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Abstract 
This paper considers estimation and inference in fixed effects (FE) panel regression models 
with lagged dependent variables and/or other weakly exogenous (or predetermined) 
regressors when 𝑁𝑁 (the cross section dimension) is large relative to 𝑇𝑇 (the time series 
dimension). The paper first derives a general formula for the bias of the FE estimator which 
is a generalization of the Nickell type bias derived in the literature for the pure dynamic 
panel data models. It shows that in the presence of weakly exogenous regressors, inference 
based on the FE estimator will result in size distortions unless 𝑁𝑁/𝑇𝑇 is sufficiently small. To 
deal with the bias and size distortion of FE estimator when 𝑁𝑁 is large relative to 𝑇𝑇, the use 
of half-panel Jackknife FE estimator is proposed and its asymptotic distribution is derived. It 
is shown that the bias of the proposed estimator is of order 𝑇𝑇−2, and for valid inference it is 
only required that 𝑁𝑁/𝑇𝑇3 → 0, as 𝑁𝑁,𝑇𝑇 → ∞ jointly. Extensions to panel data models with 
time effects (TE), for balanced as well as unbalanced panels, are also provided. The 
theoretical results are illustrated with Monte Carlo evidence. It is shown that the FE 
estimator can suffer from large size distortions when 𝑁𝑁 > 𝑇𝑇, with the proposed estimator 
showing little size distortions. The use of half-panel jackknife FE-TE estimator is illustrated 
with two empirical applications from the literature. 
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1 Introduction

This paper considers the application of the split-panel jackknife method recently proposed by

Dhaene and Jochmans (2015b) for panel data models with fixed effects (FE). It focusses on linear

panel data models with lagged dependent variables and/or weakly exogenous regressors where N

(the cross section dimension) is large relative to T (the time series dimension).1 It is well known

that standard FE estimators in such models suffer from small T bias and their use in inference

can lead to large size distortions. The analysis of Dhaene and Jochmans (2015b) requires that

N/T → κ for some 0 < κ < ∞, as N,T → ∞ jointly, which excludes the case of N large relative

to T . In this paper we propose a bias-corrected jackknife FE estimator which only requires that

N/T 3 → 0 as N,T → ∞ jointly, and is therefore appropriate in the case of many cross-country

empirical applications in the literature where N is typically much larger than T . We derive exact

expressions for small-T bias of the FE and half-panel jackknife bias-corrected FE estimators (as

N →∞). After the split-panel jackknife procedure, the bias is reduced from O
(
T−1

)
to O

(
T−2

)
,

and a valid inference can be done by using a consistent estimator of the asymptotic variance

which is also proposed. Our analysis is also suffi ciently general and applies equally to dynamic

panels as well as panels with weakly exogenous regressors with or without dynamics. Also, unlike

analytical bias correction or bootstrap procedures developed only for the case of lagged dependent

variable models, in which the model of the lagged dependent variable is already specified by default,

the proposed estimator does not require the researcher to fully specify the nature of the weak

exogeneity of the regressors, and as a result it is applicable to a wider class of models that generate

correlation between errors and future values of the regressors. We allow for the weakly exogenous

regressors to follow general linear stationary processes with possibly heterogeneous coeffi cients,

and only require the correlation of the regressors and the future errors to decay exponentially.

This is important since the alternative approach of modelling the dependent variable and the

regressors jointly as vector autoregressions involves much stronger assumptions when T is small

relative to N , such as homogeneity of coeffi cients and dynamics on the processes generating the

weakly exogenous regressors. Our approach also allows for inclusion of strictly exogenous regressors

with nonstationary or non-linear processes.

Following the seminal work of Nickell (1981), it is well known that the standard FE estimator

suffers from small T bias in the case of dynamic panels. What is less recognized in the literature is

that this small-T bias exists regardless of whether the lags of the dependent variables are included

or not, so long as one or more of the regressors are weakly exogenous. Moreover, in such cases the

inference based on standard FE estimators will be invalid and can result in large size distortions

unless N/T → 0, as N,T →∞ jointly.

There are a number of methods in the literature that can handle weakly exogenous regressors,

the most prominent of which is the GMM (Generalized Method of Moments) procedure, developed

1Some authors prefer to refer to weakly exogenous regressors as predetermined. See, for example, Arellano and
Bond (1991). We shall provide a formal definition in the context of panel data models in Section 2. In the econometric
literature the concept of weak exogeneity was introduced by Engle et al. (1983) within a likelihood framework.
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by Arellano and Bond (1991), Ahn and Schmidt (1995), Arellano and Bover (1995), and Blundell

and Bond (1998), among others. The GMM approach is applicable when T is fixed, as N →∞. The
condition of fixed T precludes cases where N and T tend to infinity jointly. It is also well known that

the GMM method can suffer from weak/many instruments problem, particularly in cases where T

takes moderate values. The jackknife bias correction considered in this paper requires N,T →∞,
but it allows T to rise at a much slower rate than N , which makes the method attractive also for

panels where the time dimension is small relative to N . A related class of estimators proposed

in the literature is the one based on analytical and bootstrapped bias corrections. Analytical

bias-corrections exploit on an asymptotic bias formula or its approximation and are considered

by Bruno (2005), Bun (2003), Bun and Carree (2005 and 2006), Bun and Kiviet (2003), Hahn

and Kuersteiner (2002), Hahn and Moon (2006), and Kiviet (1995 and 1999).2 Bootstrap and

simulation based bias corrections are considered, for example, by Everaert and Ponzi (2007) and

Phillips and Sul (2003 and 2007). All these bias-correction methods have been developed for the

case of models with lagged dependent variables only, in which the model of the lagged dependent

variable is already specified by default. As a result, these methods do not readily extend to more
general settings where one or more of the regressors (in addition to the lagged dependent variable)

are weakly exogenous, without specifying a model for such regressors. Choi, Mark, and Sul (2010)

consider common recursive mean adjustment to overcome the small-T bias. However, this approach

requires
(
log2 T

)
(N/T ) → 0 for consistency which is not satisfied when N is larger than T . Han,

Phillips, and Sul (2014) propose X-differencing for estimation of autoregressive panel data models

regardless of the N/T ratio, but it is unclear if this approach can be generalized beyond the

pure autoregressive panels. Last but not least, jackknife bias-correction can be used to tackle the

consequences of weakly exogenous regressors. As noted earlier, Dhaene and Jochmans (2015b)

consider a split-panel jackknife method, which is applicable without the need to specify the model

for regressors, but the authors require N/T → κ for some 0 < κ <∞, as N,T →∞ jointly, which

excludes the case of N large relative to T .3 More recently, the modified profile likelihood method

has also been applied to panel data models with lagged dependent variables, but it is assumed that

the other included regressors are strictly exogenous. See Bartolucci et al. (2016) and Dhaene and

Jochmans (2015a), for example.

In this paper we provide new results for the bias of FE estimators and extend the half-panel

jackknife method studied by Dhaene and Jochmans (2015b) in a number of directions. First, we

derive exact expressions for the small-T bias of the FE and half-panel jackknife bias-corrected FE

estimators (as N →∞), which are respectively O
(
T−1

)
and O

(
T−2

)
. We also provide a rigorous

derivation of the asymptotic distribution of the proposed jackknife estimator and give a consistent

estimator of its variance. Most importantly, we show that even if T is much smaller than N , so long

2Hahn and Newey (2004) propose analytical and jackknife bias correction procedures for nonlinear panel data
models, assuming independently distributed data (both cross-sectionally and over time), that do not apply to dynamic
panel data models.

3Perhaps it should be clarified that the requirement for N/T to converge to a constant in the paper by Dhaene
and Jochmans (2015b) is due to the fact that these authors consider a general (possibly nonlinear) panel data models.
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as T = KN ε, for some 0 < K < ∞ and ε > 1/3, and inference using the half-panel jackknife FE

estimator will be valid so long asN/T 3 → 0, as N and T →∞. As a result the jackknife estimator
is applicable to panels with large N and moderate T sample sizes. We also consider panel data

models with time effects (TE) and propose a FE-TE half-panel jackknife estimator, and extend the

analysis of FE and FE-TE models to unbalanced panels. This latter extension is non-trivial and,

at the same time, particularly important in empirical research where available panel data sets are

generally unbalanced.

The drawbacks of the FE estimator and the satisfactory properties of the half-panel jackknife

bias-corrected FE estimator are illustrated in a series of Monte Carlo experiments in cases where

N is large relative to T in a number of different set ups, including models with weakly exogenous

regressors, with and without lagged dependent variables, with and without time effects, and for

balanced as well as unbalanced panels. Specifically we considered the following sample size combi-

nations, N = 30, 60, 100, 200, 500, 1000, and T = 30, 60, 100, 200. In contrast to the FE and FE-TE

estimators, the proposed half jackknife estimators perform well (in the mean square error sense,

size and power) even if N is much larger than T , so long as N/T 3 is suffi ciently small. This is to

be contrasted with the FE and FE-TE estimators that perform well only if T is larger than N .4

The proposed FE-TE jackknife estimator is illustrated and compared to the FE-TE estimator

in the case of two different empirical applications from the literature. The first application is a

cross-country analysis by Berger et al. (2013) on the extent of US political influence on bilateral

trades of US and foreign countries during the Cold War, and the second application considers the

influential contribution of Donohue and Levitt (2001) on the relationship between legalized abortion

and crime across the US states. In the case of Berger et al. (2013) study, the jackknife FE-TE

estimates are in line with the FE-TE estimates and in fact suggest that the effect of CIA (Central

Intelligence Agency) intervention on the US exports is even larger, with a higher level of statistical

significance, than the estimates based on FE-TE. We also find some important differences in the

case of the coeffi cients of other control variables. For example, after the jackknife bias correction,

we find that having democracy, sharing a contiguous border, sharing a common language and

participating the GATT (General Agreement on Tariffs and Trade) have positive and statistically

significant effects on trades in all directions, while many of the estimates reported by Berger et al.

(2013) for these coeffi cients are statistically insignificant. For the latter study, Donohue and Levitt

(2001) found that legalized abortion in 1970s has been one of the main causes of the substantial

decline in violent crime, property crime and murders observed in the US during 1990s. For this

example, first, as a baseline model, we use our half-panel jackknife estimator to estimate the same

model as Donohue and Levitt (2001) and second we allow for dynamics by adding the lagged crime

4We also considered using GMM estimators in our comparisons, but it soon became apparent that even for panels
with moderate time dimensions we had to deal with many moment conditions, often larger than the number of
available observations. For example, in the case of panels with two weakly exogenous regressors and T = 30, we have
T (T −1) = 870 moment conditions, and as a result standard GMM procedures are likely to perform poorly, and must
be augmented with some form of selection/shrinkage applied to the moment conditions. This is an area of ongoing
research and will not be pursued in this paper, which focusses on the FE approach with T taking moderate values
relative to N .
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rate variable to the covariates. Our half-panel jackknife baseline estimates do not alter the main

conclusion of Donohue and Levitt (2001). However, after allowing for dynamics, we find that the

abortion variable continues to be statistically significant for violent and murder crimes but not for

property crimes.

The remainder of the paper is organized as follows. The panel data model and its assumptions

are set out in Section 2. Exact analytical expressions for small-T bias of the FE and the half-panel

jackknife FE estimators are derived and their orders established in Section 3. This section also

considers the problem of inference when N and T →∞ jointly, and provides a consistent estimator

of the variance of the half-panel jackknife FE estimator. Section 4 considers extensions of the basic

model to panel data models with fixed and time effects, as well as to unbalanced panels. Section

5 describes the Monte Carlo experiments and reports a summary of the main findings. Section 6

provides the empirical applications. Some concluding remarks are offered in Section 7. Proofs are

relegated to the Appendix, and an online Supplement provides the full set of results for the Monte

Carlo experiments that we have conducted.

Notations

K denotes a generic positive finite constant that does not depend on the sample size (N and T ).

K can take different values at different instances in the paper. O (.) and o (.) denote the Big O

and Little o notations, respectively. If {fn}∞n=1 is any real sequence and {gn}
∞
n=1 is a sequences of

positive real numbers, then fn = O(gn) if there exists a positive finite constant K such that

|fn| /gn ≤ K for all n. fn = o(gn) if fn/gn → 0 as n→∞. p→ denotes convergence in probability.

2 Panel data model and its assumptions

We begin by considering the balanced fixed effects panel data model

yit = µi + z′itα+ x′itβ + uit, i = 1, 2, ..., N ; t = 1, 2, ..., T, (1)

where yit is the dependent variable for the cross section unit i and time period t, µi is the unit-

specific fixed effect, and zit is a vector of strictly exogenous regressors, xit is a k×1 vector of weakly

exogenous stationary regressors, β is a k × 1 vector of unknown homogeneous slope coeffi cients,

and uit is the unit-specific error term error. We allow the strictly exogenous regressors to follow a

general (linear or non-linear) process. They could include deterministic variables, such as seasonal

dummies or time trends, and can even include unit root processes. But to simplify the analysis we

assume that the weakly exogenous regressors, xit, have the following decomposition:

xit = µix + ωit, i = 1, 2, ..., N ; t = 1, 2, ..., T, (2)
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where µix is a k × 1 vector of fixed effects, and ωit is the k × 1 vector of stochastic components,

assumed to follow the general linear processes

ωit =

∞∑
s=0

Aisvi,t−s, (3)

in which {Ais, for i = 1, 2, ..., N ; s = 0, 1, ....} are k × k matrices of coeffi cients, and vit, for i =

1, 2, ..., N ; t = 1, 2, ..., T , are k × 1 vectors of regressor-specific innovations.5

We adopt the following assumptions:

ASSUMPTION 1 (Idiosyncratic errors) Errors uit, for i = 1, 2, ..., N ; t = 1, 2, ..., T are in-

dependently distributed with zero means, E (uit) = 0, possibly heteroskedastic variances, E
(
u2it
)

=

σ2ui < K, and uniformly bounded fourth moments, E
(
u4it
)
< K for all i and t.

ASSUMPTION 2 (Regressor innovations) Innovations vit, for i = 1, 2, ..., N ; t = 1, 2, ..., T

are IID (0k×1, Ik) with uniformly bounded fourth moments.

ASSUMPTION 3 (Fixed effects) Fixed effects, µi and µix, are bounded such that |µi| < K

and ‖µix‖ < K, for all i if they are non-stochastic, and E |µi| < K and E ‖µix‖ < K, if they are

stochastic.

ASSUMPTION 4 (Weak exogeneity conditions) For all i and t

(a)

E (vi,t+huit) =

{
0k×1, for h ≤ 0,

γiuv (h) , for h > 0,
, (4)

where

‖γiuv (h)‖ < Kρh, for h > 0, (5)

and for some 0 < ρ < 1, in which ‖γiuv (h)‖ =
√
γ ′iuv (h)γiuv (h) is the Euclidean norm of

γiuv (h) .

(b) Conditions (4) and (5) hold and, in addition, vi,t+h is independently distributed of uit for all

i, t and all h ≤ 0.

ASSUMPTION 5 (Regressors) Consider the processes (2)-(3) for i = 1, 2, ..., N and t =

1, 2, ..., T , and let the k × k coeffi cient matrices, Ais, satisfy

‖Ais‖ < Kρs, (6)

5More general processes for xit can be entertained, but this will not be pursued in this paper.
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for i = 1, 2, ..., N , s = 0, 1, ... where 0 < ρ < 1, and ‖Ais‖ = tr (A′isAis) is the Frobenius norm of

Ais. Further, let Γi (h) denote the autocovariance matrix function of ωit, given by

Γi (h) =
∞∑
s=0

Ai,s+hA
′
is, for, i = 1, 2, ..., N ; (7)

and set

Γ̄ (h) = lim
N→∞

1

N

N∑
i=1

Γi (h) , for h = 0, 1, 2..., (8)

where Γ̄ (0) and {Γi (0) , for i = 1, 2, ..., N} are k × k nonsingular matrices.

Remark 1 The panel data model (1)-(3) allows for a number of specifications, including the lagged
dependent variable models, where one or more lags of the dependent variable feature among the k

regressors in the vector xit.

Remark 2 Assumption 1 is standard and allows for heteroskedastic errors. It also rules out cross-
sectionally dependent errors. Although a weak form of error cross-sectional dependence (as defined

in Chudik et al., 2011) would not affect consistency of the FE estimator when N and T are large,

it will affect the asymptotic variance and inference, see Pesaran and Tosetti (2011) for further

discussion.

Remark 3 Apart from a minimal boundedness requirement, Assumption 3 imposes no other re-

strictions on the fixed effects, µi and µix. Specifically, they are allowed to be cross-sectionally

dependent as well as correlated with each other and the error terms, uit and vit.

Remark 4 Assumptions 4-5 in addition to Assumptions 1-2 control the degree of serial correlation
in regressors as well as the degree of dependence between the errors and the future values of the

regressors. Both the serial correlation and the extent to which current errors are correlated with

future regressors decay exponentially. The former is a direct consequence of serially uncorrelated

vit and the condition (6). The latter is established in the next proposition.

Proposition 1 (Weak exogeneity of ωit) Suppose Assumptions 4.a and 5 hold. Then,

E (ωi,t+huit) =

{
0k×1, for h ≤ 0,

γi (h) , for h > 0,
, (9)

and for all t, where ωit is defined in (2), and γi (h) satisfies

‖γi (h)‖ < Kρh, for h = 1, 2, ..., (10)

for some 0 < ρ < 1.

The proof of this and other propositions are provided in the Appendix.
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3 Small-T bias of FE estimator

In this sub-section we derive the small-T bias of the FE estimator of β when xit is weakly exogenous,

and follows the linear stationary processes as defined by the decomposition (2) and Assumption 5.

But to simplify the derivations, and without loss of generality, we abstract form zit in (11), and

consider the following model

yit = µi + x′itβ + uit, i = 1, 2, ..., N ; t = 1, 2, ..., T, (11)

It is clear that a sub-set of xit can be strictly exogenous, but the above assumptions on xit require

such strictly exogenous regressors to follow stationary linear processes, which could be restrictive

in practice. However, it is easily seen that our analysis can also accommodate additional strictly

exogenous regressors that follow possibly non-linear or non-stationary processes. As noted earlier

they could also include deterministic processes. Inclusion of strictly exogenous regressors can affect

the rate of convergence of the FE estimator of α, but not that of the FE estimator of β. For

example, adding a strictly exogenous regressor which is integrated of order 1(or I(1)) to model

(11), yields the rate of convergence of T
√
N for the FE estimator of α (the coeffi cient of the I(1)

regressor), but does not alter the standard
√
NT convergence rate of the FE estimator of β.

3.1 Bias of the FE estimator

The FE estimator of β in model (11) is given by

β̂FE= Q̂
−1
FEq̂FE , (12)

where

Q̂FE =
N∑
i=1

T∑
t=1

(xit − x̄i·) (xit − x̄i·)
′

NT
, q̂FE =

N∑
i=1

T∑
t=1

(xit − x̄i·) yit
NT

, (13)

and x̄i· = T−1
∑T

t=1 xit. In what follows, we assume that there exist N0, T0 > 0 such that the

FE estimator β̂FE is well defined for all N ≥ N0 and all T ≥ T0, and the probability limit

p limN→∞ β̂FE for any given T ≥ T0 is also well defined. To this end, we require the following

invertibility conditions to hold.

ASSUMPTION 6 (Existence of FE estimators) There exists N0, T0 > 0 such that for all

N > N0 and all T ≥ T0, Q̂FE defined by (13) is positive definite, and matrix Γ̄ (0) − T−1Ψ̄T is

invertible, where Γ̄ (0) is defined by (8), and Ψ̄T is given by

Ψ̄T = lim
N→∞

1

N

N∑
i=1

ΨiT , (14)
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with

ΨiT = Γi (0) +

T−1∑
h=1

(
1− h

T

)[
Γi (h) + Γ′i (h)

]
. (15)

Remark 5 The smallest value of T for which Assumption 6 can be satisfied is 2, because it takes

at least 2 time periods for β to be identified in the panel data model (11) without imposing any

further restrictions on the fixed effects.

Remark 6 The invertibility of Q̂FE is required for β̂FE to be well defined, while the invertibility

of
(
Γ̄ (0)− 1

T Ψ̄T

)
is required for p limN→∞ β̂FE to be well defined.

We derive the small-T bias of the FE estimator next.

Proposition 2 (Small-T bias of the FE estimator) Suppose yit, for i = 1, 2, ..., N and t = 1, 2, ..., T

are generated by the panel data model (11) with xit given by (2)-(3), and Assumptions 1-3, 4.a,

and 5-6 hold. Then for any fixed T ≥ T0, where T0 is given by Assumption 6, we have

BiasT

(
β̂FE

)
≡ lim

N→∞
E
(
β̂FE − β

)
= − 1

T

(
Γ̄ (0)− 1

T
Ψ̄T

)−1
χ̄T , (16)

where the FE estimator β̂FE is defined by (12), Γ̄ (0) and Ψ̄T are defined by (8) and (14), respec-

tively,

χ̄T =

T−1∑
h=1

(
1− h

T

)
γ̄ (h) , (17)

and

γ̄ (h) = lim
N→∞

1

N

N∑
i=1

γi (h) . (18)

In addition, BiasT
(
β̂FE

)
= O

(
T−1

)
.

The result in the above proposition extends the well-known Nickell bias (Nickell, 1981) and

covers both dynamic panel data models as well as static models with weakly exogenous regressors.

In what follows we illustrate these features by means of two simple examples.

Example 1 Consider the pure first-order autoregressive panel data model

yit = µi + βxit + uit,

where xit = yi,t−1. For this specification, (using the notations in (2)) we have

xit = (1− β)−1µi + ωit,

8



where ωit = βωi,t−1 + ui,t−1. It is now easily seen that

γi(h) = E (ωi,t+huit) = σ2uiβ
h−1, for h = 1, 2...

γi(h) = E (ωi,t+huit) = 0, for h = 0,−1, ....

Using (7) and noting that Ais = σuiβ
s, we also have

Γi (h) =
∞∑
s=0

Ai,s+hA
′
is =

σ2uiβ
h

1− β2
.

Hence, using the above results in (8), (14), (17) and (18) we obtain

γ̄ (h) = σ̄2uβ
h−1, χ̄T = σ̄2u

T−1∑
h=1

(
1− h

T

)
βh−1,

Γ̄ (0) =
σ̄2u

1− β2
, and Ψ̄T =

σ̄2u
1− β2

+
2σ̄2u

1− β2
T−1∑
h=1

(
1− h

T

)
βh.

where σ̄2u = limN→∞N
−1∑N

i=1 σ
2
ui. Now using the above results in (16) we have

BiasT

(
β̂FE

)
=
−
(
1− β2

)
fT (β)

T

1

1− 1
T −

2
T βfT (β)

,

where

fT (β) =
T−1∑
h=1

(
1− h

T

)
βh−1 =

1

1− β −
1

T

1− βT

(1− β)2
. (19)

Also, after some algebra, it is easily seen that the expression for the bias can be written as

BiasT

(
β̂FE

)
= −

(
1 + β

T

) 1− 1
T

(
1−βT
1−β

)
1− 1

T −
2β

T (1−β)

[
1− 1

T
1−βT
1−β

]
 , (20)

which is the expression first derived by Nickell (1981) for the case of homogeneous error variances.

But the above derivations show that the same expression for the bias obtains even if the error

variances are heterogeneous.

Example 2 Consider now the following static panel data model

yit = µi + βxit + uit, (21)

where

xit = cix + ρxi,t−1 + κyi,t−1 + εit, (22)

for i = 1, 2, ..., N and t = 1, 2, ..., T , and suppose |ϕ| = |ρ+ κβ| < 1, uit ∼ IID
(
0, σ2ui

)
, εit ∼

9



IID
(
0, σ2εi

)
, and that uit is independently distributed of εi′t′ for any i, i′ and any t, t′. This model

is also a special case of (2), (3) and (11). Substituting (21) in (22) for yi,t−1, we obtain

xit = (cix + κµi) + ϕxi,t−1 + εit + κui,t−1,

= µix + ωit,

where ϕ = ρ+ κβ, µix = (cix + κµi) / (1− ϕ), and

ωit = (1− ϕL)−1 εit + (1− ϕL)−1 κui,t−1. (23)

Hence, we obtain

γi (h) = E (ωi,t+huit) = κϕh−1σ2ui, for h = 1, 2, ...,

and

γ̄ (h) = lim
N→∞

N−1
N∑
i=1

γi (h) = κϕh−1σ̄2u, for h = 1, 2, ..., (24)

where σ̄2u = limN→∞N
−1∑N

i=1 σ
2
ui. Substituting (24) in (17), yields

χ̄T = κσ̄2ufT (ϕ) , (25)

where

fT (ϕ) =

T−1∑
h=1

(
1− h

T

)
ϕh−1 =

1

1− ϕ −
1

T

(
1− ϕT

)
(1− ϕ)2

. (26)

The remaining terms of the small-T bias formula (16) are

Γ̄ (h) =
ϕh

1− ϕ2
(
σ̄2ε + κ2σ̄2u

)
, (27)

for h = 0, 1, 2, ..., and

Ψ̄T =
σ̄2ε + κ2σ̄2u

1− ϕ2 [1 + 2ϕfT (ϕ)] . (28)

Now using (25), (27) for h = 0, and (28) in (16), the exact small-T bias of β̂FE for this example

is given by

BiasT

(
β̂FE

)
= −

(
1

T − 1

)(
κη2

1 + κ2η2

) (
1− ϕ2

)
fT (ϕ)

1− 2ϕ
T−1fT (ϕ)

, (29)

where η = σ̄u/σ̄ε. Also recall that ϕ = ρ + κβ, and fT (ϕ) is given by (26). It is clear from

(29) that there is no bias when regressors are strictly exogenous, namely when κ = 0. Moreover,

BiasT

(
β̂FE

)
→ 0 as η → 0. The exact bias function is plotted in Figure 1 for several choices of

the parameter values. The sign of the bias depends on κ, since fT (ϕ) and 1 − 2ϕfT (ϕ) / (T − 1)

are both positive for ϕ ∈ (−1, 1). The shape of the bias function is nontrivial. Noting that Γ̄ (0),

10



Ψ̄T , and χ̄T are all O (1), the O
(
T−1

)
approximation to BiasT

(
β̂FE

)
is given by

BiasT

(
β̂FE

)
= − 1

T
(1 + ρ+ κβ)

κη2

1 + κ2η2
+O

(
T−2

)
.

The O
(
T−1

)
approximation of the bias increases with ρ, κ, and β and the variance ratio η2, and it

has a larger approximation error when ϕ is in the neighborhood of 1.

Remark 7 In empirical research, such as the one on abortion and crime by Donohue and Levitt
(2001) which we re-examine in some detail below (see Section 6.2), the investigators use lagged

values of the regressors in the hope of avoiding the endogeneity problem. However, in the context

of panel data models with fixed effects such a strategy does not solve the problem, and could even

accentuate it. As an illustration suppose (yit, xit) are generated as in Example 2. Substituting (22)

in (21), we have

yit = (µi + βcix) + θxi,t−1 + βκyi,t−1 + βεit + uit,

where θ = βρ, and, using (23) in the lagged (21),

yi,t−1 = (µi + βµix) + βωi,t−1 + ui,t−1,

which can also be rewritten as,

yit = µ∗i + θxi,t−1 + u∗it, (30)

where µ∗i = µi+βcix+βκ (µi + βµix), and u∗it = κβ2ωi,t−1+βκui,t−1+βεit+uit. It is clear that u∗it
and xi,t−1 = µix + ωi,t−1 are uncorrelated only when the regressor is strictly exogenous (κ = 0) in

which case the FE regression of yit on xi,t−1 consistently estimates the parameter θ = βρ. However,

in the weakly exogenous case (κ 6= 0), we obtain

p lim
N→∞

(
θ̂FE − θ

)
= κβ2 +O

(
T−1

)
,

where κβ2 is the bias from the correlation of xi,t−1 and u∗it, and the O
(
T−1

)
term is the weak

exogeneity bias due to the correlation between the error term u∗it and future regressors.

3.2 Half-panel jackknife FE estimator

Assume that T is even and consider the following half-panel jackknife FE estimator of β,

β̃FE = 2β̂FE−
1

2

(
β̂a,FE + β̂b,FE

)
, (31)

where β̂FE is the FE estimator defined in (12) using the full sample of T time periods, and β̂a,FE
and β̂b,FE are the FE estimators using the first T/2 and the last T/2 observations, respectively.

11



Specifically, the FE estimators β̂a,FE and β̂b,FE are

β̂a,FE = Q̂−1a,FEq̂a,FE , and β̂b,FE = Q̂−1b,FEq̂b,FE , (32)

where

Q̂a,FE =
N∑
i=1

T/2∑
t=1

(xit − x̄i·a) (xit − x̄i·a)
′

NT/2
, q̂a,FE =

N∑
i=1

T/2∑
t=1

(xit − x̄i·a) yit
NT/2

, (33)

Q̂b,FE =
N∑
i=1

T∑
t=T/2+1

(xit − x̄i·b) (xit − x̄i·b)
′

NT/2
, q̂b,FE =

N∑
i=1

T∑
t=T/2+1

(xit − x̄i·b) yit
NT/2

, (34)

and x̄i·a = 2T−1
∑T/2

t=1 xit, and x̄i·b = 2T−1
∑T

t=T/2+1 xit are the temporal averages of regressors

over the first and the second half sub-samples. In the following exposition, we assume that the

sample is suffi ciently large so that β̂a,FE and β̂b,FE are well defined (similarly to Assumption 6 for

the full sample FE estimator).

ASSUMPTION 7 (Existence of half-panel FE estimators) There exists N0, T0 > 0 such

that for all N > N0 and all even T ≥ T0, the matrices Q̂a,FE,Q̂b,FE and
(
Γ̄ (0)− 2

T Ψ̄T/2

)
are

invertible, where Q̂a,FE and Q̂b,FE are defined by (33) and (34), respectively, Γ̄ (0) is defined by

(8), and Ψ̄T/2 is defined by (14) with T replaced by T/2.

Using the same arguments as in the derivation of the small-T bias of the full-sample FE estimator

β̂FE in Proposition 2, we obtain (under Assumptions 1-3, 4.a, 5, and 7) the following small-T biases

of the half-panel FE estimates β̂a,FE and β̂b,FE :

lim
N→∞

E
(
β̂a,FE − β

)
= lim

N→∞
E
(
β̂b,FE − β

)
= − 2

T

(
Γ̄ (0)− 2

T
Ψ̄T/2

)−1
χ̄T/2,

and hence

lim
N→∞

1

2

[
E
(
β̂a,FE − β

)
+ E

(
β̂b,FE − β

)]
= − 2

T

(
Γ̄ (0)− 2

T
Ψ̄T/2

)−1
χ̄T/2. (35)

Using (16) and (35) we now obtain the following small-T bias of the jackknife FE estimator β̃FE ,

lim
N→∞

E
(
β̃FE−β

)
= − 2

T

(
Γ̄ (0)− 1

T
Ψ̄T

)−1
χ̄T +

2

T

(
Γ̄ (0)− 2

T
Ψ̄T/2

)−1
χ̄T/2. (36)

The above expression depends, in a complicated manner, on the ‘average degree of serial correlation’

in xit, represented by Γ̄ (0), Ψ̄T and Ψ̄T/2, and the ‘average degree of correlation’between uit and

xit′ , represented by χ̄T and χ̄T/2. Consider the special case where xit are (on average) serially

12



uncorrelated so that Ψ̄T = Ψ̄T/2 = 0k×k. Then

BiasT

(
β̃FE

)
= − 2

T
Γ̄ (0)−1

[
χ̄T − χ̄T/2

]
. (37)

But using (17),

χ̄T − χ̄T/2 =
T−1∑
h=1

(
1− h

T

)
γ̄ (h)−

T/2−1∑
h=1

(
1− 2h

T

)
γ̄ (h)

=

[(
1− 1

T

)
γ̄ (1)−

(
1− 2

T

)
γ̄ (1)

]
+

[(
1− 2

T

)
γ̄ (2)−

(
1− 4

T

)
γ̄ (2)

]
...

+

[(
1− T/2− 1

T

)
γ̄ (T/2− 1)−

(
1− 2 (T/2− 1)

T

)
γ̄ (T/2− 1)

]
+

T−1∑
h=T/2

(
1− h

T

)
γ̄ (h) ,

and after some simplifications we obtain

χ̄T − χ̄T/2 =

[
1

T
γ̄ (1) +

2

T
γ̄ (2) + ...+

T/2− 1

T
γ̄ (T/2− 1)

]
(38)

+

T−1∑
h=T/2

(
1− h

T

)
γ̄ (h) .

Using Proposition 1, it readily follows from (38) that∥∥∥χ̄T − χ̄T/2∥∥∥ = O

(
1

T

)
, (39)

and therefore in view of (37) we have BiasT
(
β̃FE

)
= O

(
T−2

)
. In the more general case where

the regressors, xit, are serially correlated the bias of the half-panel jackknife FE estimator is of the

same order, O
(
T−2

)
, as established in the following proposition.

Proposition 3 (Small-T bias of the half-panel jackknife FE estimator) Suppose yit, for i = 1, 2, ..., N

and t = 1, 2, ..., T is generated by the panel data model (11) with xit given by (2)-(3), and As-

sumptions 1-3, 4.a, and 5-7 hold. Then, for any fixed even T ≥ T0, where T0 is chosen so that

Assumptions 6 and 7 are satisfied, the small-T bias of the half-panel jackknife FE estimator β̃FE
defined in (31) is given by (36) and it is of order O

(
T−2

)
.
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Example 3 Using the set-up of Example 2, the exact small-T bias of β̃FE is given by

BiasT

(
β̃FE

)
= − 2

T

(
Γ̄ (0)− 1

T
Ψ̄T

)−1
χ̄T +

2

T

(
Γ̄ (0)− 2

T
Ψ̄T/2

)−1
χ̄T/2,

where χ̄T/2, Γ̄ (0), and Ψ̄T are given by (25),(27), and (28), respectively. After substituting these

terms, the small-T bias of β̃FE is

BiasT

(
β̃FE

)
= 2

(
1− ϕ2

)
κη2

1 + κ2η2

[
1

T − 2

fT/2 (ϕ)

1− 4ϕ
T−2fT/2 (ϕ)

− 1

T − 1

fT (ϕ)

1− 2ϕ
T−1fT (ϕ)

]
,

where fT (ϕ) is defined in (25), and ϕ = ρ + κβ. It is easily verified that this bias is of order

O
(
T−2

)
by noting that fT/2 (ϕ)− fT (ϕ) = O

(
T−1

)
, and, therefore, the term in the square bracket

is O
(
T−2

)
. Figure 1 plots BiasT

(
β̃FE

)
as a function of κ for T = 30, and ρ = 0.2 or 0, 5 and

η = 1 or 2. As can be seen the magnitude of BiasT
(
β̃FE

)
is very small for all admissible values

of κ, except for those values of κ,β and ρ that result in ϕ close to unity.

3.3 Asymptotic distribution of half-panel jackknife FE estimator

Suppose now that N,T →∞ jointly and note that(
β̃FE−β

)
= 2

(
β̂FE−β

)
− 1

2

[(
β̂a,FE−β

)
+
(
β̂b,FE−β

)]
,

where β̂FE , β̂a,FE and β̂b,FE are FE estimators for the full sample and the two half sub-samples -

all obtainable from the general formula in (12). Let

zFE =
1

NT

N∑
i=1

T∑
t=1

(xit − x̄i·)uit, (40)

za,FE =
2

NT

N∑
i=1

T/2∑
t=1

(xit − x̄i·a)uit, (41)

and

zb,FE =
2

NT

N∑
i=1

T∑
t=T/2+1

(xit − x̄i·b)uit, (42)
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and recall that Q̂FE , Q̂a,FE , and Q̂b,FE are defined by (13), (33) and (34), respectively. Then we

have

β̃FE−β = 2Q̂−1FEzFE −
1

2

(
Q̂−1a,FEza,FE + Q̂−1b,FEzb,FE

)
= Q̂−1FE

(
2zFE −

1

2
za,FE −

1

2
zb,FE

)
+

1

2

(
Q̂−1FE − Q̂−1a,FE

)
za,FE

+
1

2

(
Q̂−1FE − Q̂−1b,FE

)
zb,FE . (43)

Consider the properties of Q̂FE − Q̂a,FE when N,T →∞ jointly, and note that Q̂FE − Q̂a,FE can

be written as

Q̂FE − Q̂a,FE =
1

NT

N∑
i=1

T∑
t=1

(xit − x̄i·) x′it −
2

NT

N∑
i=1

T/2∑
t=1

(xit − x̄i·a) x′it

=
1

NT

N∑
i=1

T/2∑
t=1

[
xitx

′
it − x̄i·x

′
it − 2

(
xitx

′
it − x̄i·ax

′
it

)]
+

1

NT

N∑
i=1

T∑
t=T/2+1

(
xitx

′
it − x̄i·x

′
it

)

= − 1

NT

N∑
i=1

T/2∑
t=1

xitx
′
it −

1

N

N∑
i=1

x̄i·x̄
′
i·a/2 +

1

N

N∑
i=1

x̄i·ax̄
′
i·a

+
1

NT

N∑
i=1

T∑
t=T/2+1

xitx
′
it −

1

N

N∑
i=1

x̄i·x̄
′
i·a/2

=
1

2N

N∑
i=1

 2

T

T∑
t=T/2+1

xitx
′
it −

2

T

T/2∑
t=1

xitx
′
it

− 1

N

N∑
i=1

(
x̄i·x̄

′
i·a − x̄i·ax̄

′
i·a
)
.

But under Assumptions 2, 3 and 5,

2

T

T∑
t=T/2+1

xitx
′
it −

2

T

T/2∑
t=1

xitx
′
it

p→ 0k×k, and

x̄i·x̄
′
i·a − x̄i·ax̄

′
i·a

p→ 0k×k,

uniformly in i, as T →∞. Hence

Q̂FE − Q̂a,FE
p→ 0k×k,
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as N,T →∞ jointly, without any restrictions on the relative rates of N and T . Since also

p lim
N,T→∞

Q̂FE = Q = Γ̄ (0) , (44)

is nonsingular, it follows that(
Q̂−1FE − Q̂−1a,FE

)
p→ 0k×k, as N,T →∞, jointly.

Similarly,
(
Q̂−1FE − Q̂−1b,FE

)
p→ 0k×k, as N,T → ∞ jointly. Using these results in (43) and noting

that
√
NTza,FE = Op (1), and

√
NTzb,FE = Op (1), we obtain

√
NT

(
β̃FE−β

)
d∼
√
NTQ−1

(
2zFE −

1

2
za,FE −

1

2
zb,FE

)
,

as N,T → ∞ jointly. Substituting back the expressions for zFE , za,FE and zb,FE (given by (40),

(41) and (42)), we have

√
NT

(
β̃FE−β

)
d∼ 1√

NT
Q−1

[
2

N∑
i=1

T∑
t=1

(xit − x̄i·)uit

−
N∑
i=1

T/2∑
t=1

(xit − x̄i·a)uit −
N∑
i=1

T∑
t=T/2+1

(xit − x̄i·b)uit

 .
Let dita = xit − (2x̄i· − x̄i·a), ditb = xit − (2x̄i· − x̄i·b), and

dit = I (t ≤ T/2) dita + I (t > T/2) ditb, (45)

and note that
∑T

t=1 dit = 0k×1. Hence,

√
NT

(
β̃FE−β

)
d∼ Q−1

1√
NT

N∑
i=1

T∑
t=1

dituit.

Let T = CN ε for some 0 < C <∞ and ε > 0, and let N →∞. Since,

E

(
1√
NT

N∑
i=1

T∑
t=1

dituit

)
= −
√
NT

2

T

(
χ̄NT − χ̄N,T/2

)
,

where

χ̄NT =

T−1∑
h=1

(
1− h

T

)
γ̄N (h) , γ̄N (h) = N−1

N∑
i=1

γi (h) ,
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and χ̄NT − χ̄N,T/2 = O
(
T−1

)
. Then

E

[
Q−1

1√
NT

N∑
i=1

T∑
t=1

dituit

]
= O

(√
NT

T 2

)
= O

(
N−

3ε−1
2

)
,

and E
[√

NT
(
β̃FE−β

)]
→ 0k×1 when ε > 1/3. Hence, for T = CN ε, with ε > 1/3, and N →∞,

we obtain

AsyV ar
(√

NT β̃FE

)
= Q−1RQ−1, (46)

where

R = lim
N,T→∞

1

NT
E

 N∑
i=1

N∑
j=1

T∑
t=1

T∑
s=1

ditd
′
jsuitujs

 .
Although dit is defined as a function of the regressors, it does not depend on the regressor fixed

effects. Specifically, after using (2) in the definition of dit, we obtain dit = bit, where

bit = I (t ≤ T/2) bita + I (t > T/2) bitb, (47)

bita = ωit − (2ω̄i· − ω̄i·a) , bitb = ωit − (2ω̄i· − ω̄i·b), and ω̄i·, ω̄i·a and ω̄i·b are the full and the two
sub-samples temporal averages defined in the same way as x̄i·, x̄i·a and x̄i·b. Since {bit, uit} are
cross-sectionally independent, then E

(
bitb

′
jsuitujs

)
= 0k×k for i 6= j, and

R = lim
N,T→∞

1

NT
E

(
N∑
i=1

T∑
t=1

T∑
s=1

bitb
′
isuituis

)
, (48)

which does not depend on the fixed effects. Hence, R can be estimated consistently by

R̂FE=
1

NT

N∑
i=1

T∑
t=1

ditd
′
itû

2
it,FE =

1

NT

N∑
i=1

T∑
t=1

ĥit,FEĥ′it,FE , (49)

where ĥit,FE = ditûit,FE and ûit,FE = (yit − ȳi·) − β̃FE (xit − x̄i·), in which ȳi· is the temporal

average of yit defined in the same way as x̄i·.

The next proposition establishes consistency of R̂FE and summarizes the earlier result on as-

ymptotic distribution.

Proposition 4 (Asymptotic distribution of half-panel jackknife FE estimator) Suppose yit, for

i = 1, 2, ..., N and t = 1, 2, ..., T is generated by panel data model (11) with xit given by (2)-

(3), Assumptions 1-3, 4.b, and 5-7 hold, and N,T → ∞ jointly such that T = CN ε, for some

0 < C <∞ and ε > 1/3. Then the asymptotic distribution of the half-panel jackknife FE estimator

β̃FE defined by (31) is given by

√
NT

(
β̃FE − β

)
d∼ N

(
0,Q−1RQ−1

)
,
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where Q and R are defined by (44) and (48), respectively. A consistent estimator of the asymptotic

variance of β̃FE is given by

ÂsyV ar
(√

NT β̃FE

)
= Q̂−1FER̂FEQ̂−1FE, (50)

where Q̂FE and R̂FE are defined by (13) and (49), respectively.

4 Extensions

4.1 Models with fixed and time effects

Consider now panel data models with fixed (µi) and time effects (δt)

yit = µi + δt + x′itβ + uit. (51)

The regressors are generated as before, but are now generalized to have time effects, δtx, of their

own, namely

xit = µix + δtx + ωit, ωit =
∞∑
s=0

Aisvi,t−s, (52)

The time effects, δt and δtx, are assumed to satisfy the following assumption.

ASSUMPTION 8 (Time effects) Time effects, δt and δtx, for t = 1, 2, ..., T , can be non-

stochastic or stochastic. In either case, E |δt| < K and E ‖δtx‖ < K.

The fixed and time effect (FE-TE) estimators for the full sample and the half-samples are given

by

β̂FE−TE = Q̂−1FE−TEq̂FE−TE , (53)

β̂a,FE−TE = Q̂−1a,FE−TEq̂a,FE−TE , and β̂b,FE−TE = Q̂−1b,FE−TEq̂b,FE−TE , (54)

where

Q̂FE−TE =

N∑
i=1

T∑
t=1

(xit − x̄i· − x̄·t + x̄) (xit − x̄i· − x̄·t + x̄)′

NT
, (55)

Q̂a,FE−TE =
N∑
i=1

T/2∑
t=1

(xit − x̄i·a − x̄·t + x̄a) (xit − x̄i·a − x̄·t + x̄a)
′

NT/2
, (56)

Q̂b,FE−TE =

N∑
i=1

T∑
t=T/2+1

(xit − x̄i·b − x̄·t + x̄b) (xit − x̄i·b − x̄·t + x̄b)
′

NT/2
, (57)
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and

q̂FE−TE =
1

NT

N∑
i=1

T∑
t=1

(xit − x̄i· − x̄·t + x̄) yit, q̂a,FE−TE =
2

NT

N∑
i=1

T/2∑
t=1

(xit − x̄i·a − x̄·t + x̄a) yit,

q̂b,FE−TE =
2

NT

N∑
i=1

T∑
t=T/2+1

(xit − x̄i·b − x̄·t + x̄b) yit,

in which x̄·t = N−1
∑N

i=1 xit is the cross section average of regressors at a point in time t,

x̄ = (NT )−1
∑N

i=1

∑T
t=1 xit is the overall (double) average of regressors for the full sample, and

x̄a = 2 (NT )−1
∑N

i=1

∑T/2
t=1 xit and x̄b = 2 (NT )−1

∑N
i=1

∑T
t=T/2+1 xit are the overall averages of

regressors over the two sub-samples.

The FE-TE estimators are well defined only when Q̂FE−TE , Q̂a,FE−TE , and Q̂b,FE−TE are

invertible. This is postulated in the following assumption, which corresponds to Assumptions 6

and 7.

ASSUMPTION 9 (Existence of FE-TE estimators) There exists N0, T0 > 0 such that for

all N > N0 and all even T ≥ T0, Q̂FE−TE, Q̂a,FE−TE, and Q̂b,FE−TE, defined by (55), (56),

and (57), respectively, are positive definite, and matrices
[
Γ̄ (0)− 1

T Ψ̄T

]
and

[
Γ̄ (0)− 2

T Ψ̄T/2

]
are

invertible, where Γ̄ (0) and Ψ̄T are defined in Assumptions 5 and 6.

The next proposition establishes that the small-T bias of the FE-TE estimator and its half-

panel jackknife bias-corrected version is identical to the small-T biases obtained in the context of

the panel data model without time effects considered earlier.

Proposition 5 (Small-T bias of the FE-TE estimator and its half-panel jackknife version) Suppose
yit, for i = 1, 2, ..., N and t = 1, 2, ..., T , is generated by the panel data model (51)-(52), and

Assumptions 1-3, 4.a, 5, and 8-9 hold. Then, for any even T ≥ T0, where T0 is given by Assumption
9, we have

lim
N→∞

E
(
β̂FE−TE − β

)
= − 1

T

[
Γ̄ (0)− 1

T
Ψ̄T

]−1
χ̄T = O

(
T−1

)
, (58)

and

lim
N→∞

E
(
β̃FE−TE − β

)
= − 2

T

[
Γ̄ (0)− 1

T
Ψ̄T

]−1
χ̄T +

2

T

[
Γ̄ (0)− 2

T
Ψ̄T/2

]−1
χ̄T/2 = O

(
T−2

)
,

(59)

where β̂FE−TE is defined in (53), its half-panel jackknife bias-corrected version β̃FE−TE is given

by

β̃FE−TE = 2β̂FE−TE−
1

2

(
β̂a,FE−TE + β̂b,FE−TE

)
, (60)

β̂a,FE−TE and β̂b,FE−TE are defined in (54), Γ̄ (0) is defined in Assumption 5, Ψ̄T is defined in

(14), and χ̄T is defined by (17). Ψ̄T/2 and χ̄T/2 are obtained from the expressions for Ψ̄T and χ̄T
by replacing T with T/2.
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Let

zFE−TE =
1

NT

N∑
i=1

T∑
t=1

(xit − x̄i· − x̄·t + x̄)uit, (61)

za,FE−TE =
2

NT

N∑
i=1

T/2∑
t=1

(xit − x̄i·a − x̄·t + x̄a)uit, zb,FE−TE =
2

NT

N∑
i=1

T∑
t=T/2+1

(xit − x̄i·b − x̄·t + x̄b)uit.

Then similar to (43), the half-panel jackknife bias-corrected FE-TE estimator β̃FE−TE can be

written as

β̃FE−TE − β = Q̂−1FE−TE

(
2zFE−TE −

1

2
za,FE−TE −

1

2
zb,FE−TE

)
(62)

+
1

2

(
Q̂−1FE−TE − Q̂−1a,FE−TE

)
za,FE−TE +

1

2

(
Q̂−1FE−TE − Q̂−1b,FE−TE

)
zb,FE−TE .

Using results (A.1) and (A.2) of Lemma 1 in the Appendix, and noting that

Q̂FE−TE
p→ Q = Γ̄ (0) , as N,T →∞ jointly,

where Γ̄ (0) is invertible under Assumption 5, we obtain(
Q̂−1FE−TE − Q̂−1a,FE−TE

)
p→ 0k×k and

(
Q̂−1FE−TE − Q̂−1b,FE−TE

)
p→ 0k×k,

asN,T →∞ jointly. Using these results in (62) and noting that (as in the FE case)
√
NTza,FE−TE =

Op (1) and
√
NTzb,FE−TE = Op (1), then we have

√
NT

(
β̃FE−TE − β

)
d∼
√
NTQ−1

(
2zFE−TE −

1

2
za,FE−TE −

1

2
zb,FE−TE

)
,

as N,T →∞ jointly. Substituting the expressions for zFE−TE , za,FE−TE , and zb,FE−TE , we obtain

√
NT

(
β̃FE−TE − β

)
d∼ Q−1

1√
NT

N∑
i=1

T∑
t=1

d∗ituit, (63)

where d∗it = I (t ≤ T/2) d∗ita + I (t > T/2) d∗itb, and

d∗ita = xit − (2x̄i· − x̄i·a)− x̄·t + (2x̄− x̄a) , d∗itb = xit − (2x̄i· − x̄i·b)− x̄·t + (2x̄− x̄b) .

Consequently, we propose the following estimator of the asymptotic variance of
√
NT β̃FE−TE :

ÂsyV ar
(√

NT β̃FE−TE

)
= Q̂−1FE−TER̂FE−TEQ̂−1FE−TE , (64)
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where Q̂FE−TE is given by (55),

R̂FE−TE=
1

NT

N∑
i=1

T∑
t=1

d∗itd
∗′
it û

2
it,FE−TE , (65)

and

ûit,FE−TE = (yit − ȳi· − ȳ·t − ȳ)− β̃FE−TE (xit − x̄i· − x̄·t + x̄) ,

in which ȳ·t and ȳ are defined in the same way as x̄·t and x̄.

The following proposition establishes suffi cient conditions for the consistency of ÂsyV ar
(√

NT β̃FE−TE

)
and for the asymptotic unbiasedness of β̃FE−TE .

Proposition 6 (Asymptotic distribution of jackknife two-way FE estimator) Suppose yit, for i =

1, 2, ..., N and t = 1, 2, ..., T , is generated by panel data model (51)-(52), Assumptions 1-3, 4.b, 5,

and 8 hold, and N,T → ∞ jointly such that T = CN ε, for some 0 < C < ∞ and ε > 1/3. Then

the asymptotic distribution of the half-panel jackknife two-way FE estimator, β̃FE−TE, defined by

(60), is given by √
NT

(
β̃FE−TE − β

)
d∼ N

(
0,Q−1RQ−1

)
, (66)

where Q = Γ̄ (0), Γ̄ (0) is defined in Assumption (5) and R is defined by (48). A consistent esti-

mator of the asymptotic variance of β̃FE−TE is given by

ÂsyV ar
(√

NT β̃FE−TE

)
= Q̂−1FE−TER̂FE−TEQ̂−1FE−TE, (67)

where Q̂FE−TE and R̂FE−TE are defined by (55) and (65), respectively.

4.2 Unbalanced panels

In this sub-section we consider the extension of the jackknife procedure to unbalanced panels. This

is an important extension for empirical analysis since most data sets are unbalanced. Suppose that

for cross section unit i we have observations on yit and xit over the period t = Tfi, Tfi + 1, ..., Tli,

where Tfi and Tli are the first and last time periods for which data is available for this cross section

unit. Let Ti = Tfi− Tli + 1, Tmax = maxTi, Tmin = minTi, and denote the average number of time

series observations available by T̄N = N−1
∑N

i=1 Ti, and its limit by T̄ = limN→∞ T̄N . Moreover,

without any loss of generality, let the first time period of the panel be 1 = mini Tfi and the last

T = maxi Tli. In this setting, gaps in the data are not allowed, but the panel could be unbalanced

at both ends of the time period (1, T ).

4.2.1 Unbalanced FE panels

Consider the FE panel data model (11) first. The FE estimator in the unbalanced panel data

setting is given by

β̂FEu = Q̂−1FEuq̂FEu, (68)
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where

Q̂FEu =
1∑N
i=1 Ti

N∑
i=1

Tli∑
t=Tfi

[xit − x̄i· (Ti)] [xit − x̄i· (Ti)]
′ , q̂FEu =

1∑N
i=1 Ti

N∑
i=1

Tli∑
t=Tfi

[xit − x̄i· (Ti)] yit

(69)

and x̄i· (Ti) = 1
Ti

∑Tli
t=Tfi

xit. Let

ϑi =
Ti
T̄N
, (70)

and initially assume that |ϑi| < K for all i. Also, as before, we require β̂FE and its large-N

probability limit to exist. This is ensured by the following assumption, which replaces the earlier

Assumption 6.

ASSUMPTION 10 (Existence of FE estimators for unbalanced panels) There exists N0, T0 >
0 such that for all N > N0 and all Ti ≥ T0, Q̂FEu defined in (69) is a positive definite matrix,

Γ̄ϑ (0)− T̄−1Ψ̄{Ti} and Γ̄ϑ (0) are invertible, where

Γ̄ϑ (0) = lim
N→∞

1

N

N∑
i=1

ϑiΓi (0) , (71)

Ψ̄{Ti} = lim
N→∞

N−1
N∑
i=1

ΨiTi, (72)

ϑi is defined in (70), Γi (0) is defined in Assumption 5, and

ΨiTi = Γi (0) +

Ti−1∑
i=1

(
1− h

Ti

)[
Γi (h) + Γ′i (h)

]
. (73)

The following proposition derives the bias of β̂FE when the time dimensions of the panel {Ti}
are all fixed and N →∞.

Proposition 7 (Small-T bias of the FE estimator for unbalanced panels) Suppose yit, for t =

Tfi, Tfi + 1, ..., Tli, i = 1, 2, ..., N , is generated by the panel data model (11) with xit given by (2)-

(3), and Assumptions 1-3, 4.a, 5, and 10 hold. Then for any given {Ti} such that Ti ≥ T0 for all

i, where T0 is given by Assumption 10, we have

lim
N→∞

(
β̂FEu − β

)
=

1

T̄

[
Γ̄ϑ (0)− T̄−1Ψ̄{Ti}

]−1
χ̄{Ti} = O

(
T̄−1

)
,

where the unbalanced FE estimator, β̂FEu, is defined by (68), Γ̄ϑ (0) and Ψ̄{Ti} are defined by (71)

and (72), respectively,

χ̄{Ti}= lim
N→∞

1

N

N∑
i=1

Ti−1∑
i=1

(
1− h

Ti

)
γi (h) = O

(
T̄−1

)
, (74)
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and γi (h) is defined by (9).

Proposition 7 establishes that the bias of the FE estimator in the case of unbalanced panels is of

order O
(
T̄−1

)
, where T̄ is the limit of the average time dimension as N →∞. Moreover, the bias

also depends, among other factors, on the degree to which the panel is unbalanced as characterized

by the distribution of ϑi over i.

A simple way of implementing the half-panel jackknife bias correction is to assume that Ti
are all even and to divide the unbalanced sample into two unbalanced sub-samples; the first sub-

sample (denoted by subscript a) consisting of the first Ti/2 observations for cross section unit i,

i = 1, 2, ..., N , and the second sub-sample (denoted by subscript b) consisting of the last Ti/2

observations of the same ith unit. Specifically, let (using, for simplicity, the same notations as in

the case of balanced panels)

β̂a,FEu=Q̂−1a,FEuq̂a,FEu and β̂b,FEu= Q̂
−1
b,FEuq̂b,FEu, (75)

where

Q̂a,FEu =
2∑N
i=1 Ti

N∑
i=1

Tfi+Ti/2−1∑
t=Tfi

[xit − x̄i·a (Ti)] [xit − x̄i·a (Ti)]
′ , (76)

q̂a,FEu =
2∑N
i=1 Ti

N∑
i=1

Tfi+Ti/2−1∑
t=Tfi

[xit − x̄i·a (Ti)] yit,

and

Q̂b,FEu =
2∑N
i=1 Ti

N∑
i=1

Tli∑
t=Tfi+Ti/2

[xit − x̄i·b (Ti)] [xit − x̄i·b (Ti)]
′ , (77)

q̂b,FEu =
2∑N
i=1 Ti

N∑
i=1

Tli∑
t=Tfi+Ti/2

[xit − x̄i·b (Ti)] yit,

x̄i·a (Ti) =
2

Ti

Tfi+Ti/2−1∑
t=Tfi

xit, x̄i·b (Ti) =
2

Ti

Tli∑
t=Tfi+Ti/2

xit.

We continue to assume that the sample is suffi ciently large so that the half-panel FE estimates

β̂a,FE and β̂b,FE are well defined (similar to Assumption 7 for the balanced panel).

ASSUMPTION 11 (Existence of half-panel FE estimators for unbalanced panels) There
exists N0, T0 > 0 such that for all N > N0 and all even Ti ≥ T0, the matrices Q̂a,FEu, Q̂b,FEu,

and Γ̄ϑ (0) − 2T̄−1Ψ̄{Ti/2} are invertible, where Q̂a,FEu and Q̂b,FEu are defined in (76) and (77),

respectively, and Γ̄ϑ (0) and Ψ̄{Ti/2} are defined by (71) and (72), respectively.
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Using the same arguments as in the proof of Proposition 7, we obtain

lim
N→∞

E
(
β̂FE,a − β

)
= lim

N→∞
E
(
β̂FE,b − β

)
=
[
Γ̄ϑ (0)− 2T̄−1Ψ̄{Ti/2}

]−1
χ̄{Ti/2},

where χ̄{Ti/2} is defined in (74), specifically

χ̄{Ti/2}= lim
N→∞

1

N

N∑
i=1

2ϑi
Ti

Ti/2−1∑
i=1

(
1− 2h

Ti

)
γi (h) = O

(
T̄−1

)
. (78)

The large-N small-T bias of the half-panel jackknife estimator defined as

β̃FEu = 2β̂FEu −
1

2

(
β̂a,FEu + β̂b,FEu

)
, (79)

where the unbalanced FE estimator β̂FEu is given by (68), and its half-panel counterparts β̂a,FEu
and β̂b,FEu are given by (75), is established in the next proposition.

Proposition 8 (Small-T bias of half-panel jackknife FE estimator for unbalanced panels) Suppose
yit, for t = Tfi, Tfi + 1, ..., Tli, i = 1, 2, ..., N , is generated by the panel data model (11) with xit

given by (2)-(3), and Assumptions 1-3, 4.a, 5, and 10-11 hold. Then, for any given {Ti} such
that Ti ≥ T0 and is an even integer for all i, where T0 is chosen so that Assumptions 6 and 7 are

satisfied, we have

BiasT

(
β̃FEu

)
= lim

N→∞
E
(
β̃FEu − β

)
=

2

T̄

[
Γ̄ϑ (0)− T̄−1Ψ̄{Ti}

]−1
χ̄{Ti} −

2

T̄

[
Γ̄ϑ (0)− 2T̄−1Ψ̄{Ti/2}

]−1
χ̄{Ti/2}

= O
(
T̄−1T̄−1h

)
= O

(
T̄−2h

)
,

where β̃FEu is defined in (79),

T̄h = lim
N→∞

T̄h,N , (80)

T̄h,N is the sample harmonic mean of Ti,

T̄h,N =

(
N−1

N∑
i=1

1

Ti

)−1
, (81)

Γ̄ϑ (0) and Ψ̄{Ti} are defined by (71) and (72), respectively, and χ̄{Ti} is defined by (74).

Thus, BiasT
(
β̃FEu

)
is of order O

(
T̄−2h

)
in general, and when ϑi are bounded below and above

(with a possible exception of a finite number of units), then T̄ and T̄h are of the same order of

magnitude and BiasT
(
β̃FEu

)
= O

(
T̄−2

)
.

Consider now the case when N, {Ti} → ∞ jointly such that 0 < K1 < ϑi < K2 < ∞ for

all i, and Tmin = KN ε, for some ε > 1/3 and 0 < K < ∞. Under these conditions, β̃FEu is
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asymptotically unbiased and its variance can be consistently estimated, as

ÂsyV ar
(√

NT β̃FEu

)
= Q̂−1FEuR̂FEuQ̂

−1
FEu,

where Q̂FE is defined in (69), and

R̂FEu=
1∑N
i=1 Ti

N∑
i=1

Tli∑
t=Tfi

ditd
′
itû

2
it,FEu, (82)

in which dit is given by (45) with the averages x̄i·, x̄i·a, and x̄i·b replaced by their unbalanced

sample counterparts x̄i· (Ti), x̄i·a (Ti), and x̄i·b (Ti), respectively, and

ûit,FEu = (yit − ȳi)− β̃FEu [xit − x̄i· (Ti)] ,

for t = Tfi, Tfi + 1, ..., Tli, i = 1, 2, ..., N . These results are formally stated in the next proposition.

Proposition 9 (Asymptotic distribution of the jackknife FE estimator for unbalanced panels) Sup-
pose yit, for t = Tfi, Tfi + 1, ..., Tli, i = 1, 2, ..., N , is generated by panel data model (11) with xit

given by (2)-(3), Assumptions 1-3, 4.a, 5, and 10-11 hold, and N, {Ti} → ∞ jointly such that

Tmin = CN ε, for some 0 < C < ∞ and ε > 1/3, and there exist constants 0 < K1,K2 < ∞ such

that 0 < K1 < ϑi < K2 <∞ for all i except a finite set of cross section units. Then the asymptotic

distribution of the half-panel jackknife FE estimator for unbalanced panels, β̃FEu, defined by (79)

is given by √
NT

(
β̃FEu − β

)
d∼ N

(
0,Q−1RQ−1

)
,

where Q and R are defined by (44) and (48), respectively, and asymptotic variance of β̃FEu can be

consistently estimated by

ÂsyV ar
(√

NT β̃FEu

)
= Q̂−1FEuR̂FEuQ̂

−1
FEu,

where Q̂FEu and R̂FEu are defined by (69) and (82), respectively.

4.2.2 Unbalanced FE-TE panels

Consider the FE-TE panel data model (51)-(52) in the case of an unbalanced sample next. The

FE-TE estimator in unbalanced panels can be obtained by using two sets of dummy variables to

take account of fixed and time effects. Let

ȳi· (Ti) =
1

Ti

Tli∑
t=Tfi

yit, ȳ·t (Nt) = N−1t
∑
i∈St

yit, and ȳ (T1, T2, ..., TN ) =
1∑N
i=1 Ti

N∑
i=1

Tli∑
t=Tfi

yit,
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where St is the index set of units with available data for time period t. It is important to highlight

that the simple transformation used for the balanced FE-TE panels

y∗it = yit − ȳi· (Ti)− ȳ·t (Nt) + ȳ (T1, T2, ..., TN ) ,

is no longer valid and does not remove the fixed and time effects when the panel is unbalanced.

This simple transformation (applied to all variables) and the dummy variable approach are identical

only when the panel is balanced.

It is also important to highlight that de-meaning the variables by subtracting the time averages

first and then running a panel regression of [yit − ȳi· (Ti)] on [xit − x̄i· (Ti)] and time dummies does

not filter out the fixed and time effects either. Although empirical papers in the literature often do

not report the details of how the FE-TE estimates are computed in the case of unbalanced panels,

it is our impression that the latter approach of adding time dummies to a panel regression using

demeaned data is often used in practice.

Adding both time and fixed effect dummies in a regression using non-transformed data can be

computationally cumbersome when N + T is large. To address such complications, Wansbeek and

Kapteyn (1989) proposed a computationally convenient transformation of variables that eliminates

the fixed and time effects simultaneously, and is identical to the fixed and time dummy approach.6

In the Monte Carlo experiments and the empirical applications, we apply Wansbeek and Kapteyn

(WK) transformation to compute the FE-TE estimates for unbalanced panels. In the case of jack-

knife FE-TE estimators for unbalanced panels, we first construct the two sub-samples as described

in sub-section 4.2.1, and then apply WK transformation to eliminate the fixed and time effects

from each of the two sub-samples, separately.

However, for theoretical derivations and proofs, the use of WK transformation is rather com-

plicated and in what follows we establish theoretical results for a simplified FE-TE estimation for

unbalanced panels, which is based on the insight that in the case of panels with weakly exogenous

regressors, it is only the de-meaning across the time dimension that gives rise to the small-T bias.

In FE-TE panels with strictly exogenous regressors, indices i and t are interchangeable. This is no

longer the case in panels with weakly exogenous regressors, where the FE estimator is subject to

the small-T bias, but the TE estimator (in a model with time effects only) is not subject to any

bias. Let n denote the number of cross section units with observations on all T time periods, and

assume that n/N is bounded away from 0 as N → ∞, namely n and N expand at the same rate.

Let Sn be the index set of such n cross section units, and define the simple cross section averages

ȳ·t (n) = n−1
∑
i∈Sn

yit and x̄·t (n) = n−1
∑
i∈Sn

xit. (83)

Averaging (51) across the n cross section units in Sn, and then subtracting this average from (51)

6See Section 9.4 of Baltagi (2008) for a textbook exposition of Wansbeek and Kapteyn transformation.
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yields the following transformed unbalanced FE specification:

ỹit = µ̃i + β′x̃it + ũit, (84)

for t = Tfi, Tfi+ 1, ..., Tli, i = 1, 2, ..., N , where ỹit = yit− ȳ·t (n), µ̃i = µi− µ̄ (n), x̃it = xit− x̄·t (n),

ũit = uit − ū·t (n), and, similar to (83), µ̄ (n) = n−1
∑

i∈Sn µi and ū·t (n) = n−1
∑

i∈Sn uit. The

transformed model (84) does not exactly correspond to the unbalanced FE model analyzed above,

but

ū·t (n) = Op

(
n−1/2

)
, and ω̄·t (n) = n−1

∑
i∈Sn

ωi (n) = Op

(
n−1/2

)
,

uniformly in t, x̃it = µ̃ix+ωit+Op
(
n−1/2

)
, and ỹit = µ̃i+β

′ (µ̃ix + ωit)+uit+Op
(
n−1/2

)
. Hence,

(84) corresponds to the unbalanced FE case analyzed above with the exception of the Op
(
n−1/2

)
terms. It can be established that these terms do not matter for any of the findings above for the

unbalanced FE case. Hence, we propose a half-panel jackknife FE-TE estimator by applying the

jackknife bias correction procedure to the FE estimator using the transformed variables {ỹit, x̃it}.
The main findings for the half-panel jackknife FE estimator also extend to the half-panel jackknife

FE-TE estimator.

5 Small sample properties

Using Monte Carlo techniques, we now investigate the small sample properties of the FE and FE-TE

estimators and their half-panel jackknife bias-corrected versions under different set-ups, allowing

for different degrees of weak exogeneity of the regressors, with or without lags of the dependent

variable, and for both balanced and unbalanced samples. We selectively report some key results.

The full set of results are summarized in an online supplement.

5.1 Data generating process (DGP)

Observations on yit and xit are generated jointly by

yit = µi + δt + λyyi,t−1 + (1− λy)βxit + uit, (85)

and

xit = (1− λx)µix + (1− λx)κxyi,t−1 + λxxi,t−1 + vit, (86)

for i = 1, 2, . . . , N and t = −99,−98, . . . , 0, 1, 2, . . . , T , using yi,−100 = xi,−100 = 0 as the starting

values. The first 100 time observations (t = −99,−98, . . . , 0) are discarded. The fixed effects and
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the idiosyncratic errors are generated as:

µix ∼ IIDN (1, 1) , µi = µix + ηyi, ηyi ∼ IIDN (1, 1) , (87)

vit ∼ IIDN
(
0, σ2vi

)
, σ2vi = 0.5 + 0.25η2vi, η2vi ∼ IIDχ2 (2) , (88)

uit ∼ IIDN
(
0, σ2ui

)
, σ2ui = 0.5 + 0.25η2ui, η2ui ∼ IIDχ2 (2) . (89)

This set up allows the fixed effects in the yit and xit equations to be correlated, which in turn

induces correlation between µi and xit. For the time effects, δt, we consider three possibilities: no

time effects, linear time effects, and quadratic time effects, namely

δt = 0, 0.025t, or 0.025t− 0.001t2. (90)

We consider three values for λy, representing a "static" panel regression with λy = 0, and two

dynamic panel regressions with a moderate and high values for λy 6= 0:

λy = 0, 0.4, or 0.8. (91)

We also consider three values for the feedback coeffi cient, κx (no feedbacks, a low degree of feed-

backs, and a medium degree of feedbacks):

κx = 0, 0.2, or 0.4. (92)

Throughout we set β = 0.5 and λx = 0.25.

In total, we conducted 27 experiments covering all combinations of δt, λy and κx, summarized

in Table 1. All experiments were carried out for all N ∈ {30, 60, 100, 200, 500, 1000} and T ∈
{30, 60, 100, 200} combinations, with the number of replications set to R = 2, 000.

5.2 Experiments without lags of the dependent variable

In the case where λy = 0, the parameter of interest, β (= 0.5), is estimated using the following four

estimators:

1. FE estimator β̂FE . In experiments without time effects (δt = 0), the FE estimator is defined

by (12) and based on the panel regression

yit = µi + βxit + eit. (93)

When δt = 0.025t or 0.025t− 0.001t2, the FE estimator is based on

yit = µi + gt+ βxit + eit. (94)

Note that when δt = 0.025t− 0.001t2, the panel regression model (94) is mis-specified.
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2. Half-panel jackknife FE estimator β̃FE defined by (31).

3. FE-TE estimator β̂FE−TE is defined by (53), and based on

yit = µi + δt + βxit + eit. (95)

4. Half-panel jackknife FE-TE estimator β̃FE−TE defined by (60).

As a benchmark, initially we report the results of Experiment 1, where there are no time effects

(δt = 0) and the regressor, xit, is strictly exogenous (since κx = λy = 0). We report bias (×100),

root mean square error (RMSE, ×100), and size (in %) at the 5 percent nominal level, for the

estimation of β = 0.5. In this case, FE and half-panel jackknife FE estimators are both valid for

a fixed T and have the same distribution asymptotically as N → ∞. But one would expect the
FE estimator to be more effi cient in small samples, since in this case the bias correction is not

required. This is confirmed by the small sample results reported in Table 2. The FE estimator

performs slightly better than its jackknife version (around 2% in terms of RMSEs) when T = 30,

but for larger values of T both estimators perform very similarly. The inclusion of time dummies

to allow for possible time effects does not alter this conclusion. The plot of power functions in

Figure 2 for selected values of N and T also show that the two estimators have very similar power

performances. These benchmark results are important, since they show that half-panel jackknife

FE estimators perform well even if they are applied when bias corrections are not required.

Consider now Experiment 3 where xit is weakly exogenous with κx = 0.4, and λy = δt = 0.

The results are summarized in Table 3.7 It is clear that as compared to β̃FE (the jackknife bias-

corrected estimator), the standard FE estimator, β̂FE is subject to the small-T bias. For example,

for T = 30 and N = 200, the bias of FE estimator is −0.0013 as compared to 0.0004 for the

bias-corrected version. Although, in general, there is a trade off between bias reduction and the

variance, the RMSEs in Table 3 clearly show that overall the bias correction has been beneficial,

with substantial gains for small T and large N . It is also interesting that the gain in terms of RMSE

rises as N is increased relative to T . For example, when T = 30 and N = 200, the RMSE of the FE

estimator is around 43% larger than the RMSE of the bias-corrected estimator, whilst this figure

rises to 250% for T = 30 and N = 1, 000. Also, as to be expected, the bias of the FE estimator

declines with T and its RMSE falls towards its bias-corrected counterpart. Finally, as predicted

by the theory, the FE estimator shows substantial size distortions when N is large relative to T ,

with its size approaching 70% for T = 30 and T = 1, 000. The results for FE-TE and jackknife

FE-TE estimators are given at the lower part of Table 3. The performance of β̂FE−TE is similar

to β̂FE , while the jackknife estimators continue to perform well, regardless of the feedbacks. The

half-panel jackknife estimator, β̃FE−TE , has negligible bias and the correct size for all values of

N and T considered. The power functions in Figure 3 also show that the half-panel jackknife FE

7Results for κx = 0.2 lie somewhere between the ones reported for κx = 0 and κx = 0.4, and are provided in an
online supplement.
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and FE-TE estimators perform well, while standard FE and FE-TE estimators are not correctly

centered at the true value of β (= 0.5).

Experiments 7 and 9 feature quadratic time effects (δt = 0.025t − 0.001t2), with two choices

for the feedback parameter, κx. The results for κx = 0 and 0.4 are summarized in Tables 4 and 5,

respectively. Note that in these experiments β̂FE and β̃FE are mis-specified since they don’t allow

for the time effects. Interestingly, comparing the size distortion of β̂FE in Table 4 (when κx = 0)

with the size distortion of β̂FE in Table 5 (when κx = 0.4), the latter size distortions are huge, with

rejection rates close to 100% for T > 60, whereas the former size distortions are very small. In the

strictly exogenous case, the size becomes a problem only when T is large (T > 60), with the reported

over-rejections for the largest values of T considered being less than 13%. The miss-specification of

time effects compounded with the small T bias has resulted in very poor performance for β̂FE in

the weakly exogenous case. Since the presence of time dummies allows for arbitrary time effects,

the performance of FE-TE only suffers in the weakly exogenous case (Table 5), and overall the

performance of β̂FE−TE in Table 5 is similar to β̂FE and β̂FE−TE in experiments without time

dummies in DGP (see Table 3). The half-panel jackknife FE-TE estimator β̃FE−TE performs well

regardless of the time effects in the DGP, as expected. The power functions in Figures 4 and 5 also

show that when xit is strictly exogenous (Figure 4, with κx = 0), even though bias corrections are

not required, the half-panel jackknife FE-TE β̃FE−TE performs almost as well as the non-jackknife

FE-TE β̂FE−TE . But when xit is weakly exogenous (Figure 5, with κx = 0.4), the power functions

of FE-TE estimators, β̂FE−TE , are not centered at the true value of β = 0.5, while the ones for the

half-panel jackknife FE-TE estimator, β̃FE−TE , are correctly centered.

5.3 Experiments with lagged dependent variables

In these experiments λy = 0.4 or 0.8, and the parameter of interest is given by the long-run

coeffi cient, β = −b/φ, where b and φ are estimated using the following dynamic panel regressions:

1. FE estimator β̂FE . When δt = 0, β̂FE is based on

∆yit = µi + φyi,t−1 + bxit + eit, (96)

and when δt = 0.025t or 0.025t− 0.001t2, β̂FE is based on:

∆yit = µi + gt+ φyi,t−1 + bxit + eit. (97)

As before, we note that when δt = 0.025t − 0.001t2, the model (97) is mis-specified. β is

estimated by

β̂FE = − b̂FE
φ̂FE

. (98)
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The estimator for the asymptotic variance of β̂FE is obtained by the delta method:

ÂsyV ar
(
β̂FE

)
=

(
b̂FE

φ̂
2

FE

,− 1

φ̂FE

)
ÂsyV ar

(
φ̂FE

b̂FE

)(
b̂FE

φ̂
2

FE

,− 1

φ̂FE

)′
. (99)

2. Half-panel jackknife FE estimator β̃FE . We first compute the half-panel bias-corrected
FE estimators φ̃FE and b̃FE based on φ̂FE and b̂FE . β̃FE is obtained as

β̃FE = − b̃FE
φ̃FE

,

and the estimator for the asymptotic variance of β̃FE is obtained by the delta method similar

to (99).

3. FE-TE estimator β̂FE−TE is based on

∆yit = µi + δt + φyi,t−1 + bxit + eit. (100)

As in the case of β̂FE , β̂FE−TE = −b̂FE−TE/φ̂FE−TE and its asymptotic variance is obtained
by the delta method, as in (99).

4. Half-panel jackknife FE-TE estimator β̃FE−TE is computed in the same way as β̃FE ,
but FE-TE estimators are used instead of the FE estimators.

The results for Experiment 12 (λy = 0.4, δt = 0 and κx = 0.4) are reported in Table 6. The FE

and FE-TE estimators are biased downwards, due to the well-documented downward small-T bias

due to the presence of the lagged dependent variable and the weak exogeneity of xit. The small

sample bias of FE and FE-TE estimators is duly manifested in large size distortions. As can be

seen from Table 6, both FE and FE-TE estimators show size distortions that rise in N and fall in

T . The size rises very rapidly in N for any given choice of T . For N = 1000 and T = 30, the size

reaches 99%. The half-panel jackknife estimators, in contrast, are subject to a small positive bias

and achieve correct size for all values of N and T considered, with the exception of N = 1000 and

T = 30, where the size is 9%. The plot of the power functions in Figure 6 also show that the half-

panel jackknife FE estimator, β̃FE , performs well for all selected values of N and T except when

N = 1000 and T = 30, but for the FE estimator the power functions for all N and T combinations

are shifted to the left of the true value of β.

Consider now Experiment 18, which features quadratic time effects (with δt = 0.025t−0.001t2),

and λy = κx = 0.4 as in Experiment 12. The results are reported in Table 7 and Figure 7. β̂FE
and β̃FE are miss-specified due to the quadratic trends in DGP, and the size distortions of β̂FE
and β̃FE are huge, with rejection rates 100% in many cases when both N and T are large. Once

time dummies are included (considering FE-TE and half-panel jackknife FE-TE estimators), the
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relative performance of bias uncorrected and bias corrected estimators (β̂FE−TE and β̃FE−TE) are

very similar to the relative performance of β̂FE and β̃FE reported in Table 6.

Similar results are also obtained for the other experiments, but to save space those results are

provided in an online supplement.

5.4 Experiments with unbalanced panels

We also consider unbalanced panels by dropping [T/5] observations from the beginning and from

the end of the sample period for units i = 1, 2, ..., [N/4], and [T/3] observations from the beginning

and from the end of the sample periods for units i = [N/4] + 1, [N/4] + 2, ..., [N/2], where [a]

denotes the integer part of a. For unbalanced panels we only report the results for Experiment 18

(λy = 0.4, δt = 0.025t− 0.001t2 and κx = 0.4). Again, the results for other experiments are similar

to the ones reported for balanced panels. The results are summarized in Table 8 and Figure 8. In

the case of models with both fixed and time effects we employ the Wansbeek and Kapteyn (1989)

transformation as discussed in sub-section 4.2.2.

As a whole, the findings for the unbalanced panels are similar to the results for the balanced

panels reported in Table 7. That is, β̂FE and β̃FE are mis-specified and the size distortions are

huge, with rejection rates 100% in many cases, β̂FE−TE is biased and size-distorted due to weak

exogeneity, and β̃FE−TE performs well. However, the RMSE of β̃FE−TE in Table 8 are about 20%

larger than the RMSE in Table 7, due to a smaller average value of T in the case of unbalanced

panels. Interestingly, the performance of β̃FE−TE is seemingly better in term of size when the

samples are unbalanced. For example, when N = 1000 and T = 30, the size of β̃FE−TE in Table 8

is only 6.70% while in Table 7 it is 9.35%. However, Figure 8 shows that this could be due to the

fact that the power functions of β̃FE−TE for the unbalanced panels are flatter than ones for the

balanced panels (see Figure 7), due to fewer observations.

6 Empirical illustrations

It is reasonable to ask if the jackknife bias correction makes that much of a difference in practice.

In this section we provide two empirical illustrations, one by Berger et al. (2013) on the effect of

the US political influence on bilateral trades of US and foreign countries during the Cold War, and

a second application by Donohue and Levitt (2001) on the determinants of crimes in the US. The

former involves an unbalanced panel of countries in the world economy, and the latter a balanced

panel of 48 States in the US.

6.1 Empirical illustration I: Commercial Imperialism

Berger et al. (2013) studied the effect of the US political influence on the bilateral trades of US

and foreign countries during the Cold War. Using an annual unbalanced panel of country-level

data of 131 countries over the period 1947 —1989 (43 years), Berger et al. (2013) used the FE-TE
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estimator to estimate the following panel data regression (equation (7) in their paper):

ln
mUS
it

Yit
= µi + δt + βUSinfluenceit + φ ln τUSit − φ

(
lnPUSt + lnP it

)
+ XitΓ + uit, (101)

where the dependent variable, ln
(
mUS
it

/
Yit
)
, is the natural log of imports into country i in year

t from the US normalized by country i’s total GDP. USinfluenceit is an indicator variable that

equals one, in country i in year t, if the CIA (Central Intelligence Agency) either successfully

installed a foreign leader or provided covert support for the regime once in power. This valuable

dataset was constructed by Berger et al. (2013) according to various studies of the history of

the Cold War, typically based on declassified historical documents. ln τUSit and lnPUSt + lnP it

respectively denote the trade costs and the multilateral resistance terms, which are given by the

distance between US and country i, and four indicator variables for US and country i sharing a

common language (English), sharing a border, both being GATT (General Agreement on Tariffs

and Trade) participants, and belonging to a regional trade agreement. Xit is a vector of control

variables including the per capita income of country i, an indicator variable for Soviet interventions

(constructed in the same manner as CIA interventions), an indicator variable for the change in

leadership, a measure of the tenure of the current leader, and an indicator variable for democracy.

Berger et al. (2013) also estimated the effects of CIA interventions on log normalized imports from

the rest of the world, log normalized exports to the US, and log normalized exports to the rest of

the world, with estimating equations derived in an analogous manner as equation (101). Berger

et al. (2013) found that the US influence raised the imports from the US to the intervened country

but had no effects on imports from the rest of the world, exports to the US, or to the rest of the

world.

We apply the half-panel jackknife bias-correction estimator for unbalanced panels (developed

in sub-section 4.2.2) to the same dataset of Berger et al. (2013). For countries with odd numbers

of observations, we drop the first observations before applying the half-panel jackknife. The results

are summarized in Table 9. Column (1.a) shows the estimates reported by Berger et al. (2013) for

equation (101). Before jackknife bias-correction, the coeffi cient of USinfluenceit is estimated to be

0.293 and is statistically significant. As it happens the bias corrected estimate of this coeffi cient at

0.450 is even larger with a higher level of statistical significance. This is in line with the theoretical

downward bias of the FE-TE estimators in the presence of weakly exogenous regressors. For other

control variables, interestingly, we also find different results from Berger et al. (2013). For example,

in column (1.a) both the estimates of the coeffi cients of the common language indicator and the

GATT participants indicator are not statistically significant. However, the bias-corrected estimates

given under column (1.b) are both positive and statistically significant. These estimates suggest

that sharing a common language and joining GATT would have positive effects on the imports

from the US, which makes more sense than the statistically insignificant effects obtained when

using FE-TE estimators.

Columns (2.a), (3.a) and (4.a) show the estimates of Berger et al. (2013) with dependent
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variables log normalized imports from the rest of the world, log normalized exports to the US, and

log normalized exports to the rest of the world. Before the jackknife bias correction, the estimates

of the coeffi cients of USinfluenceit are statistically insignificant. Berger et al. (2013) argued

that the results provided some evidence that the CIA interventions did not create trades in all

directions, but only created markets for US exports. Our jackknife estimates (in columns (2.b),

(3.b) and (4.b)) support the findings of Berger et al. (2013). After the jackknife bias-correction, the

estimates of the coeffi cients of USinfluenceit remain statistically insignificant, but there are some

important differences in the case of other coeffi cients. For example, under columns (3.a) and (3.b),

the bias-corrected estimates of the effects of democracy, contiguous border, and GATT participation

variables are statistically significant at the 5% level, but none of the estimates reported by Berger

et al. (2013) for these coeffi cients are statistically significant. There are also large differences in

the magnitudes of these estimates, which could reflect the extent to which FE-TE estimates could

be biased if uncorrected.

6.2 Empirical Illustration II: Abortion and Crime

Donohue and Levitt (2001) studied the effect of legalized abortion on crimes in the US, using a

balanced panel of data on 50 US States and the District of Columbia over the period 1985 —1997

(13 years). These authors estimate the following FE-TE panel data regression (equation (2) in

their paper):

yit = ln (crimeit) = µi + δt + β1ABORTit +ψ′xit + uit, (102)

where ln (crimeit) is the logarithm of the crime rate per capita in state i and year t. Donohue

and Levitt (2001) considered three types of crimes: violent crime, property crime and murders.

ABORTit, the "effective" legalized abortion rate, and is computed as a weighted average of the

abortion rates in which the weights are determined by the fraction of arrests from different age

groups. xit is a vector of control variables, including lagged prisoners and police per capita, a

number of variables for state economic conditions, the lagged state welfare generosity, the concealed

handgun laws, and per capita beer consumption. Notably, Donohue and Levitt (2001) use the

one-year lags of prisoners and police per capita as controls to deal with the endogeneity of these

covariates. But as our theoretical analysis shows, lagging the covariates does not eliminate the

bias due to possible feedbacks from changes in crimes to policing and imprisonments. Donohue

and Levitt (DL) conclude that legalized abortion in 1970s has been one of the main causes of the

substantial decline in crime observed in the US during 1990s.

DL study has attracted a great deal of attention with a large number of studies considering

different aspects of their analysis ranging from measurement problems, the choice of the control

variables, the choice of the abortion variable (whether to focus on aggregate measures of abortion

or teenage abortion), data extensions, and possible missing common factors which have led to crime

decline not only in the US but across most of the industrialized economies.8 In this sub-section

8See, for example, Joyce (2004, 2009), Foote and Goetz (2008), Moody and Marvell (2010), Belloni et al. (2014),
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we focus on the rather narrow estimation and inference issue and adopt DL’s original 2001 data

set and the associated measurements. To simplify the analysis we follow Belloni et al. (2014) and

estimate model (102) only on the 48 contiguous states, and drop the District of Columbia, Alaska

and Hawaii from the analysis.9 However, unlike Belloni et al. (2014) who were concerned with the

robustness of DL results to the choice of the covariates, in our analysis we include all the covariates

as in Donohue and Levitt (2001).10

We estimated model (102) by FE-TE and jackknife FE-TE methods, for all the three crime

categories, based on the sub-sample of 48 contiguous states over the period 1985-1997. Given the

odd number of available time periods (T = 13) we experimented with deleting the first, the last or

a random mixture of the first and the last observations to obtain an even number of time periods,

needed for implementation of the half-panel jackknife estimator.11 The results were qualitatively

very similar and in Table 10 we only report the jackknife estimators with the first observations

(for 1985) deleted. The estimates reported in Donohue and Levitt (2001) are reproduced under

columns (1.a), (2.a) and (3.a), the FE-TE estimates are given in columns (1.b), (2.b) and (3.b),

and the half-panel jackknife FE-TE estimates are under columns (1.c), (2.c) and (3.c). The FE-

TE estimates of the coeffi cient of the abortion variable, β1, for violent crime, property crime and

murders, are very close to the estimates reported by Donohue and Levitt (2001). But there are

some important differences between FE-TE and the jackknife FE-TE estimates, although these

differences are quantitative in nature and do not alter DL’s main conclusion, with all statistically

significant coeffi cients estimated to be larger in magnitude by the jackknife procedure. For example,

for violent crimes, according to DL’s own estimates, only the abortion variable has a statistically

significant coeffi cient estimated to be -0.129, while the jackknife FE-TE estimates are statistically

significant for prisoners per capital and log state income per capita variables with coeffi cient much

larger than those estimated by FE-TE procedure. A similar picture also emerges for property

crime. But for the murder per capita, the estimates based on the jackknife FE-TE procedure are

statistically less significant.

Another source of possible bias in the analysis of the relationship between abortion and crime

is dynamic mis-specification. DL recognize the importance of the cumulative and persistent effects

from abortion to crimes but do not check the robustness of their results to dynamics of crimes

as they respond to changing values of the covariates. As a first step towards allowing for such

and Shoesmith (2015). See also responses by Donohue and Levitt (2004, 2008), and Levitt (2004).
9The FE-TE estimates of (102) turn out to be highly sensitive to whether District of Columbia, Alaska and Hawaii

are included in the analysis. Belloni et al. (2014) estimate a first-differenced version of (102) with time-dummies,
and obtain estimates of β1 which are similar to the original estimates of Donohue and Levitt (2001), when all the
control variables are included in the panel regression.
10As pointed out by Moody and Marvell (2010), there are also potentially important missing controls such as per

cent black, per cent urban, or age distribution by states, often used in crime studies in the US.
11We also carried out additional Monte Carlo experiments to see if the performance of the half-panel jackknife

FE-TE estimator is adversely affected given the rather small sample (N = 48 and T = 12) under consideration. We
found that our main findings hold and the jackknife FE-TE estimator works well even in such a case. The results
are summarized in the online supplement. Recall that for this application N/T 3 ≈ 0.028 which is suffi ciently small
as required for the validity of our bias correction.
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dynamics we also considered the following simple dynamic panel model:

ln (crimeit) = µi + δt + λ ln (crimei,t−1) + β1(1− λ)ABORTit + (1− λ)ψ′xit + uit, (103)

where ln (crimei,t−1) is the lagged logarithm of crime rate per capita. It is clear that the FE-TE

estimates of β1 are likely to be biased given the rather small value of T which is now reduced

to T = 12 due to the presence of lagged values of ln (crimeit) amongst the regressors. But the

jackknife estimators are likely to be valid even in this application since N/T 3 = 48/123 ≈ 0.028

is suffi ciently small. The results are summarized in Table 11, with the estimates of λ given at

the bottom of the table. The jackknife FE-TE estimates of λ are statistically significant at the

1% level for all three crime categories. They are also noticeably larger than the FE-TE estimates

that are known to be biased downward. The jackknife estimates of λ are quite a bit larger for

violent and property crimes as compared to murder crimes. Turing to the short term estimates

given by b1 = β1(1− λ) and b2 = (1− λ)ψ, we notice a number of differences as compared to the

corresponding estimates in Table 10. Most importantly, using jackknife estimates we find that the

abortion variable is no longer statistically significant in the property crimes regressions. Overall,

allowing for dynamics shed some doubt on the robustness of DL findings, with mixed results. The

abortion variable continues to be statistically significant for violent and murder crimes but not for

property crimes. Allowing for dynamics has strengthen the explanatory power of other covariates

such as prisoners and police per capita, the unemployment rate (for property crimes), and log state

income per capita (for violent and property crimes). The beer consumption per capita is no longer

statistically significant. The long run estimates, namely β1 and ψ in (103), are summarized in

Table 12 and give a similar picture.

7 Conclusion

In this paper we consider the problem of estimation and inference in panel data models with

weakly exogenous regressors when N is relatively large and T is moderate. The existing estimation

techniques in the literature have not suffi ciently covered this problem since no estimator proposed

in the literature is established to deliver a valid inference in this set-up. We have derived exact

expressions for the bias of FE and FE-TE estimators when N is large for a given T , and considered

the half-panel jackknife method to remedy the bias. We have derived the exact expression for

the large-N small-T bias of this particular jackknife method, and we have established that it is

asymptotically unbiased as N,T → ∞ jointly such that T = KN ε, for some 0 < K < ∞ and

ε > 1/3, which makes this method suitable for N large and moderate T . The inference based on

the proposed variance estimator in this paper is very good, even for N as large as 1000 and T

as small as 30 in the considered set of Monte Carlo experiments. FE and FE-TE estimators, on

the other hand, can be grossly oversized in the presence of weakly exogenous regressors (regardless

whether the panel includes lagged dependent variable or not), unless N/T is suffi ciently small.
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The two empirical applications included in the paper illustrate the potential use of the half-panel

jackknife method for panel data analysis with dynamics and weakly exogenous regressors.

Overall, our theoretical results backed up with extensive Monte Carlo evidence suggest that

jackknife bias correction is a useful remedy to the small-T bias problem of the FE and FE-TE

estimators in panels with weakly exogenous regressors whenN is large and T is moderate. Moreover,

the cost of the half-panel jackknife bias correction seem small when regressors are strictly exogenous.

Hence, the jackknife corrected FE and FE-TE estimators are useful additions to the toolkit of

applied researchers, particularly since these estimators are also quite easy to implement.
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Figure 1: BiasT
(
β̂FE

)
and BiasT

(
β̃FE

)
as a function of the feedback coeffi cient κ in Example
2, T = 30.

A. ρ = 0.5, η = 1 B. ρ = 0.5, η = 2

C. ρ = 0.2, η = 1 D. ρ = 0.5, η = 2

Notes: Solid black line is BiasT
(
β̂FE

)
and dotted green line is BiasT

(
β̃FE

)
. κ is on horizontal axis and the range

for κ is chosen so that ϕ = ρ+ κβ = −0.99,−0.98, ..., 0, 0.01..., 0.98, 0.99. The remaining parameters are β = 1,
ρ = 0.5 (top panel) or 0.2 (bottom panel), and η = 1 (left panel) or 2 (right panel).
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Table 1: List of Monte Carlo Experiments

DGP: without lagged with lagged
dep. variable dep. variable

λy = 0 λy = 0.4 λy = 0.8
δt κx Exp. Exp. Exp.
0 0 1 10 19
0 0.2 2 11 20
0 0.4 3 12 21
0.025t 0 4 13 22
0.025t 0.2 5 14 23
0.025t 0.4 6 15 24
0.025t− 0.001t2 0 7 16 25
0.025t− 0.001t2 0.2 8 17 26
0.025t− 0.001t2 0.4 9 18 27

Notes: DGP with lagged dependent variable is described in Subsection 5.2 and DGP with lagged dependent variable
is described in subsection 5.3. δt is the time effect in the yit equation, κx is the feedback coeffi cient of yi,t−1 in the
xit equation, and λy is the autoregressive coeffi cient for the lagged dependent variable in the yit equation.

Table 2: Bias (×100), RMSE (×100), and Size (%) at 5% nominal level with λy = 0, δt = 0, and
κx = 0 (Experiment 1)

Bias (×100) RMSE (×100) Size (%)
(N,T ) 30 60 100 200 30 60 100 200 30 60 100 200

FE estimator β̂FE
30 0.05 0.06 0.07 -0.01 3.39 2.37 1.76 1.27 5.45 5.80 4.65 5.10
60 0.02 0.01 0.00 -0.04 2.35 1.65 1.24 0.91 5.95 5.70 4.20 5.50
100 0.03 0.01 0.01 -0.02 1.81 1.27 0.96 0.69 5.80 5.10 4.60 5.40
200 0.02 0.00 0.00 -0.01 1.25 0.90 0.68 0.49 5.10 5.20 4.80 5.00
500 0.02 0.01 0.01 0.00 0.80 0.57 0.44 0.30 5.10 5.30 4.80 5.25
1000 0.00 0.00 0.00 -0.01 0.59 0.41 0.31 0.22 5.75 5.45 5.20 5.40

Half-panel jackknife FE estimator β̃FE
30 0.01 0.05 0.07 -0.02 3.46 2.39 1.78 1.28 3.90 4.75 4.30 5.35
60 -0.02 0.01 0.00 -0.04 2.41 1.67 1.25 0.92 4.45 4.65 3.90 5.50
100 0.01 0.01 0.00 -0.02 1.85 1.28 0.97 0.70 4.70 3.90 4.70 5.35
200 0.00 0.00 0.00 -0.01 1.30 0.91 0.69 0.49 4.30 4.60 4.45 5.00
500 0.01 0.01 0.01 0.00 0.83 0.58 0.44 0.31 3.75 4.45 4.25 4.75
1000 0.00 0.00 0.00 -0.01 0.61 0.41 0.31 0.22 5.45 5.15 4.85 5.00

FE-TE estimator β̂FE−TE
30 0.02 0.04 0.07 -0.02 3.43 2.40 1.79 1.29 6.30 6.15 5.70 5.40
60 0.00 0.00 -0.01 -0.04 2.37 1.66 1.25 0.91 6.15 5.60 4.40 5.75
100 0.03 0.01 0.00 -0.02 1.82 1.28 0.96 0.70 5.50 5.40 4.75 5.60
200 0.02 0.00 0.00 -0.01 1.26 0.90 0.68 0.49 5.15 5.25 4.80 5.00
500 0.02 0.01 0.01 0.00 0.80 0.58 0.44 0.30 5.00 5.45 4.90 5.10
1000 0.00 0.00 0.00 -0.01 0.59 0.41 0.31 0.22 5.95 5.40 5.40 5.40

Half-panel jackknife FE-TE estimator β̃FE−TE
30 -0.02 0.04 0.06 -0.02 3.52 2.42 1.81 1.29 4.50 5.35 4.95 5.60
60 -0.03 0.00 -0.01 -0.04 2.44 1.68 1.26 0.92 4.60 4.80 3.90 5.90
100 0.01 0.01 0.00 -0.02 1.87 1.28 0.97 0.70 4.80 4.10 4.95 5.30
200 0.00 0.00 0.00 -0.01 1.30 0.91 0.69 0.49 4.35 4.55 4.50 5.10
500 0.01 0.01 0.01 0.00 0.83 0.58 0.44 0.31 3.95 4.65 4.25 4.90
1000 0.00 0.00 0.00 -0.01 0.61 0.41 0.31 0.22 5.35 5.00 4.75 5.10

Notes: DGP is given by ∆yit = µi + δt − (1− λy) yi,t−1 + (1− λy)βxit + uit, where

xit = (1− λx)µix + (1− λx)κxyi,t−1 + λxxi,t−1 + vit, β = 0.5, λy = 0, δt = 0, µi = µix + ηyi, ηyi ∼ IIDN (1, 1),

uit ∼ IIDN
(
0, σ2ui

)
, σ2ui = 0.5 + 0.25η2ui, η

2
ui ∼ IIDχ2 (2), λx = 0.25, κx = 0, µix ∼ IIDN (1, 1),

vit ∼ IIDN
(
0, σ2vi

)
, σ2vi = 0.5 + 0.25η2vi, η

2
vi ∼ IIDχ2 (2). R = 2000. FE and half-panel jackknifed FE are based on

equation (93): yit = µi + βxit + uit. FE-TE and half-panel jackknifed FE-TE are based on equation (95):

yit = µi + δt + βxit + uit.
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Figure 2: Rejection frequency (%) at 5% nominal level with λy = 0, δt = 0, and κx = 0
(Experiment 1)
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Table 3: Bias (×100), RMSE (×100), and Size (%) at 5% nominal level with λy = 0, δt = 0, and
κx = 0.4 (Experiment 3)

Bias (×100) RMSE (×100) Size (%)
(N,T ) 30 60 100 200 30 60 100 200 30 60 100 200

FE estimator β̂FE
30 -1.33 -0.63 -0.34 -0.21 3.42 2.30 1.67 1.19 8.05 6.85 5.10 5.80
60 -1.33 -0.66 -0.40 -0.23 2.54 1.66 1.20 0.86 9.85 7.80 5.50 6.95
100 -1.30 -0.65 -0.39 -0.21 2.12 1.35 0.97 0.67 12.00 9.35 7.20 7.10
200 -1.31 -0.66 -0.39 -0.20 1.75 1.05 0.73 0.49 19.70 12.90 8.85 7.85
500 -1.30 -0.64 -0.38 -0.19 1.49 0.83 0.56 0.34 40.35 23.00 16.65 10.40
1000 -1.31 -0.65 -0.38 -0.20 1.42 0.75 0.48 0.28 70.40 42.85 28.35 16.50

Half-panel jackknife FE estimator β̃FE
30 0.01 0.05 0.06 -0.01 3.27 2.25 1.65 1.18 4.15 5.15 4.50 4.75
60 0.01 0.02 0.00 -0.03 2.28 1.55 1.14 0.84 3.85 4.45 3.85 5.80
100 0.05 0.02 0.01 -0.02 1.75 1.20 0.90 0.65 4.20 4.00 5.35 5.80
200 0.04 0.01 0.01 -0.01 1.22 0.83 0.63 0.45 3.40 4.60 4.40 5.35
500 0.07 0.02 0.02 0.00 0.78 0.54 0.41 0.28 4.15 5.10 4.95 4.65
1000 0.05 0.01 0.01 0.00 0.57 0.39 0.29 0.20 5.00 5.25 5.15 5.40

FE-TE estimator β̂FE−TE
30 -1.35 -0.64 -0.35 -0.22 3.48 2.33 1.69 1.20 8.50 7.00 5.50 5.60
60 -1.34 -0.67 -0.41 -0.23 2.56 1.67 1.21 0.86 10.85 8.45 6.10 7.15
100 -1.30 -0.65 -0.39 -0.21 2.13 1.35 0.97 0.68 12.15 9.40 7.20 7.15
200 -1.31 -0.66 -0.39 -0.20 1.75 1.05 0.74 0.49 19.90 12.70 9.00 7.80
500 -1.30 -0.64 -0.38 -0.19 1.49 0.83 0.56 0.34 40.85 22.90 16.80 10.50
1000 -1.31 -0.65 -0.39 -0.20 1.42 0.75 0.48 0.28 70.35 42.65 28.60 16.40

Half-panel jackknife FE-TE estimator β̃FE−TE
30 -0.01 0.04 0.05 -0.02 3.33 2.28 1.67 1.19 4.30 5.30 4.90 5.35
60 0.00 0.01 -0.01 -0.04 2.30 1.56 1.15 0.84 4.20 4.85 3.75 5.25
100 0.05 0.02 0.01 -0.02 1.75 1.20 0.91 0.65 4.85 4.15 5.15 5.60
200 0.04 0.01 0.01 -0.01 1.23 0.83 0.63 0.45 3.85 4.50 4.50 5.20
500 0.07 0.02 0.01 0.00 0.79 0.55 0.41 0.28 4.15 5.20 4.90 4.80
1000 0.05 0.01 0.01 0.00 0.57 0.39 0.29 0.20 5.15 5.20 4.90 5.50

Notes: β = 0.5, λy = 0, δt = 0, and κx = 0.4. For the rest of the settings, see the notes for Table 2.
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Figure 3: Rejection frequency (%) at 5% nominal level with λy = 0, δt = 0, and κx = 0.4
(Experiment 3)
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Table 4: Bias (×100), RMSE (×100), and Size (%) at 5% nominal level with λy = 0,
δt = 0.025t− 0.001t2, and κx = 0 (Experiment 7)

Bias (×100) RMSE (×100) Size (%)
(N,T ) 30 60 100 200 30 60 100 200 30 60 100 200

FE estimator β̂FE
30 0.04 0.05 0.04 -0.16 3.40 2.50 2.45 4.98 6.00 6.70 7.30 11.75
60 0.01 0.01 0.00 -0.13 2.36 1.75 1.75 3.53 5.85 6.05 7.70 12.40
100 0.03 0.01 -0.01 -0.09 1.81 1.34 1.33 2.70 5.70 5.50 6.40 12.15
200 0.01 0.00 0.02 0.00 1.26 0.95 0.96 1.91 5.35 5.40 7.60 12.10
500 0.02 0.01 0.01 0.01 0.81 0.60 0.61 1.22 5.10 5.55 7.65 11.45
1000 0.00 0.00 0.00 0.02 0.59 0.43 0.43 0.86 6.35 6.20 8.30 11.60

Half-panel jackknife FE estimator β̃FE
30 -0.01 0.04 -0.01 -0.28 3.51 2.85 3.77 9.49 4.60 9.35 22.90 39.95
60 -0.02 0.00 -0.02 -0.21 2.45 2.01 2.73 6.70 4.45 9.25 25.45 39.70
100 0.01 0.01 -0.03 -0.14 1.88 1.52 2.05 5.15 4.80 8.30 23.50 41.05
200 0.00 0.00 0.03 0.00 1.32 1.09 1.48 3.65 4.25 8.75 25.00 39.55
500 0.01 0.01 0.01 0.02 0.84 0.69 0.95 2.34 4.00 8.80 24.45 41.50
1000 0.00 0.00 -0.01 0.06 0.62 0.49 0.65 1.64 5.65 9.80 23.80 41.60

FE-TE estimator β̂FE−TE
30 0.02 0.04 0.07 -0.02 3.43 2.40 1.79 1.29 6.30 6.15 5.70 5.40
60 0.00 0.00 -0.01 -0.04 2.37 1.66 1.25 0.91 6.15 5.60 4.40 5.75
100 0.03 0.01 0.00 -0.02 1.82 1.28 0.96 0.70 5.50 5.40 4.75 5.60
200 0.02 0.00 0.00 -0.01 1.26 0.90 0.68 0.49 5.15 5.25 4.80 5.00
500 0.02 0.01 0.01 0.00 0.80 0.58 0.44 0.30 5.00 5.45 4.90 5.10
1000 0.00 0.00 0.00 -0.01 0.59 0.41 0.31 0.22 5.95 5.40 5.40 5.40

Half-panel jackknife FE-TE estimator β̃FE−TE
30 -0.02 0.04 0.06 -0.02 3.52 2.42 1.81 1.29 4.50 5.35 4.95 5.60
60 -0.03 0.00 -0.01 -0.04 2.44 1.68 1.26 0.92 4.60 4.80 3.90 5.90
100 0.01 0.01 0.00 -0.02 1.87 1.28 0.97 0.70 4.80 4.10 4.95 5.30
200 0.00 0.00 0.00 -0.01 1.30 0.91 0.69 0.49 4.35 4.55 4.50 5.10
500 0.01 0.01 0.01 0.00 0.83 0.58 0.44 0.31 3.95 4.65 4.25 4.90
1000 0.00 0.00 0.00 -0.01 0.61 0.41 0.31 0.22 5.35 5.00 4.75 5.10

Notes: β = 0.5, λy = 0, δt = 0.025t− 0.001t2, and κx = 0. FE and half-panel jackknife FE are based on equation

(94): yit = µi + gt+ βxit + uit. FE-TE and half-panel jackknife FE-TE are based on equation (95):

yit = µi + δt + βxit + uit. For the rest of the settings, see the notes for Table 2.
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Figure 4: Rejection frequency (%) at 5% nominal level with λy = 0, δt = 0.025t− 0.001t2, and
κx = 0 (Experiment 7)
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Table 5: Bias (×100), RMSE (×100), and Size (%) at 5% nominal level with λy = 0,
δt = 0.025t− 0.001t2, and κx = 0.4 (Experiment 9)

Bias (×100) RMSE (×100) Size (%)
(N,T ) 30 60 100 200 30 60 100 200 30 60 100 200

FE estimator β̂FE
30 -1.19 2.22 19.52 126.98 3.39 3.24 19.69 127.04 7.70 19.85 100.00 100.00
60 -1.16 2.18 19.44 126.86 2.47 2.72 19.52 126.89 9.15 30.45 100.00 100.00
100 -1.13 2.20 19.41 126.79 2.02 2.53 19.47 126.81 10.05 46.85 100.00 100.00
200 -1.13 2.19 19.41 126.73 1.62 2.36 19.44 126.74 15.60 74.15 100.00 100.00
500 -1.11 2.21 19.42 126.75 1.34 2.28 19.43 126.76 31.85 97.70 100.00 100.00
1000 -1.13 2.20 19.40 126.74 1.25 2.24 19.40 126.74 57.35 100.00 100.00 100.00

Half-panel jackknife FE estimator β̃FE
30 0.36 5.60 38.39 234.48 3.38 6.28 38.63 234.58 5.35 66.35 100.00 100.00
60 0.37 5.52 38.28 234.32 2.35 5.87 38.41 234.36 4.75 88.10 100.00 100.00
100 0.42 5.53 38.22 234.20 1.82 5.74 38.29 234.23 5.15 97.65 100.00 100.00
200 0.40 5.53 38.22 234.08 1.30 5.63 38.26 234.09 5.20 100.00 100.00 100.00
500 0.43 5.54 38.21 234.11 0.90 5.58 38.23 234.11 6.95 100.00 100.00 100.00
1000 0.41 5.53 38.18 234.10 0.71 5.55 38.19 234.10 11.30 100.00 100.00 100.00

FE-TE estimator β̂FE−TE
30 -1.35 -0.64 -0.35 -0.22 3.48 2.33 1.69 1.20 8.50 7.00 5.50 5.60
60 -1.34 -0.67 -0.41 -0.23 2.56 1.67 1.21 0.86 10.85 8.45 6.10 7.15
100 -1.30 -0.65 -0.39 -0.21 2.13 1.35 0.97 0.68 12.15 9.40 7.20 7.15
200 -1.31 -0.66 -0.39 -0.20 1.75 1.05 0.74 0.49 19.90 12.70 9.00 7.80
500 -1.30 -0.64 -0.38 -0.19 1.49 0.83 0.56 0.34 40.85 22.90 16.80 10.50
1000 -1.31 -0.65 -0.39 -0.20 1.42 0.75 0.48 0.28 70.35 42.65 28.60 16.40

Half-panel jackknife FE-TE estimator β̃FE−TE
30 -0.01 0.04 0.05 -0.02 3.33 2.28 1.67 1.19 4.30 5.30 4.90 5.35
60 0.00 0.01 -0.01 -0.04 2.30 1.56 1.15 0.84 4.20 4.85 3.75 5.25
100 0.05 0.02 0.01 -0.02 1.75 1.20 0.91 0.65 4.85 4.15 5.15 5.60
200 0.04 0.01 0.01 -0.01 1.23 0.83 0.63 0.45 3.85 4.50 4.50 5.20
500 0.07 0.02 0.01 0.00 0.79 0.55 0.41 0.28 4.15 5.20 4.90 4.80
1000 0.05 0.01 0.01 0.00 0.57 0.39 0.29 0.20 5.15 5.20 4.90 5.50

Notes: β = 0.5, λy = 0, δt = 0.025t− 0.001t2 and κx = 0.4. For the regression equations, see the notes for Table 4.

For the rest of the settings, see the notes for Table 2.
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Figure 5: Rejection frequency (%) at 5% nominal level with λy = 0, δt = 0.025t− 0.001t2, and
κx = 0.4 (Experiment 9)

0.4 0.5 0.6
0
5

10

20

40
T = 30, N = 100

R
ej

ec
tio

n 
Fr

eq
ue

nc
y 

(%
)

0.4 0.5 0.6
0
5

10

20

40
T = 60, N = 100

0.4 0.5 0.6
0
5

10

20

40
T = 30, N = 200

β

R
ej

ec
tio

n 
Fr

eq
ue

nc
y 

(%
)

0.4 0.5 0.6
0
5

10

20

40
T = 60, N = 200

β

0.4 0.5 0.6
0
5

10

20

40
T = 30, N = 500

R
ej

ec
tio

n 
Fr

eq
ue

nc
y 

(%
)

0.4 0.5 0.6
0
5

10

20

40
T = 60, N = 500

0.4 0.5 0.6
0
5

10

20

40
T = 30, N = 1000

β

R
ej

ec
tio

n 
Fr

eq
ue

nc
y 

(%
)

0.4 0.5 0.6
0
5

10

20

40
T = 60, N = 1000

β

FE­TE
Jk FE­TE

46



Table 6: Bias (×100), RMSE (×100), and Size (%) at 5% nominal level with λy = 0.4, δt = 0,
and κx = 0.4 (Experiment 12)

Bias (×100) RMSE (×100) Size (%)
(N,T ) 30 60 100 200 30 60 100 200 30 60 100 200

FE estimator β̂FE
30 -3.87 -1.89 -1.07 -0.60 6.33 4.07 2.90 2.02 15.35 10.40 7.20 6.35
60 -3.86 -1.93 -1.16 -0.63 5.18 3.14 2.18 1.50 23.00 13.65 8.95 8.10
100 -3.79 -1.91 -1.14 -0.60 4.62 2.70 1.85 1.22 32.40 18.85 11.90 9.50
200 -3.80 -1.91 -1.14 -0.58 4.22 2.33 1.53 0.94 55.00 30.45 18.80 12.15
500 -3.78 -1.88 -1.13 -0.57 3.96 2.07 1.31 0.73 89.75 60.45 39.80 22.65
1000 -3.81 -1.90 -1.14 -0.58 3.90 2.00 1.23 0.66 99.55 87.75 69.20 42.25

Half-panel jackknife FE estimator β̃FE
30 0.57 0.24 0.15 0.01 5.85 3.85 2.80 1.97 4.40 4.95 4.40 4.50
60 0.51 0.17 0.05 -0.04 4.09 2.66 1.93 1.40 4.85 4.10 3.75 5.40
100 0.61 0.17 0.07 -0.01 3.14 2.04 1.53 1.08 4.60 3.90 5.10 5.60
200 0.58 0.15 0.07 0.01 2.25 1.42 1.07 0.76 5.10 4.25 4.45 5.20
500 0.62 0.17 0.07 0.01 1.52 0.94 0.70 0.47 6.45 5.60 5.00 4.55
1000 0.58 0.16 0.06 0.01 1.17 0.68 0.49 0.34 9.30 6.15 5.55 4.95

FE-TE estimator β̂FE−TE
30 -3.90 -1.91 -1.09 -0.61 6.42 4.12 2.94 2.05 16.75 10.90 7.55 6.40
60 -3.87 -1.95 -1.17 -0.64 5.21 3.16 2.20 1.51 23.20 13.80 9.15 8.75
100 -3.79 -1.90 -1.14 -0.60 4.63 2.70 1.85 1.22 32.40 18.95 12.30 9.60
200 -3.79 -1.91 -1.13 -0.58 4.22 2.33 1.53 0.94 54.65 30.85 19.15 11.95
500 -3.78 -1.88 -1.13 -0.57 3.96 2.07 1.31 0.73 89.80 60.70 39.70 22.75
1000 -3.81 -1.90 -1.14 -0.58 3.90 2.00 1.23 0.66 99.55 87.70 69.20 41.95

Half-panel jackknife FE-TE estimator β̃FE−TE
30 0.53 0.22 0.14 0.00 5.96 3.91 2.84 2.00 4.95 5.50 4.65 4.80
60 0.49 0.16 0.04 -0.04 4.12 2.67 1.94 1.41 5.40 4.40 4.20 5.35
100 0.60 0.17 0.07 -0.01 3.16 2.05 1.53 1.08 4.95 4.05 5.30 5.65
200 0.58 0.16 0.07 0.01 2.26 1.42 1.07 0.76 5.15 4.55 4.40 5.10
500 0.62 0.17 0.07 0.01 1.52 0.95 0.70 0.47 6.35 5.70 5.20 4.95
1000 0.57 0.16 0.06 0.01 1.17 0.68 0.49 0.34 9.35 6.20 5.50 5.00

Notes: β = 0.5, λy = 0.4, δt = 0, and κx = 0.4. FE and half-panel jackknife FE are based on equation (96):

∆yit = µi + φyi,t−1 + bxit + eit. FE-TE and half-panel jackknife FE-TE are based on equation (100):

∆yit = µi + δt + φyi,t−1 + bxit + eit. For the rest of the settings, see the notes for Table 2.
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Figure 6: Rejection frequency (%) at 5% nominal level with λy = 0.4, δt = 0, and κx = 0.4
(Experiment 12)
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Table 7: Bias (×100), RMSE (×100), and Size (%) at 5% nominal level with λy = 0.4,
δt = 0.025t− 0.001t2, and κx = 0.4 (Experiment 18)

Bias (×100) RMSE (×100) Size (%)
(N,T ) 30 60 100 200 30 60 100 200 30 60 100 200

FE estimator β̂FE
30 -3.42 6.38 48.33 167.31 6.13 7.64 48.58 167.33 13.75 36.75 100.00 100.00
60 -3.36 6.31 48.16 167.27 4.84 6.95 48.29 167.28 18.00 60.90 100.00 100.00
100 -3.26 6.36 48.15 167.26 4.22 6.74 48.23 167.27 25.25 81.65 100.00 100.00
200 -3.25 6.37 48.16 167.24 3.74 6.56 48.20 167.25 42.65 98.15 100.00 100.00
500 -3.22 6.40 48.15 167.25 3.43 6.48 48.17 167.25 78.55 100.00 100.00 100.00
1000 -3.24 6.38 48.13 167.24 3.36 6.42 48.14 167.24 96.40 100.00 100.00 100.00

Half-panel jackknife FE estimator β̃FE
30 1.88 21.37 2069.45 -1124.19 6.43 22.46 68163.06 2334.83 5.95 94.60 50.50 90.05
60 1.81 20.99 606.02 -1049.33 4.61 21.53 11466.34 1093.71 6.95 99.70 70.05 99.55
100 1.91 20.91 1092.30 -1024.70 3.74 21.24 5040.90 1045.91 8.65 100.00 85.95 100.00
200 1.88 20.88 974.57 -1006.88 2.94 21.04 1361.11 1016.38 12.05 100.00 97.70 100.00
500 1.93 20.86 898.05 -998.06 2.41 20.93 920.89 1001.69 26.25 100.00 100.00 100.00
1000 1.88 20.82 875.31 -994.51 2.16 20.85 884.36 996.31 44.25 100.00 100.00 100.00

FE-TE estimator β̂FE−TE
30 -3.90 -1.91 -1.09 -0.61 6.42 4.12 2.94 2.05 16.75 10.90 7.55 6.40
60 -3.87 -1.95 -1.17 -0.64 5.21 3.16 2.20 1.51 23.20 13.80 9.15 8.75
100 -3.79 -1.90 -1.14 -0.60 4.63 2.70 1.85 1.22 32.40 18.95 12.30 9.60
200 -3.79 -1.91 -1.13 -0.58 4.22 2.33 1.53 0.94 54.65 30.85 19.15 11.95
500 -3.78 -1.88 -1.13 -0.57 3.96 2.07 1.31 0.73 89.80 60.70 39.70 22.75
1000 -3.81 -1.90 -1.14 -0.58 3.90 2.00 1.23 0.66 99.55 87.70 69.20 41.95

Half-panel jackknife FE-TE estimator β̃FE−TE
30 0.53 0.22 0.14 0.00 5.96 3.91 2.84 2.00 4.95 5.50 4.65 4.80
60 0.49 0.16 0.04 -0.04 4.12 2.67 1.94 1.41 5.40 4.40 4.20 5.35
100 0.60 0.17 0.07 -0.01 3.16 2.05 1.53 1.08 4.95 4.05 5.30 5.65
200 0.58 0.16 0.07 0.01 2.26 1.42 1.07 0.76 5.15 4.55 4.40 5.10
500 0.62 0.17 0.07 0.01 1.52 0.95 0.70 0.47 6.35 5.70 5.20 4.95
1000 0.57 0.16 0.06 0.01 1.17 0.68 0.49 0.34 9.35 6.20 5.50 5.00

Notes: β = 0.5, λy = 0.4, δt = δt = 0.025t− 0.001t2, and κx = 0.4. FE and half-panel jackknife FE are based on

equation (97): ∆yit = µi + gt+ φyi,t−1 + bxit + eit. FE-TE and half-panel jackknife FE-TE are based on equation

(100): ∆yit = µi + δt + φyi,t−1 + bxit + eit. For the rest of the settings, see the notes for Table 2.
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Figure 7: Rejection frequency (%) at 5% nominal level with λy = 0.4, δt = 0.025t− 0.001t2, and
κx = 0.4 (Experiment 18)
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Table 8: Bias (×100), RMSE (×100), and Size (%) at 5% nominal level with λy = 0.4,
δt = 0.025t− 0.001t2, and κx = 0.4 (Experiment 18, unbalanced samples)

Bias (×100) RMSE (×100) Size (%)
maxT 30 60 100 200 30 60 100 200 30 60 100 200
avgT 22 44 73.5 147 22 44 73.5 147 22 44 73.5 147

N minT 10 20 34 68 10 20 34 68 10 20 34 68
FE estimator β̂FE

30 -4.95 3.41 36.57 156.99 7.68 5.86 36.96 157.03 17.20 13.15 100.00 100.00
60 -4.83 3.42 36.40 156.83 6.28 4.71 36.61 156.85 24.75 20.70 100.00 100.00
100 -4.68 3.51 36.43 156.80 5.62 4.34 36.56 156.81 36.05 30.85 100.00 100.00
200 -4.67 3.53 36.45 156.77 5.15 3.94 36.51 156.78 58.80 54.00 100.00 100.00
500 -4.61 3.54 36.44 156.80 4.82 3.72 36.47 156.80 92.15 88.25 100.00 100.00
1000 -4.64 3.48 36.40 156.77 4.75 3.58 36.41 156.77 99.90 99.25 100.00 100.00

Half-panel jackknife FE estimator β̃FE
30 1.43 15.12 136.85 -1283.45 7.60 16.70 5844.08 8538.55 5.20 68.60 98.65 59.05
60 1.41 14.83 244.64 -1511.99 5.31 15.64 251.41 2133.35 5.70 91.50 100.00 89.45
100 1.50 14.83 238.33 -1374.06 4.20 15.32 242.18 1476.16 6.40 98.95 100.00 98.30
200 1.41 14.81 235.28 -1302.76 3.11 15.04 237.16 1329.32 7.25 100.00 100.00 100.00
500 1.47 14.76 232.56 -1279.45 2.31 14.86 233.24 1289.08 13.25 100.00 100.00 100.00
1000 1.41 14.67 231.48 -1267.79 1.89 14.72 231.83 1272.54 21.50 100.00 100.00 100.00

FE-TE estimator β̂FE−TE
30 -5.28 -2.64 -1.61 -0.86 7.96 5.05 3.63 2.47 20.40 13.45 9.20 7.65
60 -5.22 -2.60 -1.62 -0.84 6.60 3.88 2.73 1.80 28.45 16.35 11.30 9.30
100 -5.06 -2.53 -1.53 -0.79 5.94 3.40 2.32 1.46 41.45 23.55 15.85 10.15
200 -5.07 -2.53 -1.55 -0.79 5.51 2.97 1.95 1.18 67.30 38.70 25.55 15.70
500 -5.02 -2.52 -1.53 -0.78 5.21 2.72 1.71 0.96 96.85 73.90 52.90 29.80
1000 -5.07 -2.56 -1.55 -0.79 5.16 2.66 1.64 0.89 99.95 96.10 82.40 53.10

Half-panel jackknife FE-TE estimator β̃FE−TE
30 0.39 0.24 0.08 -0.03 7.39 4.70 3.45 2.38 5.45 5.80 5.15 5.20
60 0.38 0.20 0.02 -0.03 5.04 3.14 2.34 1.64 5.30 4.25 4.45 5.50
100 0.50 0.23 0.10 0.00 3.85 2.50 1.85 1.27 4.75 4.50 5.05 4.85
200 0.43 0.23 0.09 0.01 2.73 1.72 1.26 0.90 5.25 4.70 4.20 5.20
500 0.50 0.23 0.10 0.01 1.80 1.13 0.83 0.56 5.65 4.65 4.20 5.10
1000 0.43 0.18 0.07 0.01 1.30 0.81 0.59 0.41 6.70 4.95 4.50 5.10

Notes: β = 0.5, λy = 0.8, δt = 0, and κx = 0.4. For the regression equations, see the notes for Table 7. For the rest

of the settings, see the notes for Table 2.
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Figure 8: Rejection frequency (%) at 5% nominal level with λy = 0.4, δt = 0.025t− 0.001t2, and
κx = 0.4 (Experiment 18, unbalanced samples)
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Table 9: Berger et al. (2013) and half-panel jackknife estimates for the effects of US
interventions on trade with the US and the rest of the world

ln normalized imports ln normalized imports ln normalized exports ln normalized exports
from the US from the world to the US to the world

(1.a) (1.b) (2.a) (2.b) (3.a) (3.b) (4.a) (4.b)
BENS1 Jackknife BENS1 Jackknife BENS1 Jackknife BENS1 Jackknife

FE-TE FE-TE FE-TE FE-TE
US influence 0.293*** 0.450*** -0.009 0.041 0.058 0.081 0.000 0.006

(0.109) (0.068) (0.045) (0.031) (0.122) (0.096) (0.052) (0.035)
ln per capita income 0.296** 0.469*** 0.129 0.290*** 1.234*** 1.213*** 0.647*** 0.631***

(0.148) (0.106) (0.111) (0.072) (0.239) (0.163) (0.134) (0.075)
Soviet intervention -1.067** -1.819*** -0.080 -0.143** -0.682** -1.197*** -0.082 -0.154*

(0.430) (0.243) (0.102) (0.066) (0.307) (0.323) (0.100) (0.081)
Leader turnover 0.001 0.006 0.026 0.040** 0.028 0.064 0.037* 0.053***

(0.037) (0.035) (0.018) (0.018) (0.039) (0.043) (0.022) (0.020)
Leader tenure 0.003 -0.002 0.005** 0.005** 0.013** 0.020*** 0.006* 0.008***

(0.008) (0.004) (0.003) (0.002) (0.007) (0.005) (0.004) (0.002)
Democracy 0.121* 0.226*** 0.069 0.152*** 0.065 0.136** 0.082 0.114***

(0.073) (0.048) (0.053) (0.031) (0.094) (0.062) (0.058) (0.031)
ln distance -0.277*** -0.397*** -0.127*** -0.149*** -0.214*** -0.293*** -0.143*** -0.177***

(0.065) (0.047) (0.026) (0.016) (0.079) (0.055) (0.029) (0.015)
Contiguous border 2.952* 3.773*** -0.274 -0.267 1.965 3.285** -0.104 -0.094

(1.709) (1.262) (0.516) (0.292) (2.648) (1.623) (0.415) (0.323)
Common language 1.430 5.087*** -0.847** 0.719*** 3.676*** 5.810*** 0.145 0.880***

(1.204) (0.793) (0.343) (0.227) (1.280) (0.960) (0.355) (0.242)
GATT participant 0.057 0.840** -0.075 -0.157*** 0.365 0.872** -0.086 -0.202***

(0.549) (0.378) (0.055) (0.032) (0.561) (0.370) (0.063) (0.036)
Regional trade -1.216** -2.019*** -1.200*** -1.579*** -1.283 -0.956* -1.126*** -1.553***
agreement (0.532) (0.454) (0.205) (0.121) (0.882) (0.510) (0.266) (0.145)
Observations 4,149 4,110 4,149 4,110 3,922 3,886 3,922 3,886
N 131 131 131 131 131 128 131 128
maxT 43 43 43 43 43 42 43 42
avgT 31.7 31.4 31.7 31.4 29.9 30.4 29.9 30.4
minT 3 2 3 2 1 2 1 2

Notes: 1. BENS estimates, under columns (1.a), (2.a), (3.a), and (4.a), are taken from columns (3)—(6) in Table 1 of

Berger, Easterly, Nunn, and Satyanath (2013). The remaining columns are the half-panel jackknife bias-corrected

FE-TE estimates. For the jackknife FE-TE, we drop the first observations for countries with odd numbers of

observations. All regressions include country fixed effects and year time effects. The standard errors of the jackknife

FE-TE estimates (in parentheses) are computed according to equations (55) and (65).
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Table 11: Alternative panel data estimates of the relationship between abortion rates and crime:
A dynamic formulation

ln (violent crime ln (property crime ln (murder
per capita) per capita) per capita)

(1.a) (1.b) (2.a) (2.b) (3.a) (3.b)
FE-TE Jackknife FE-TE Jackknife FE-TE Jackknife

FE-TE FE-TE FE-TE
“Effective” abortion rate ×100 -0.067*** -0.078*** -0.039*** -0.012 -0.147*** -0.246***

(0.013) (0.023) (0.008) (0.013) (0.043) (0.077)
ln (prisoners per capita) (t− 1) -0.076*** -0.160*** -0.073*** -0.099*** -0.249*** -0.251*

(0.028) (0.049) (0.018) (0.029) (0.087) (0.142)
ln (police per capita) (t− 1) -0.095*** -0.269*** -0.025 -0.142*** 0.228* 0.074

(0.035) (0.061) (0.027) (0.044) (0.127) (0.224)
State unemployment rate -0.095 -0.012 0.545** 0.562** -0.836 -2.516*
(percent unemployed) (0.344) (0.447) (0.212) (0.284) (1.082) (1.310)
ln state income per capita 0.541*** 0.572*** 0.292*** 0.388*** -1.006 -0.694

(0.149) (0.188) (0.097) (0.135) (0.708) (0.957)
Poverty rate (percent 0.002 0.003 -0.000 -0.000 0.001 -0.000
below poverty line) (0.002) (0.002) (0.001) (0.002) (0.005) (0.006)
AFDC generosity (t− 15) 0.003 0.006 0.005** 0.009** -0.013 -0.009

(0.004) (0.006) (0.003) (0.004) (0.011) (0.017)
Shall-issue concealed -0.002 0.015 0.018** 0.030*** 0.009 0.029
weapons law (0.001) (0.017) (0.008) (0.011) (0.032) (0.048)
Beer consumption per -0.003 -0.007 0.001 0.001 -0.003 0.005
capita (gallons) (0.002) (0.004) (0.002) (0.002) (0.006) (0.008)
ln (crime per capita) (t− 1) 0.716*** 0.857*** 0.683*** 0.883*** 0.118* 0.306***

(0.037) (0.056) (0.045) (0.062) (0.069) (0.094)
Observations 576 576 576 576 576 576
N 48 48 48 48 48 48
T 12 12 12 12 12 12

Notes: The regression equation is (103). Columns (1.a), (2.a), and (3.a) are the FE-TE estimates. Columns (1.b),

(2.b), and (3.b) are the half-panel jackknife bias-correction estimates. See also the notes to Table 10.

Table 12: FE-TE and jackknife FE-TE estimates of the long-run coeffi cients
ln (violent crime ln (property crime ln (murder
per capita) per capita) per capita)

(1.a) (1.b) (2.a) (2.b) (3.a) (3.b)
FE-TE Jackknife FE-TE Jackknife FE-TE Jackknife

FE-TE FE-TE FE-TE
“Effective” abortion rate ×100 -0.235*** -0.549** -0.124*** -0.103 -0.167*** -0.354***

(0.048) (0.215) (0.025) (0.106) (0.050) (0.113)
ln (prisoners per capita) (t− 1) -0.267*** -1.124* -0.230*** -0.848* -0.283*** -0.362*

(0.103) (0.577) (0.057) (0.464) (0.103) (0.205)
ln (police per capita) (t− 1) -0.333*** -1.887** -0.080 -1.215 0.258* 0.106

(0.128) (0.821) (0.087) (0.749) (0.145) (0.327)
State unemployment rate -0.336 -0.086 1.722*** 4.811* -0.947 -3.625*
(percent unemployed) (1.212) (3.130) (0.628) (2.887) (1.217) (1.954)
ln state income per capita 1.906*** 4.004* 0.922*** 3.319 -1.140 -1.001

(0.545) (2.068) (0.323) (2.189) (0.803) (1.402)
Poverty rate (percent 0.006 0.023 -0.001 -0.003 0.002 -0.001
below poverty line) (0.007) (0.019) (0.004) (0.014) (0.006) (0.009)
AFDC generosity (t− 15) 0.009 0.041 0.016* 0.076 -0.015 -0.013

(0.013) (0.045) (0.008) (0.054) (0.012) (0.025)
Shall-issue concealed -0.008 0.102 0.057** 0.260* 0.010 0.041
weapons law (0.040) (0.121) (0.024) (0.137) (0.036) (0.070)
Beer consumption per -0.010 -0.045 0.004 0.008 -0.003 0.007
capita (gallons) (0.008) (0.036) (0.006) (0.018) (0.006) (0.012)
Observations 576 576 576 576 576 576
N 48 48 48 48 48 48
T 12 12 12 12 12 12

Notes: The estimates reported in this table are computed using the estimates of the underlying dynamic panel data

regressions summarized in Table 11. See also the notes to that table.
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A Appendix

A.1 Lemmas (Statements and Proofs)

Lemma 1 Suppose xit, for i = 1, 2, ..., N and t = 1, 2, ..., T , is generated by (52), and Assumptions 2-3, 5, and 8

hold. Then,

Q̂FE−TE − Q̂a,FE−TE
p→ 0k×k, (A.1)

and

Q̂FE−TE − Q̂b,FE−TE
p→ 0k×k, (A.2)

as N,T →∞ jointly, where Q̂FE−TE, Q̂a,FE−TE, and Q̂b,FE−TE are defined in (55)-(57).

Proof. Using xit − x̄i· − x̄·t + x̄ = ωit − ω̄i· − ω̄·t + ω̄, where the averages (aggregates) ω̄i·, ω̄·t, and ω̄ are defined

in a similar way as the averages x̄i·, x̄·t, and x̄, we can write Q̂FE−TE − Q̂a,FE−TE as

Q̂FE−TE − Q̂a,FE−TE =
1

NT

N∑
i=1

T∑
t=1

(ωit − ω̄i· − ω̄·t + ω̄)ω′it

− 2

NT

N∑
i=1

T/2∑
t=1

(ωit − ω̄i·a − ω̄·t + ω̄a)ω′it,

in which ω̄i·a and ω̄a are defined in a similar way as x̄i·a and x̄a. Re-arranging the terms in the expression above

gives

Q̂FE−TE − Q̂a,FE−TE =
1

NT

N∑
i=1

T∑
t=1

ωitω
′
it −

2

NT

N∑
i=1

T/2∑
t=1

ωitω
′
it

− 1

NT

N∑
i=1

T∑
t=1

ω̄i·ω
′
it +

2

NT

N∑
i=1

T/2∑
t=1

ω̄i·aω
′
it

− 1

NT

N∑
i=1

T∑
t=1

ω̄·tω
′
it +

2

NT

N∑
i=1

T/2∑
t=1

ω̄·tω
′
it

+
1

NT

N∑
i=1

T∑
t=1

ω̄ω′it −
2

NT

N∑
i=1

T/2∑
t=1

ω̄aω
′
it. (A.3)

We focus on the individual rows on the right side of (A.3) below. Consider the first row, which reduces to

− 1

NT

N∑
i=1

T/2∑
t=1

ωitω
′
it +

1

NT

N∑
i=1

T∑
t=T/2+1

ωitω
′
it

p→ 0k×k,

as N,T →∞ jointly, since (NT )−1
∑N
i=1

∑T/2
t=1 ωitω

′
it

p→ Γ̄ (0) /2 as well as

(NT )−1
∑N
i=1

∑T
t=T/2+1 ωitω

′
it

p→ Γ̄ (0) /2. Consider next the second row on the right side of (A.3),

− 1

NT

N∑
i=1

T∑
t=1

ω̄i·ω
′
it +

2

NT

N∑
i=1

T/2∑
t=1

ω̄i·aω
′
it = − 1

N

N∑
i=1

ω̄i·ω̄
′
i·+

1

N

N∑
i=1

ω̄i·aω̄
′
i·a

p→ 0k×k,

as N,T → ∞ jointly, where we have used ω̄i· = Op
(
T−1/2

)
and ω̄i·a = Op

(
T−1/2

)
by the covariance stationarity

of ωit with absolute summable autocovariances (uniformly in i). Given the independence of ωit across i, and the

upper bound condition, ‖E (ωitω
′
it)‖ < K, we obtain the following result for the expression in the third row on the
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right side of (A.3),

− 1

NT

N∑
i=1

T∑
t=1

ω̄·tω
′
it +

2

NT

N∑
i=1

T/2∑
t=1

ω̄·tω
′
it = − 1

T

T∑
t=1

ω̄·tω̄
′
·t +

2

T

T/2∑
t=1

ω̄·tω̄
′
·t

=
1

T

T/2∑
t=1

ω̄·tω̄
′
·t −

1

T

T∑
t=T/2+1

ω̄·tω̄
′
·t

p→ 0k×k,

where ω̄·t = Op
(
N−1/2

)
. Last but not least, consider the last row on the right side of (A.3). Using again the

covariance-stationarity of ωit with uniformly absolute summable autocovariances in i and the cross-sectional inde-

pendence of ωit across i, we have ω̄ = O
(
N−1/2T−1/2

)
, ω̄a = O

(
N−1/2T−1/2

)
, and

1

NT

N∑
i=1

T∑
t=1

ω̄ω′it −
2

NT

N∑
i=1

T/2∑
t=1

ω̄aω
′
it = ω̄ω̄′−ω̄aω̄′a

p→ 0k×k,

as N,T →∞ jointly. Hence, overall

Q̂FE−TE − Q̂a,FE−TE
p→ 0k×k,

as N,T →∞ jointly, which completes the proof of result (A.1). Result (A.2) can be obtained in the same way.

A.2 Proofs of Propositions

Proof of Proposition 1. Using (2) we have

E (ωi,t+huit) =

h−1∑
s=0

AisE (vi,t+h−suit) +

∞∑
s=h+1

AisE (vi,t+h−suit) .

But, under Assumption 4.a,

E (vi,t+h−suit) =

{
0k×1, for s ≥ h+ 1

γiuv (h− s) , for s < h
,

where

‖γiuv (h− s)‖ < Kρh−s for s < h. (A.4)

Hence,

E (ωi,t+huit) =

h−1∑
s=0

Aisγiuv (h− s) ≡ γi (h) ,

as desired. Taking the norm of γi (h) and using the triangle inequality, (A.4), and condition (6) of Assumption 5, we

have

‖γi (h)‖ ≤
h−1∑
s=0

‖Aisγiuv (h− s)‖ ≤
h−1∑
s=0

‖Ais‖ ‖γiuv (h− s)‖

<

h−1∑
s=0

Kρs ·Kρh−s = K2hρh.

Noting that ρ < 1, there exists ε = (1− ρ) /2 > 0. Set ρ1 = ρ+ ε < 1, ρ∗ = ρ/ρ1 and note that

hρh =
(
hρh1

)
(ρ∗)

h .
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Since 0 < ρ1 < 1, there must exist a positive finite constant K∗ such that
∣∣K2hρh1

∣∣ < K∗ for all h = 1, 2, ....Therefore

‖γi (h)‖ ≤ K∗ρ∗h,

as desired, since ρ∗ = ρ/ρ1 < 1. This completes the proof.

Proof of Proposition 2. Using (2), we have

1

N

N∑
i=1

(xit − x̄i·) (xit − x̄i·)
′ =

1

N

N∑
i=1

(ωit − ω̄i)ω′it,

where ω̄i = T−1
∑T
t=1 ωit. Since ωit are cross-sectionally independent, we have for a fixed T and as N →∞,

p lim
N→∞

1

N

N∑
i=1

(ωit − ω̄i)ω′it = lim
N→∞

1

N

N∑
i=1

E (ωit − ω̄i)ω′it.

Hence,

1

NT

N∑
i=1

T∑
t=1

(xit − x̄i·) (xit − x̄i·)
′ p→ lim

N→∞

1

N

N∑
i=1

E

(
1

T

T∑
t=1

(xit − x̄i·) (xit − x̄i·)
′

)
.

But, since

1

T

T∑
t=1

(xit − x̄i·) (xit − x̄i·)
′ =

[
1

T

T∑
t=1

ωitω
′
it

]
− ω̄iω̄′i,

then

E

(
1

T

T∑
t=1

(xit − x̄i·) (xit − x̄i·)
′

)
= Γi (0)− 1

T 2
E
[
(ωi1 + ωi2 + ...ωiT )× (ωi1 + ωi2 + ...ωiT )′

]
= Γi (0)− 1

T
ΨiT ,

where ΨiT is given by (15). Consider Q̂FE defined in (13). Then, for a fixed T , Q̂FE
p→ QT , as N →∞, where

QT = lim
N→∞

1

N

N∑
i=1

[
Γi (0)− 1

T
ΨiT

]
= Γ̄ (0)− 1

T
Ψ̄T , (A.5)

Γ̄ (0) = limN→∞
1
N

∑N
i=1 Γi (0), and Ψ̄T = limN→∞

1
N

∑N
i=1 ΨiT . Note that

∥∥Γ̄ (0)
∥∥ < K and

∥∥Ψ̄T

∥∥ < K under

Assumption 5. In particular, using the triangle inequality and (6), we obtain

∥∥Γ̄ (0)
∥∥ ≤ lim

N→∞

1

N

N∑
i=1

‖Γi (0)‖

≤ lim
N→∞

1

N

N∑
i=1

( ∞∑
s=0

‖Ais‖2
)
< K,

and, since ‖Γi (h)‖ ≤
∑∞
s=0 ‖Ais‖

∥∥A′i,s−h∥∥ ≤ Kρh,
‖ΨiT ‖ ≤ ‖Γi (0)‖+

T−1∑
h=1

(
1− h

T

)[
‖Γi (h)‖+

∥∥Γ′i (h)
∥∥] < K.

Consider now the second term on the right side of (12), and let zFE be given by (40) and note that β̂FE−β = Q̂
−1
FEzFE ,

where Q̂FE is invertible under Assumption 6. Recall that for a finite T and as N → ∞, Q̂FE
p→ QT , where QT is
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given by (A.5). Consider E (zFE) next,

E (zFE) =
1

N

N∑
i=1

[
E

(
1

T

T∑
t=1

ωituit

)
− E (ω̄iūi)

]
.

But under (9), E (ωituit) = 0k×1, and E (zFE) = − 1
N

∑N
i=1E (ω̄iūi). Under (9),

E (ω̄iūi) =
1

T 2
E [(ωi,1 + ωi,2 + ...+ ωi,T )× (ui,1 + ui,2 + ...+ ui,T )]

=
1

T

T−1∑
h=1

(
1− h

T

)
γi (h) .

Hence,

lim
N→∞

E (zFE) = − 1

T

T−1∑
h=1

(
1− h

T

)
γ̄ (h) ,

where γ̄ (h) is given by (18). Therefore, we obtain

lim
N→∞

(
β̂FE − β

)
= − 1

T

(
Γ̄ (0)− 1

T
Ψ̄T

)−1
χ̄T ,

as desired. To establish the order of the asymptotic small-T bias, note that under (10),

‖χ̄T ‖ ≤
T−1∑
t=1

‖γ̄ (h)‖ ≤ K
T−1∑
t=1

ρh = O (1) .

In addition, Γ̄ (0) is nonsingular, and
∥∥Ψ̄T

∥∥ < K, which implies
∥∥Q−1T ∥∥ = O (1),and therefore BiasT

(
β̂FE

)
=

O
(
T−1

)
, as required.

Proof of Proposition 3. The exact analytical bias formula for the half-panel jackknife FE estimator is derived in

the body of the paper; see the derivations preceding the result (36). We prove the order of the asymptotic bias in

the general case next. First note that (using (15))

Ψ̄T = Γ̄ (0) +

T−1∑
h=1

(
1− h

T

)[
Γ̄ (h) + Γ̄′ (h)

]
Ψ̄T/2 = Γ̄ (0) +

T/2−1∑
h=1

(
1− 2h

T

)[
Γ̄ (h) + Γ̄′ (h)

]
,

and

Ψ̄T − Ψ̄T/2 =
1

T

T/2−1∑
h=1

h
[
Γ̄ (h) + Γ̄′ (h)

]
+

T−1∑
h=T/2

(
1− h

T

)[
Γ̄ (h) + Γ̄′ (h)

]
.

Since
∥∥Γ̄ (h)

∥∥ < Kρh, then

Ψ̄T − Ψ̄T/2 = O

(
1

T

)
, (A.6)
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and12

BiasT
(
β̃FE

)
= − 2

T

[(
Γ̄ (0)− 1

T
Ψ̄T

)−1
χ̄T −

(
Γ̄ (0)− 2

T
Ψ̄T/2

)−1
χ̄T/2

]

= − 2

T

{(
Γ̄ (0)− 1

T
Ψ̄T

)−1 (
χ̄T − χ̄T/2

)
+

+

(
Γ̄ (0)− 1

T
Ψ̄T

)−1(
1

T
Ψ̄T −

2

T
Ψ̄T/2

)(
Γ̄ (0)− 2

T
Ψ̄T/2

)−1
χ̄T/2

}

Now using (39) and (A.6), we have BiasT
(
β̃FE

)
= O

(
1
T2

)
, as required.

Proof of Proposition 4. The asymptotic variance is established in the body of the paper; see the derivations leading

to (48). We establish the consistency of ÂsyV ar
(√

NT β̃FE

)
next. Let hit = bituit. Without the independence of

vi,t+h and uit for all i, t and all h ≤ 0, it is not guaranteed that

T∑
t=1

T∑
s=1,s 6=t

E
(
hith

′
is

)
→ 0k×k, (A.7)

as T,N →∞ jointly such that T = KN ε, with ε > 1/3. But under the independence postulated in Assumption 4.b,

we have
1

NT

N∑
i=1

T∑
t=1

T∑
s=1

E
(
hith

′
is

)
→ 1

NT

N∑
i=1

T∑
t=1

E
(
hith

′
it

)
. (A.8)

To establish (A.8) first note that

T∑
t=1

T∑
s=1

bitb
′
isuituis =

T∑
t=1

T∑
s=1

ωitω
′
isuituis

−
T∑
t=1

T∑
s=1

q̄itq̄
′
isuituis, (A.9)

where q̄it = I (t ≤ T/2) q̄ia + I (t > T/2) q̄ib, q̄ia = 2ω̄i − ω̄ia, and q̄ib = 2ω̄i − ω̄ib. Consider the first term on the

right side of (A.9). Under the independence of (current and past values of) regressors and future errors, we have, for

h = s− t > 0,

E
(
ωitω

′
i,t+huitui,t+h

)
= 0k×k for all i = 1, 2, ..., N ,t = 1, 2, ..., T, and h > 0,

and therefore
T∑
t=1

T∑
s=1

E
(
ωitω

′
isuituis

)
=

T∑
t=1

E
(
ωitω

′
itu

2
it

)
. (A.10)

Consider next the second term on the right side of (A.9) and note that

1

T

T∑
t=1

T∑
s=1

q̄itq̄
′
isuituis

= q̄iaq̄
′
ia

T/2∑
t=1

T/2∑
s=1

uituis
T

+ q̄iaq̄
′
ib

1

T

T/2∑
t=1

T∑
s=T/2+1

uituis

+q̄ibq̄
′
ia

1

T

T∑
t=T/2+1

T/2∑
s=1

uituis + q̄ibq̄
′
ib

1

T

T∑
t=T/2+1

T∑
s=T/2+1

uituis.

12We use the following identity: A−1a−B−1b = A−1 (a− b) + A−1 (B−A) B−1b, for invertible k × k matrices
A, B and k × 1 vectors a,b.
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But q̄ia = Op
(
T−1/2

)
, q̄′ib = Op

(
T−1/2

)
, and the double-sums involving the product of error terms uituis/T can

be stochastically bounded as Op (1). This can be established by noting that

E

T/2∑
t=1

T/2∑
s=1

uituis
T

2 =
1

T 2

T/2∑
t=1

T/2∑
s=1

T/2∑
t′=1

T/2∑
s′=1

E (uituisuit′uis′) ,

but uit and uit′ are independent for any t 6= t′ and the fourth moments of uit are uniformly bounded under Assumption

1. Hence,

E

T/2∑
t=1

T/2∑
s=1

uituis
T

2
=

1

T 2

T/2∑
t=1

E
(
u4it
)

+
3

T 2

T/2∑
t=1

T/2∑
s=1,s6=t

E
(
u2it
)
E
(
u2is
)
< K,

and the double-sums involving the product of error terms uituis/T are all Op (1). It now readily follows that

1

T

T∑
t=1

T∑
s=1

q̄itq̄
′
isuituis = Op

(
T−1

)
, (A.11)

uniformly in i. Since, at the same time, |q̄itq̄′isuituis| is uniformly integrable, then (A.11) implies

1

T

T∑
t=1

T∑
s=1

E
∣∣q̄itq̄′isuituis∣∣→ 0k×k, (A.12)

uniformly in i, as T →∞. Results (A.10) and (A.12) in turn imply (A.8). Moreover, by independence of hit across

i, and by consistency of ûit, we have

R̂FE−
1

NT

N∑
i=1

T∑
t=1

E
(
hith

′
it

) p→ 0k×k,

as N,T → ∞ jointly, which establishes the consistency of R̂FE . As established in (44), Q can be consistently

estimated using

Q̂FE =
1

NT

N∑
i=1

T∑
t=1

(xit − x̄i·) (xit − x̄i·)
′ ,

asN,T →∞ jointly. The consistency of R̂FE and Q̂FE proves the consistency of AsyV ar
(√

NT β̃FE

)
= Q̂−1FER̂FEQ̂−1FE ,

as required.

Proof of Proposition 5. Using xit − x̄i· − x̄·t + x̄ = ωit − ω̄i· − ω̄·t + ω̄, Q̂FE−TE can be written as

Q̂FE−TE =
1

NT

T∑
t=1

N∑
i=1

(ωit − ω̄i· − ω̄·t + ω̄)ω′it

=
1

NT

T∑
t=1

N∑
i=1

ωitω
′
it −

1

N

N∑
i=1

ω̄i·ω̄
′
i· −

1

T

T∑
t=1

ω̄·tω̄
′
·t + ω̄ω̄′.

The last two terms are new, compared to the FE model analyzed in Proposition 2. Noting that the variance of ωit
is uniformly bounded and ωit is independent across i, we obtain ω̄·t = N−1

∑N
i=1 ωit = Op

(
N−1/2

)
, and therefore,

for a finite T , we have T−1
∑T
t=1 ω̄·tω̄

′
·t = Op

(
N−1

)
, and

ω̄ω̄′ =

(
1

T

T∑
t=1

ω̄·t

)(
1

T

T∑
t=1

ω̄·t

)′
= Op

(
N−1

)
.
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Hence, Q̂FE−TE
p→ QT , as T is fixed and N →∞, where QT is defined in (A.5). Consider next

zFE−TE =
1

NT

N∑
i=1

T∑
t=1

(xit − x̄i· − x̄·t + x̄)uit,

=
1

NT

N∑
i=1

T∑
t=1

(ωit − ω̄i· − ω̄·t + ω̄)uit. (A.13)

zFE−TE consists of the following four terms:

zFE−TE =
1

NT

N∑
i=1

T∑
t=1

ωituit −
1

N

N∑
i=1

ω̄i·ūi· −
1

T

T∑
t=1

ω̄·tū·t + ω̄ū,

where ūi· = T−1
∑T
t=1 uit, ū·t = N−1

∑N
i=1 uit, and ū = (NT )−1

∑N
i=1

∑T
t=1 uit. The last two terms are new

compared to the earlier analysis. But ω̄·t = Op
(
N−1/2

)
, and ū·t = Op

(
N−1/2

)
, and therefore T−1

∑T
t=1 ω̄·tū·t =

Op
(
N−1

)
. Moreover,

ω̄ū =

(
1

T

T∑
t=1

ω̄·t

)(
1

T

T∑
t=1

ū·t

)
= Op

(
N−1

)
.

Hence,

lim
N→∞

E (zFE−TE) = lim
N→∞

E (zFE) = − 1

T

T−1∑
h=1

(
1− h

T

)
γ̄ (h) ,

and, assuming
(
Γ̄ (0)− 1

T
Ψ̄T

)
is invertible, the small-T bias of the FE-TE estimator β̂FE−TE in the model with fixed

and time effects is the same as the bias of the FE estimator β̂FE in the model with FE. The analytical bias formula

for the half-panel jackknife FE-TE estimator β̃FE−TE defined in (60) will therefore be the same, given by (36).

Proof of Proposition 6. First we establish (66). Consider (63) and note that d∗it is not cross-sectionally

independent, but, using xit − x̄i· − x̄·t + x̄ = ωit − ω̄i· − ω̄·t + ω̄, d∗it can be written as

d∗it = bit + ct, (A.14)

where bit is defined in (47),

ct = I (t ≤ T/2) cta + I (t > T/2) ctb,

and

cta = −ω̄·t + (2ω̄ − ω̄a) , ctb = −ω̄·t + (2ω̄ − ω̄b) .

Hence,

Q−1
1√
NT

N∑
i=1

T∑
t=1

d∗ituit = Q−1
1√
NT

N∑
i=1

T∑
t=1

bituit + Q−1
√
N

T

T∑
t=1

ctū·t. (A.15)

Clearly, by independence of ωit across i, bit is cross-sectionally independent. Using the same arguments as in the

proof of Proposition 4, we obtain

AsyV ar

(
Q−1

1√
NT

N∑
i=1

T∑
t=1

bituit

)
= Q−1RQ−1, (A.16)

as N,T →∞ jointly such that T = KN ε, for some 0 < K <∞ and ε > 1/3. Consider next the second term on the

right side of (A.15). We have√
N

T

T∑
t=1

ctū·t = −
√
N

T

T∑
t=1

ω̄·tū·t + 2
√
NT ω̄ū

−
√
N

T

T/2∑
t=1

ω̄aū·t +

T∑
t=T/2+1

ω̄bū·t

 . (A.17)
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Note that E (ω̄·tū·t) = 0k×1 and

V ar

(√
N

T

T∑
t=1

ω̄·tū·t

)
=
N

T

T∑
t=1

E
(
ω̄·tω̄

′
·t
)
E
(
ū2·t
)
.

But

E
(
ω̄·tω̄

′
·t
)

= E

(
1

N2

N∑
i=1

N∑
j=1

ωitω
′
jt

)

=
1

N2

N∑
i=1

E
(
ωitω

′
it

)
=

1

N
Γ̄ (0) ,

and

E
(
ū2·t
)

=
1

N2

N∑
i=1

E
(
u2it
)

=
σ2ui
N
,

and therefore √
N

T

T∑
t=1

ω̄·tū·t
p→ 0k×1,

as N,T →∞ jointly. Consider next the term 2
√
NT ω̄ū. We have ω̄ = Op

(
N−1/2T−1/2

)
and ū = Op

(
N−1/2T−1/2

)
,

and hence

2
√
NT ω̄ū

p→ 0k×1,

as N,T →∞ jointly. Consider next the terms in the second row on the right side of (A.17). We have

√
N

T

T/2∑
t=1

ω̄aū·t =
√
NT ω̄a

1

2

 2

T

T/2∑
t=1

ū·t


=

√
NT

2
ω̄aūa,

where (same as before) ω̄a = Op
(
N−1/2T−1/2

)
and ūa = Op

(
N−1/2T−1/2

)
. Hence,

√
N

T

T/2∑
t=1

ω̄aū·t
p→ 0k×1,

as N,T →∞ jointly, and, using similar arguments,√
N

T

T∑
t=T/2+1

ω̄bū·t
p→ 0k×1,

as N,T →∞ jointly. Overall, using these results in (A.17), we obtain√
N

T

T∑
t=1

ctū·t
p→ 0k×1,

as N,T →∞ jointly. Hence,

Q−1
1√
NT

N∑
i=1

T∑
t=1

d∗ituit
d∼ Q−1

1√
NT

N∑
i=1

T∑
t=1

bituit,

and √
NT

(
β̃FE−TE − β

)
d∼ N

(
0,Q−1RQ−1

)
,
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as desired. The consistency of ÂsyV ar
(√

NT β̃FE−TE

)
can now be established in the same way as in Proposition

4.

Proof of Proposition 7. Noting that

Q̂FE =
1

N

N∑
i=1

ϑi
1

Ti

Tli∑
t=Tfi

[xit − x̄i· (Ti)] [xit − x̄i· (Ti)]
′ ,

where
1

Ti

Tli∑
t=Tfi

[xit − x̄i· (Ti)] [xit − x̄i· (Ti)]
′ =

1

Ti

Tli∑
t=Tfi

ωitω
′
it − ω̄i· (Ti) ω̄′i· (Ti) ,

is independent across i, and ω̄i· (Ti) = T−1i
∑Tli
t=Tfi

ωit, we have for a fixed {Ti, i = 1, 2, ..., N}

Q̂FE
p→ lim
N→∞

1

N

N∑
i=1

ϑiE

 1

Ti

Tli∑
t=Tfi

ωitω
′
it − ω̄i· (Ti) ω̄′i· (Ti)

 .
But T−1i

∑Tli
t=Tfi

E (ωitω
′
it) = Γi (0), and E [ω̄i· (Ti) ω̄

′
i· (Ti)] = T−1i ΨiTi , where

ΨiTi = Γi (0) +

Ti−1∑
i=1

(
1− h

Ti

)[
Γi (h) + Γ′i (h)

]
.

It is clear that ΨiTi = O (1), and therefore E [ω̄i· (Ti) ω̄
′
i· (Ti)] = O

(
T−1i

)
. Hence,

Q̂FE
p→ lim
N→∞

1

N

N∑
i=1

ϑi

(
Γi (0)− 1

Ti
ΨiTi

)
= Γ̄ϑ (0)− 1

T̄
Ψ̄{Ti}, (A.18)

where Γ̄ϑ (0) is defined in (71) and Ψ̄{Ti} is defined in (72). Γ̄ϑ (0) = O (1) and it is nonsingular by assumption.

Moreover, ‖ΨiTi‖ < K, and therefore
1

T̄
Ψ̄{Ti} = O

(
T̄−1

)
. (A.19)

To obtain the small-T large-N bias of β̂FE , note that β̂FE − βFE= Q̂
−1
FEzFE , where

zFE =
1∑N
i=1 Ti

N∑
i=1

Tli∑
t=Tfi

[xit − x̄i· (Ti)]uit

=
1

N

N∑
i=1

ϑi
1

Ti

Tli∑
t=Tfi

[ωit − ω̄i· (Ti)]uit.

Using (A.18), we have

β̂FE − βFE
d∼
[
Γ̄ϑ (0)− 1

T̄
Ψ̄{Ti}

]−1
zFE ,

as N →∞ and {Ti} are fixed. Consider E (zFE) next.

E (zFE) = E

 1

N

N∑
i=1

ϑi

 1

Ti

Tli∑
t=Tfi

ωituit − ω̄i· (Ti)
1

Ti

Tli∑
t=Tfi

uit

 .
But E (ωituit) = 0k×1, and

E

ω̄i· (Ti) 1

Ti

Tli∑
t=Tfi

uit

 =
1

Ti
χi,
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where χi =
∑Ti−1
i=1

(
1− h

Ti

)
γi (h) = O (1). Hence, E (zFE) = N−1

∑N
N=1

ϑi
Ti
χi, and noting that ‖χi‖ < K, we have

lim
N→∞

‖E (zFE)‖ ≤ K lim
N→∞

(
1

N

N∑
N=1

ϑi
Ti

)
= O

(
T̄−1

)
.

Therefore

lim
N→∞

(
β̂FE − β

)
=

[
Γ̄ϑ (0)− 1

T̄
Ψ̄{Ti}

]−1 χ̄{Ti}
T̄

= O
(
T̄−1

)
,

where T̄−1χ̄{Ti} = limN→∞N
−1∑N

i=1
ϑi
Ti

∑Ti−1
i=1

(
1− h

Ti

)
γi (h) = O

(
T̄−1

)
, as required.

Proof of Proposition 8. The exact large-N small-T bias expression for β̃FE directly follows from substituting

the bias expressions into (
β̃FE−β

)
= 2

(
β̂FE−β

)
− 1

2

[(
β̂a,FE−β

)
+
(
β̂b,FE−β

)]
.

We establish the order of the bias next. We have

Γ̄ϑ (0) = O (1) , and Γ̄−1ϑ (0) = O (1) , (A.20)

by Assumption 5. Moreover,
1

T̄
Ψ̄{Ti} = O

(
T̄−1

)
, (A.21)

see (A.19). Using the same arguments as in the derivation of (A.19), we also have

1

T̄
Ψ̄{Ti/2} = O

(
T̄−1

)
. (A.22)

Consider the leading term 2χ̄{Ti}/T̄ − 2χ̄{Ti/2}/T̄ next. We have

∥∥∥2χ̄{Ti}/T̄ − 2χ̄{Ti/2}/T̄
∥∥∥ =

∥∥∥∥∥∥ 1

N

N∑
i=1

ϑi
2

Ti

Ti−1∑
t=1

(
1− h

Ti

)
γi (h)−

Ti/2−1∑
t=1

(
1− h

Ti/2

)
γi (h)

∥∥∥∥∥∥ . (A.23)

But ∥∥∥∥∥∥
Ti−1∑
t=1

(
1− h

Ti

)
γi (h)−

Ti/2−1∑
t=1

(
1− h

Ti/2

)
γi (h)

∥∥∥∥∥∥ =

∥∥∥∥∥∥
Ti/2−1∑
t=1

h

Ti
γi (h) +

Ti−1∑
t=T/2

(
1− h

Ti

)
γi (h)

∥∥∥∥∥∥
≤ 1

Ti

Ti/2−1∑
t=1

h ‖γi (h)‖+

Ti−1∑
t=T/2

(
1− h

Ti

)
‖γi (h)‖ ,

and using ‖γi (h)‖ < Kρh, we obtain

Ti/2−1∑
t=1

h ‖γi (h)‖ = O (1) ,

 Ti−1∑
i=Ti/2

γi (h)

 = O
(
ρTi/2

)
,

and there exists 0 < K <∞ so that∥∥∥∥∥∥
Ti−1∑
t=1

(
1− h

Ti

)
γi (h)−

Ti/2−1∑
t=1

(
1− h

Ti/2

)
γi (h)

∥∥∥∥∥∥ < K

Ti
.
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Using this result in (A.23), it follows that

∥∥∥2χ̄{Ti}/T̄ − 2χ̄{Ti/2}/T̄
∥∥∥ ≤

∥∥∥∥∥ 1

N

N∑
i=1

ϑi
2

Ti

(
K

Ti

)∥∥∥∥∥
≤ 2K

1
1
N

∑N
i=1 Ti

1

N

N∑
i=1

1

Ti

= O
(
T̄−1N T̄−1h,N

)
,

where T̄h,N is the harmonic mean of Ti given by (81). Overall, as N →∞,∥∥∥2χ̄{Ti}/T̄ − 2χ̄{Ti/2}/T̄
∥∥∥ = O

(
T̄−1T̄−1h

)
,

and using also (A.20)-(A.22)

lim
N→∞

E
(
β̃FE,a − β

)
= 2

[
Γ̄ϑ (0)− 1

T̄
Ψ̄{Ti}

]−1 χ̄{Ti}
T̄
− 2

[
Γ̄ϑ (0)− 1

T̄
Ψ̄{Ti/2}

]−1 χ̄{Ti/2}
T̄

= O
(
T̄−1T̄−1h

)
,

where T̄h is given by (80). Using the arithmetic-harmonic mean inequality, we have T̄h ≤ T̄ , and therefore T̄−1 ≤ T̄−1h ,

and limN→∞E
(
β̃FE,a − β

)
= O

(
T̄−2h

)
. Assuming

0 < K1 < ϑi < K2 <∞, (A.24)

for all i where K1,K2 do not change with sample size, we obtain T−1i <
(
K1T̄N

)−1
T̄−1h,N = N−1

N∑
i=1

1

Ti
< K−11 N−1

N∑
i=1

1

T̄N
= O

(
T̄−1N

)
,

T̄−1h = O
(
T̄−1

)
, and

lim
N→∞

E
(
β̃FE,a − β

)
= O

(
T̄−2

)
, (A.25)

as desired. When (A.24) does not hold for a finite subset of units, then T̄ and T̄h continue to be of the same order,

and therefore (A.25) continues to hold.

Proof of Proposition 9. Proposition 9 can be established in the same way as Proposition 4.
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