dn,2) (A.23)

Substitute this back into (A.18) for t = 2. Also substitute B2 = (a/(1 + a))R1B1,

Qn,2 = (a/(1 + a))Dn and Dn,2 = Dn/(1 + a). This gives

(N + 1)
a

1 + a
R1B1 +

a

1 + a

N+1∑
n=1

KnDn =
a

1 + a
(N + 1)B1R1 +

N+1∑
n=1

Kn
a

1 + a
Dn

(A.24)

This is clearly satisfied.

Finally consider (A.18) for t ≥ 3. At time t− 1 investors hold Kn risky assets

of country n. Their holdings of safe assets is equal to borrower debt, so (N +1)B2.

Therefore we have

N+1∑
n=1

∫ 1

0

W i
n,tdi = (N + 1)

1 + a

a
B2 +

N+1∑
n=1

Kn(Qn,t +Dn,2) (A.25)

for t ≥ 3. Substitute this back into (A.18) for t ≥ 3. Also substitute Bt = B2,

Qn,t = (a/(1 + a))Dn and Dn,2 = Dn/(1 + a). This gives

(N + 1)B2 +
a

1 + a

N+1∑
n=1

KnDn = (N + 1)B2 +
N+1∑
n=1

Kn
a

1 + a
Dn (A.26)

This is clearly satisfied.
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B Additional details for the numerical model

In this section we present some additional detail for the model in the quantitative

section of the paper. First we discuss adding cross-country correlation in dividends

to the model to make it more realistic. Then we go into greater detail about the

calibration of the key model parameters.

B.1 Cross-country correlation in dividends

For analytical tractability, until Section 4 the paper assumes that dividends are

uncorrelated across countries. For the numerical exercise in Section 4 we relax this

assumption in order to make the model and calibration more realistic.

Assume that

Dm = D + Fm (B.1)

where D is a common component and Fm is an idiosyncratic component. The

expectation of Dm is D̄. Assume that D and Fm are uncorrelated and that Fm is

uncorrelated across countries. Assume that for country n investors the variance of

Fn is σ2, while for investor i in country n the variance of Fm, with m ̸= n, is σ2/κi.

Also let σ2
d be the variance of D. In what follows we will take the perspective of

investor i in country 1. Once we derive an expression for the optimal portfolio of

investor i in country 1, it is then straightforward to generalize this to investor i in

any country n.

Let Σi be the covariance of the vector [D1, ..., DN+1]
′ for investor i in country

1. It follows that

Σi = Ai + σ2
dιι

′ (B.2)

where ι is a (N +1) by 1 vector of ones and Ai is a diagonal matrix with Ai1,1 = σ2

and the other diagonal elements equal to σ2/κi. We have

[Σi]−1 = [Ai]−1 − σ2
d

1 + σ2
dι

′[Ai]−1ι
[Ai]−1ιι′[Ai]−1 (B.3)

[Ai]−1 is a diagonal matrix with 1/σ2 in element (1,1) and κi/σ
2 in the other

diagonal elements.
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We have

[Ai]−1ι =
1

σ2


1

κi

...

κi

 (B.4)

and

ι′[Ai]−1ι =
1 +Nκi
σ2

(B.5)

and

[Ai]−1ιι′[Ai]−1 =
1

σ4


1 κi ... κi

κi κ2i ... κ2i
... ... ... ...

κi κ2i ... κ2i

 (B.6)

Define

ηi =
σ2
d

σ2 + σ2
d(1 +Nκi)

(B.7)

and define ν =
σ2
d

σ2
d+σ

2 . This is the cross-country correlation of dividends. Then

ηi =
ν

1− ν + ν(1 +Nκi)
(B.8)

Then

[Σi]−1 =
1

σ2


1− ηi −ηiκi −ηiκi ... −ηiκi −ηiκi
−ηiκi κi − ηiκ

2
i −ηiκ2i ... −ηiκ2i −ηiκ2i

... ... ... ... ... ...

−ηiκi −ηiκ2i −ηiκ2i ... −ηiκ2i κi − ηiκ
2
i

 (B.9)

Next consider the portfolio problem for agent i in country 1. The agent maxi-

mizes

E
(
Rp,i,1

)
− 0.5γi,1var

(
Rp,i,1

)
(B.10)

where

Rp,i,1 = R +
N+1∑
m=1

zi1,m

(
Dm −RQm

Qm

)
(B.11)

Define the portfolio vector of agent i in country 1 as

zi1 =

 zi1,1
...

zi1,N+1

 (B.12)
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The vector of expected excess returns is

µ =


D̄−RQ1

Q1

...
D̄−RQN+1

QN+1

 (B.13)

The variance of the vector of excess returns is Q̃ΣiQ̃, where Q̃ is a diagonal matrix

with 1/Qm in element (m,m) of the diagonal.

Investor i from country 1 then maximizes

µ′zi1 − 0.5γi,1
(
zi1
)′
Q̃ΣiQ̃

(
zi1
)

(B.14)

The optimal portfolio is

zi1 =
1

γi,1

(
Q̃ΣiQ̃

)−1

µ (B.15)

We can also write this as

zi1 =
1

γi,1
Q̃−1[Σi]−1Q̃−1µ (B.16)

Q̃−1 is a diagonal matrix with Qm in element (m,m). We then have

Q̃−1[Σi]−1Q̃−1 = (B.17)

1

σ2


(1− ηi)Q

2
1 −ηiκiQ1Q2 −ηiκiQ1Q3 ... −ηiκiQ1QN −ηiκiQ1QN+1

−ηiκiQ1Q2 (κi − ηiκ
2
i )Q

2
2 −ηiκ2iQ2Q3 ... −ηiκ2iQ2QN −ηiκ2iQ2QN+1

... ... ... ... ... ...

−ηiκiQ1QN+1 −ηiκ2iQ2QN+1 −ηiκ2iQ3QN+1 ... −ηiκ2iQNQN+1 (κi − ηiκ
2
i )Q

2
N+1


Using that

γi,1 =
1

ΓiG
(B.18)

the portfolio expressions become

zi1,1 =
Q1ΓiG

σ2

(
(1− ηi)(D̄ −RQ1)− ηiκi

∑
m ̸=1

(D̄ −RQm)

)
(B.19)

and for m ̸= 1

zi1,m =
QmΓiG

σ2

(
−ηiκi(D̄ −RQ1) + (κi − ηiκ

2
i )(D̄ −RQm)− ηiκ

2
i

∑
k ̸=1,m

(D̄ −RQk)

)
(B.20)
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For investor i from country n, these portfolio expressions become

zin,n =
QnΓiG

σ2

(
(1− ηi)(D̄ −RQn)− ηiκi

∑
m ̸=n

(D̄ −RQm)

)
(B.21)

and for m ̸= n

zin,m =
QmΓiG

σ2

(
−ηiκi(D̄ −RQn) + (κi − ηiκ

2
i )(D̄ −RQm)− ηiκ

2
i

∑
k ̸=n,m

(D̄ −RQk)

)
(B.22)

Notice that the portfolio expressions (17) and (18) in the paper correspond to

σ2
d = 0, so that ηi = 0.

Next consider the portfolio expressions in the pre-shock equilibrium, which

generalize (24) and (25) in the paper. In the pre-shock equilibrium we still have

Qn = a for all n and R = (1 + a)/a. We also have

D̄ = 1 + a+
σ2z̄

aψ̄
(B.23)

This remains the same as in equation (11) of the paper. The definition of ψi, and

therefore ψ̄, has changed. Define

ψi = Γi(1 +Nκi)(1− ηi(1 +Nκi)) (B.24)

with ψ̄ defined as the mean across i of ψi. In the case where returns are uncorre-

lated, so that ηi = 0, this corresponds exactly to the ψi in the paper.

The portfolios in the pre-shock equilibrium are then

zin,n = z̄
Γi(1− ηi(1 + κiN)

ψ̄
(B.25)

zin,m = z̄
Γiκi(1− ηi(1 + κiN)

ψ̄
(B.26)

The mean portfolio share of investor i in all countries is

zi = z̄
Γi(1 +Nκi)(1− ηi(1 + κiN)

ψ̄
= z̄

ψi
ψ̄

(B.27)

Next we need to check that market clearing conditions are satisfied in period

1. If we start with W i
n,0 = (1 + a)/z̄ in period 0, it is immediate that in period 1
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we still have W i
n = (1 + a)/z̄ in the pre-shock equilibrium as the portfolio return

is (1 + a)/a. The risky asset market clearing conditions then imply

Kn = E(Γ(1 +Nκ)(1− η(1 + κN))
1

ψ̄
(B.28)

which is equal to 1.

It is easy to check that from the aggregate asset market clearing condition, it

remains the case that in the pre-shock equilibrium

B0 = a

(
1

z̄
−
∑N+1

n=1 Kn

N + 1

)
(B.29)

B.2 Calibration

In this section we discuss the calibration of the equity return correlation ν and

the within-country heterogeneity parameters Γi and κi. For this we rely on the

three Calvet et al. papers cited in the text that use the Swedish administrative

data to discuss the within country heterogeneity of wealth and portfolio shares.

The Calvet et al. (2009a) paper provides the motivation for the distribution of

risky shares zi. The Calvet et al. (2007) paper provides the motivation for the

distribution of foreign shares zFi . The Calvet et al. (2009b) paper provides the

correlation between these risky and foreign shares. With a distribution of risky

and foreign shares zi and z
F
i , it is then simple to back out distributions of Γi and

κi.

We need to find the Γi and κi for I investors where I is a large number (we use

100,000). We start by generating two random N(0, 1) series, each with I elements,

and a correlation of c. The value of c will be discussed below. Refer to these series

as x̄i and ȳi. We then convert these to two random U(0, 1) series xi = Ψ(x̄i) and

yi = Ψ(ȳi), where Ψ(.) is the cdf of the standard normal distribution. We set the

risky asset share zi equal to xi. We set the relative Sharpe ratio loss, RSRLi for

investor i, equal to yi. This is a measure of portfolio diversification that we will

discuss shortly.

Figure I of Calvet et al. (2009a) plots a histogram with the distribution of the

risky shares across households in the Swedish administrative data. This data is

for 1999-2002, a period of rapid risky asset price appreciation followed by a fall in

risky asset prices. The distribution is centered around 0.5. It is left-skewed during

a boom in risky asset prices, with a large mass of households holding a risky share

12



greater that 0.5, and right-skewed during a bust, with a large mass of households

holding a risky share less that 0.5. But on average the risky shares are close to

uniformly distributed uniformly between 0 and 1. Therefore we set zi = xi, which

has a U(0, 1) distribution.

The Swedish data do not provide direct information on the share of risky assets

invested abroad, zFi . To extract information about zFi , we use data on the Sharpe

ratios for individual households from Calvet et al. (2007). We first discuss how

these Sharpe ratios are computed in the model.

The excess return for the portfolio of investor i in country n is:

Rp,i,n −R =
N+1∑
m=1

zin,m

(
Dm −RQm

Qm

)
(B.30)

We use the portfolio shares from the pre-shock equilibrium, as well as the pre-shock

asset prices Qm = a and R = (1 + a)/a. (7) then becomes

Rp,i,n −R = Γi (1− ηi (1 +Nκi))
1

ψ̄
z̄

(
Dn − 1− a

a

)
+
∑
m̸=n

Γiκi (1− ηi (1 +Nκi))
1

ψ̄
z̄

(
Dm − 1− a

a

)
(B.31)

The Sharpe ratio is equal to the expected excess return divided by the standard

deviation of the excess return:

Si =
E (Rp,i,n −R)

(var (Rp,i,n −R))0.5
(B.32)

We have E (Rp,i,n −R) = zi

(
z̄ σ2

a2ψ̄

)
and

var
(
Rp,i,n −R

)
= V ar

(
Γi (1− ηi (1 +Nκi))

1
ψ̄
z̄
(
Dn−1−a

a

)
+
∑

m ̸=n Γiκi (1− ηi (1 +Nκi))
1
ψ̄
z̄
(
Dm−1−a

a

) )

= z2i V ar

((
1− zFi

)(Dn − 1− a

a

)
+
∑
m̸=n

zFi
N

(
Dm − 1− a

a

))

= z2i


((

1− zFi
)2

+N
(
zFi
N

)2)(
σ2+σ2

d

a2

)
+
(
(N) (N − 1)

zFi
N

+ 2N
(
1− zFi

)) zFi
N

(
σ2
d

a2

)


From Calvet et al. (2007), the relative Sharpe ratio loss of the portfolio of

investor i is:

RSRLi = 1− Si
SD

(B.33)
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where SD is the Sharpe ratio of the portfolio with the internationally diversified

portfolio (in our model zFi = N/(1 +N)). After some simplification:(
1

1+N

)
(1 +Nν)

(1− zFi )
2
+N

(
zFi
N

)
+ (2N − (1 +N)zFi )

zFi
N
ν
= (1−RSRLi)

2 (B.34)

where ν =
σ2
d

σ2
d+σ

2 is the cross-country correlation of dividends. We can back out

the value of this parameter using the data in Calvet et al. (2007). They report

that the Sharpe ratio for the currency-hedged international benchmark portfolio

is 45.2. Furthermore they report that the Sharpe ratio for the benchmark Swedish

portfolio is 27.4. Holding the benchmark Swedish portfolio then implies a Sharpe

ratio loss of RSRL = 1 − 27.4
45.2

. In the model, holding only Swedish risky assets

implies zFi = 0. It then follows from (B.34) that ν = (N+1)(1−RSRL)2−1
N

= 0.33.

Table 4 of Calvet et al. (2007) presents the cumulative distribution of the

Sharpe ratio loss of individual portfolios relative to the international benchmark.

We assume that the cdf of the relative Sharpe ratio loss (RSRL) across the I in-

vestors in our model matches the cdf of the RSRL from this table. The table

presents the 25th, 50th, 75th, 90th, 95th, and 99th percentiles of the RSRL. De-

fine ΨRSRL(.) as the cdf of the RSRL. The table implies ΨRSRL(0.89) = 0.99,

ΨRSRL(0.69) = 0.95, ΨRSRL(0.55) = 0.9, ΨRSRL(0.42) = 0.75, ΨRSRL(0.35) = 0.5

and ΨRSRL(0.29) = 0.25. We assume that the investor with the lowest Sharpe

ratio loss has a RSRL of 0, so ΨRSRL(0) = 0, and the investor with the highest

Sharpe ratio loss has a RSRL of 1, so ΨRSRL(1) = 1. We then assume that the

RSRL cdf is piecewise linear between these values.

We next use the values of the series yi, which has a U(0, 1) distribution, to create

a series RSRLi consistent with the cdf for RSRL: RSRLi = (ΨRSRL)
−1 (yi). We

can then use (B.34) to back out the series of zFi across our I investors. For a large

set of investors this zFi will be negative. Recall that RSRL of the Swedish portfolio

is around 0.4. Then under this piecewise mapping, about 35 percent of investors

have a greater RSRL than the benchmark Swedish portfolio, the portfolio they

would have in this model with zFi = 0. Since we are not concerned with domestic

investment mistakes and only the lack of international diversification, we simply

assume that these investors with a RSRL lower than the Swedish benchmark simply

have a zFi = 0.1

1Calvet et al. (2007) also report the RSRL of investors relative to the Swedish benchmark
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Once we know both the risky portfolio share zi as well as z
F
i for our I investors,

we can back out Γi and κi. We can obtain κi from zFi = Nκi/(1 + Nκi). Recall

that the risky share is zi = z̄ ψi

ψ̄
where ψi = Γi(1 +Nκi)(1− ηi(1 +Nκi)), ψ̄ is the

mean of ψi, and ηi =
ν

1−ν+ν(1+Nκi) . We can use this to back out Γi/Γ̄. As discussed

in the text, we assume that Γi has a mean Γ̄ of 0.1.

Finally, we need to discuss the correlation c that we assume between the two

random N(0, 1) series x̄i and ȳi we generate to construct the xi and yi series. This

correlation c affects the correlation between zi and RSLRi. The latter correlation

is important as it determines the correlation between the the risky asset share and

the foreign share. Calvet et al. (2009b) report that the correlation between the

risky share and the RSRL in the Swedish data is -0.49. That is, investors with

a higher risky asset share tend to have a more diversified portfolio. Calvet et al.

(2007) report that investor sophistication has a positive effect on both the risky

portfolio share and portfolio diversification. We can set the correlation c in order

to target a correlation of -0.49 between zi and RSLRi. This will be the case when

c = −0.51. The correlation between the original random N(0, 1) series that we

generate is therefore very close to the correlation between zi and RSLRi that is

created from these two series.

All of this results in a correlation between the risky share and the foreign share

of about 0.43. The average risky share is 0.5 and the average foreign share is 0.24.

portfolio. They report that the 50th percentile investor has a RSRL relative to the domestic

benchmark of -0.08 (meaning they have a higher Sharpe ratio than the domestic portfolio) and the

75th percentile investor has a RSRL relative to the domestic benchmark of 0.04. Extrapolating

between these two, we would conclude that the 65th percentile investor has a relative Sharp ratio

loss relative to the Swedish portfolio of 0, further evidence that investors in the 65th to 100th

percentile have no international diversification
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