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Abstract

This paper considers estimation and inference in fixed effects (FE) panel regression models
with lagged dependent variables and/or other weakly exogenous (or predetermined)

regressors when N (the cross section dimension) is large relative to T (the time series
dimension). The paper first derives a general formula for the bias of the FE estimator which
is a generalization of the Nickell type bias derived in the literature for the pure dynamic
panel data models. It shows that in the presence of weakly exogenous regressors, inference
based on the FE estimator will result in size distortions unless N /T is sufficiently small. To
deal with the bias and size distortion of FE estimator when N is large relative to T, the use
of half-panel Jackknife FE estimator is proposed and its asymptotic distribution is derived. It
is shown that the bias of the proposed estimator is of order T2, and for valid inference it is
only required that N/T3 — 0, as N, T — oo jointly. Extensions to panel data models with
time effects (TE), for balanced as well as unbalanced panels, are also provided. The
theoretical results are illustrated with Monte Carlo evidence. It is shown that the FE
estimator can suffer from large size distortions when N > T, with the proposed estimator
showing little size distortions. The use of half-panel jackknife FE-TE estimator is illustrated
with two empirical applications from the literature.
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1 Introduction

This paper considers the application of the split-panel jackknife method recently proposed by
Dhaene and Jochmans (2015b) for panel data models with fixed effects (FE). It focusses on linear
panel data models with lagged dependent variables and/or weakly exogenous regressors where N
(the cross section dimension) is large relative to 7' (the time series dimension).! Tt is well known
that standard FE estimators in such models suffer from small T bias and their use in inference
can lead to large size distortions. The analysis of Dhaene and Jochmans (2015b) requires that
N/T — k for some 0 < kK < 00, as N,T — oo jointly, which excludes the case of N large relative
to T. In this paper we propose a bias-corrected jackknife FE estimator which only requires that
N/T3 — 0 as N,T — oo jointly, and is therefore appropriate in the case of many cross-country
empirical applications in the literature where N is typically much larger than T. We derive exact
expressions for small-7" bias of the FE and half-panel jackknife bias-corrected FE estimators (as
N — 0). After the split-panel jackknife procedure, the bias is reduced from O (T_l) to O (T_Q),
and a valid inference can be done by using a consistent estimator of the asymptotic variance
which is also proposed. Our analysis is also sufficiently general and applies equally to dynamic
panels as well as panels with weakly exogenous regressors with or without dynamics. Also, unlike
analytical bias correction or bootstrap procedures developed only for the case of lagged dependent
variable models, in which the model of the lagged dependent variable is already specified by default,
the proposed estimator does not require the researcher to fully specify the nature of the weak
exogeneity of the regressors, and as a result it is applicable to a wider class of models that generate
correlation between errors and future values of the regressors. We allow for the weakly exogenous
regressors to follow general linear stationary processes with possibly heterogeneous coefficients,
and only require the correlation of the regressors and the future errors to decay exponentially.
This is important since the alternative approach of modelling the dependent variable and the
regressors jointly as vector autoregressions involves much stronger assumptions when T is small
relative to N, such as homogeneity of coefficients and dynamics on the processes generating the
weakly exogenous regressors. Our approach also allows for inclusion of strictly exogenous regressors
with nonstationary or non-linear processes.

Following the seminal work of Nickell (1981), it is well known that the standard FE estimator
suffers from small 7" bias in the case of dynamic panels. What is less recognized in the literature is
that this small-T" bias exists regardless of whether the lags of the dependent variables are included
or not, so long as one or more of the regressors are weakly exogenous. Moreover, in such cases the
inference based on standard FE estimators will be invalid and can result in large size distortions
unless N/T — 0, as N, T — oo jointly.

There are a number of methods in the literature that can handle weakly exogenous regressors,

the most prominent of which is the GMM (Generalized Method of Moments) procedure, developed

!Some authors prefer to refer to weakly exogenous regressors as predetermined. See, for example, Arellano and
Bond (1991). We shall provide a formal definition in the context of panel data models in Section 2. In the econometric
literature the concept of weak exogeneity was introduced by Engle et al. (1983) within a likelihood framework.



by Arellano and Bond (1991), Ahn and Schmidt (1995), Arellano and Bover (1995), and Blundell
and Bond (1998), among others. The GMM approach is applicable when 7' is fixed, as N — oco. The
condition of fixed T" precludes cases where N and T tend to infinity jointly. It is also well known that
the GMM method can suffer from weak/many instruments problem, particularly in cases where T'
takes moderate values. The jackknife bias correction considered in this paper requires N, T — oo,
but it allows 1" to rise at a much slower rate than /N, which makes the method attractive also for
panels where the time dimension is small relative to IN. A related class of estimators proposed
in the literature is the one based on analytical and bootstrapped bias corrections. Analytical
bias-corrections exploit on an asymptotic bias formula or its approximation and are considered
by Bruno (2005), Bun (2003), Bun and Carree (2005 and 2006), Bun and Kiviet (2003), Hahn
and Kuersteiner (2002), Hahn and Moon (2006), and Kiviet (1995 and 1999).2 Bootstrap and
simulation based bias corrections are considered, for example, by Everaert and Ponzi (2007) and
Phillips and Sul (2003 and 2007). All these bias-correction methods have been developed for the
case of models with lagged dependent variables only, in which the model of the lagged dependent
variable is already specified by default. As a result, these methods do not readily extend to more
general settings where one or more of the regressors (in addition to the lagged dependent variable)
are weakly exogenous, without specifying a model for such regressors. Choi, Mark, and Sul (2010)
consider common recursive mean adjustment to overcome the small-T" bias. However, this approach
requires (log2 T) (N/T) — 0 for consistency which is not satisfied when N is larger than 7. Han,
Phillips, and Sul (2014) propose X-differencing for estimation of autoregressive panel data models
regardless of the N/T ratio, but it is unclear if this approach can be generalized beyond the
pure autoregressive panels. Last but not least, jackknife bias-correction can be used to tackle the
consequences of weakly exogenous regressors. As noted earlier, Dhaene and Jochmans (2015b)
consider a split-panel jackknife method, which is applicable without the need to specify the model
for regressors, but the authors require N/T — & for some 0 < k < 00, as N, T — oo jointly, which
excludes the case of N large relative to 7.2 More recently, the modified profile likelihood method
has also been applied to panel data models with lagged dependent variables, but it is assumed that
the other included regressors are strictly exogenous. See Bartolucci et al. (2016) and Dhaene and
Jochmans (2015a), for example.

In this paper we provide new results for the bias of FE estimators and extend the half-panel
jackknife method studied by Dhaene and Jochmans (2015b) in a number of directions. First, we
derive exact expressions for the small-7" bias of the FE and half-panel jackknife bias-corrected FE
estimators (as N — 00), which are respectively O (T _1) and O (T _2). We also provide a rigorous
derivation of the asymptotic distribution of the proposed jackknife estimator and give a consistent

estimator of its variance. Most importantly, we show that even if 7" is much smaller than N, so long

?Hahn and Newey (2004) propose analytical and jackknife bias correction procedures for nonlinear panel data
models, assuming independently distributed data (both cross-sectionally and over time), that do not apply to dynamic
panel data models.

3Perhaps it should be clarified that the requirement for N/T to converge to a constant in the paper by Dhaene
and Jochmans (2015b) is due to the fact that these authors consider a general (possibly nonlinear) panel data models.



as T = KN¢, for some 0 < K < oo and € > 1/3, and inference using the half-panel jackknife FE
estimator will be valid so long as N/T% — 0, as N and T — oco. As a result the jackknife estimator
is applicable to panels with large N and moderate T sample sizes. We also consider panel data
models with time effects (TE) and propose a FE-TE half-panel jackknife estimator, and extend the
analysis of FE and FE-TE models to unbalanced panels. This latter extension is non-trivial and,
at the same time, particularly important in empirical research where available panel data sets are
generally unbalanced.

The drawbacks of the FE estimator and the satisfactory properties of the half-panel jackknife
bias-corrected FE estimator are illustrated in a series of Monte Carlo experiments in cases where
N is large relative to T" in a number of different set ups, including models with weakly exogenous
regressors, with and without lagged dependent variables, with and without time effects, and for
balanced as well as unbalanced panels. Specifically we considered the following sample size combi-
nations, N = 30, 60, 100, 200, 500, 1000, and T = 30, 60, 100, 200. In contrast to the FE and FE-TE
estimators, the proposed half jackknife estimators perform well (in the mean square error sense,
size and power) even if N is much larger than T, so long as N/T? is sufficiently small. This is to
be contrasted with the FE and FE-TE estimators that perform well only if T" is larger than N.*

The proposed FE-TE jackknife estimator is illustrated and compared to the FE-TE estimator
in the case of two different empirical applications from the literature. The first application is a
cross-country analysis by Berger et al. (2013) on the extent of US political influence on bilateral
trades of US and foreign countries during the Cold War, and the second application considers the
influential contribution of Donohue and Levitt (2001) on the relationship between legalized abortion
and crime across the US states. In the case of Berger et al. (2013) study, the jackknife FE-TE
estimates are in line with the FE-TE estimates and in fact suggest that the effect of CIA (Central
Intelligence Agency) intervention on the US exports is even larger, with a higher level of statistical
significance, than the estimates based on FE-TE. We also find some important differences in the
case of the coefficients of other control variables. For example, after the jackknife bias correction,
we find that having democracy, sharing a contiguous border, sharing a common language and
participating the GATT (General Agreement on Tariffs and Trade) have positive and statistically
significant effects on trades in all directions, while many of the estimates reported by Berger et al.
(2013) for these coefficients are statistically insignificant. For the latter study, Donohue and Levitt
(2001) found that legalized abortion in 1970s has been one of the main causes of the substantial
decline in violent crime, property crime and murders observed in the US during 1990s. For this
example, first, as a baseline model, we use our half-panel jackknife estimator to estimate the same

model as Donohue and Levitt (2001) and second we allow for dynamics by adding the lagged crime

4We also considered using GMM estimators in our comparisons, but it soon became apparent that even for panels
with moderate time dimensions we had to deal with many moment conditions, often larger than the number of
available observations. For example, in the case of panels with two weakly exogenous regressors and T' = 30, we have
T(T —1)= 870 moment conditions, and as a result standard GMM procedures are likely to perform poorly, and must
be augmented with some form of selection/shrinkage applied to the moment conditions. This is an area of ongoing
research and will not be pursued in this paper, which focusses on the FE approach with 7" taking moderate values
relative to N.



rate variable to the covariates. Our half-panel jackknife baseline estimates do not alter the main
conclusion of Donohue and Levitt (2001). However, after allowing for dynamics, we find that the
abortion variable continues to be statistically significant for violent and murder crimes but not for
property crimes.

The remainder of the paper is organized as follows. The panel data model and its assumptions
are set out in Section 2. Exact analytical expressions for small-7T" bias of the FE and the half-panel
jackknife FE estimators are derived and their orders established in Section 3. This section also
considers the problem of inference when N and T" — oo jointly, and provides a consistent estimator
of the variance of the half-panel jackknife FE estimator. Section 4 considers extensions of the basic
model to panel data models with fixed and time effects, as well as to unbalanced panels. Section
5 describes the Monte Carlo experiments and reports a summary of the main findings. Section 6
provides the empirical applications. Some concluding remarks are offered in Section 7. Proofs are
relegated to the Appendix, and an online Supplement provides the full set of results for the Monte

Carlo experiments that we have conducted.
Notations

K denotes a generic positive finite constant that does not depend on the sample size (N and T').
K can take different values at different instances in the paper. O (.) and o(.) denote the Big O
and Little o notations, respectively. If {f,} 7 is any real sequence and {g, },-, is a sequences of
positive real numbers, then f,, = O(g,) if there exists a positive finite constant K such that

|fnl /gn < K for all n. f, = o(gy) if fn/gn — 0 as n — oc. 2, denotes convergence in probability.

2 Panel data model and its assumptions

We begin by considering the balanced fixed effects panel data model
Vit = p; + Za+ x5 08 +uy, i = 1,2, .., N;t =1,2, ... T, (1)

where y;; is the dependent variable for the cross section unit ¢ and time period ¢, p; is the unit-
specific fixed effect, and z;; is a vector of strictly exogenous regressors, X;; is a k x 1 vector of weakly
exogenous stationary regressors, 3 is a k x 1 vector of unknown homogeneous slope coefficients,
and wu;; is the unit-specific error term error. We allow the strictly exogenous regressors to follow a
general (linear or non-linear) process. They could include deterministic variables, such as seasonal
dummies or time trends, and can even include unit root processes. But to simplify the analysis we

assume that the weakly exogenous regressors, x;;, have the following decomposition:

Xit = My + Wit, i:1,2,...,N;t:1,2,...,T, (2)



where p,;, is a k x 1 vector of fixed effects, and w;; is the & x 1 vector of stochastic components,

assumed to follow the general linear processes
oo
wit = Y AisVit s, 3)
s=0

in which {A;,, fori=1,2,...., N;s=0,1,....} are k x k matrices of coefficients, and v;;, for i =
1,2,...,N;t=1,2,...,T, are k x 1 vectors of regressor-specific innovations.®

We adopt the following assumptions:

ASSUMPTION 1 (Idiosyncratic errors) Errors u;, for i = 1,2,..,N;t = 1,2,...,T are in-
dependently distributed with zero means, E (u;) = 0, possibly heteroskedastic variances, E (uzzt) =

02, < K, and uniformly bounded fourth moments, E (uj}t) < K for alli and t.

ASSUMPTION 2 (Regressor innovations) Innovations v, fori =1,2,...,.N;t = 1,2,....,T
are I1D (Ox1,Ix) with uniformly bounded fourth moments.

ASSUMPTION 3 (Fixed effects) Fized effects, u; and p;,, are bounded such that |p;| < K
and ||pi, ]| < K, for all i if they are non-stochastic, and E |pu;| < K and E||p,|| < K, if they are

stochastic.

ASSUMPTION 4 (Weak exogeneity conditions) For all i and t

(a)

: (4)

0k><1; f07" h S Oa
E (Vitpnuit) =
Yiuw (R),  for h >0,

where
[Viuw ()| < Kp", for h >0, (5)

and for some 0 < p < 1, in which || Yy (R)|| = \/YViuw (R) YViuw (R) is the Euclidean norm of

(b) Conditions (4) and (5) hold and, in addition, v; 1, is independently distributed of wi for all
i,t and all h < 0.

ASSUMPTION 5 (Regressors) Consider the processes (2)-(3) for i = 1,2,..,N and t =
1,2,..., T, and let the k X k coefficient matrices, A;s, satisfy

[Ais| < Kp®, (6)

>More general processes for x;; can be entertained, but this will not be pursued in this paper.



fori=1,2,..,N, s=0,1,... where 0 < p < 1, and |Ass|| = tr (AL ,A;s) is the Frobenius norm of

A;s. Further, let T'; (h) denote the autocovariance matriz function of ws, given by

Ti(h) =Y AianAl, for, i =1,2,..,N; (7)
s=0
and set
_ 1 N
IND) :J\}EnooNile‘i (h), for h=10,1,2..., (8)

where T (0) and {T; (0), fori=1,2,...,N} are k x k nonsingular matrices.

Remark 1 The panel data model (1)-(3) allows for a number of specifications, including the lagged
dependent variable models, where one or more lags of the dependent variable feature among the k

regressors in the vector X;;.

Remark 2 Assumption 1 is standard and allows for heteroskedastic errors. It also rules out cross-
sectionally dependent errors. Although a weak form of error cross-sectional dependence (as defined
in Chudik et al., 2011) would not affect consistency of the FE estimator when N and T are large,
it will affect the asymptotic variance and inference, see Pesaran and Tosetti (2011) for further

discussion.

Remark 3 Apart from a minimal boundedness requirement, Assumption 8 imposes no other re-
strictions on the fized effects, p; and p,,. Specifically, they are allowed to be cross-sectionally

dependent as well as correlated with each other and the error terms, u;; and Vi.

Remark 4 Assumptions 4-5 in addition to Assumptions 1-2 control the degree of serial correlation
i regressors as well as the degree of dependence between the errors and the future values of the
regressors. Both the sertal correlation and the extent to which current errors are correlated with
future regressors decay exponentially. The former is a direct consequence of serially uncorrelated

vit and the condition (6). The latter is established in the next proposition.

Proposition 1 (Weak exogeneity of wi) Suppose Assumptions 4.a and 5 hold. Then,

Ok'><17 fOThSO,

~; (h), for h >0, ’ ©)

B (wi phuir) = {
and for all t, where wi; is defined in (2), and v; (h) satisfies
i (Il < Kp", for h=1,2,... (10)

for some 0 < p < 1.

The proof of this and other propositions are provided in the Appendix.



3 Small-T bias of FE estimator

In this sub-section we derive the small-T" bias of the FE estimator of 3 when x;; is weakly exogenous,
and follows the linear stationary processes as defined by the decomposition (2) and Assumption 5.
But to simplify the derivations, and without loss of generality, we abstract form z; in (11), and

consider the following model
Vit = p; + XpB+ui, i =1,2, . Nt =1,2,..,T, (11)

It is clear that a sub-set of x;; can be strictly exogenous, but the above assumptions on x;; require
such strictly exogenous regressors to follow stationary linear processes, which could be restrictive
in practice. However, it is easily seen that our analysis can also accommodate additional strictly
exogenous regressors that follow possibly non-linear or non-stationary processes. As noted earlier
they could also include deterministic processes. Inclusion of strictly exogenous regressors can affect
the rate of convergence of the FE estimator of a, but not that of the FE estimator of 3. For
example, adding a strictly exogenous regressor which is integrated of order 1(or I(1)) to model
(11), yields the rate of convergence of TN for the FE estimator of o (the coefficient of the I(1)
regressor), but does not alter the standard V/NT convergence rate of the FE estimator of 3.

3.1 Bias of the FE estimator

The FE estimator of 8 in model (11) is given by

A1
Bre= Qrpdre, (12)

where
/

N T . N T .
_ ZZ th th Xz dpp = ZZ X’Lt X’L yzt’ (13)

i=1 t=1 i=1 t=1

and X;. = T71 Zthl X;¢+. In what follows, we assume that there exist Ny, Ty > 0 such that the
FE estimator BFE is well defined for all N > Ny and all T' > Ty, and the probability limit
plimy o0 B rg for any given T' > Tj is also well defined. To this end, we require the following

invertibility conditions to hold.

ASSUMPTION 6 (Existence of FE estimators) There exists No,Ty > 0 such that for all
N > Ny and all T > Ty, Qpg defined by (13) is positive definite, and matriz T (0) — T U7 is
invertible, where T (0) is defined by (8), and ¥ is given by

U = lim —Z\IIZT, (14)

N—oo N



with

T—1 A
W =T+ Y (1) [T + 0] (15)

Remark 5 The smallest value of T for which Assumption 6 can be satisfied is 2, because it takes
at least 2 time periods for B to be identified in the panel data model (11) without imposing any

further restrictions on the fixed effects.

Remark 6 The invertibility of Qpg is required for 3 rE to be well defined, while the invertibility
of (f‘ (0) — %\TJT) is required for plimy_oo BFE to be well defined.

We derive the small-T" bias of the FE estimator next.

Proposition 2 (Small-T bias of the FE estimator) Suppose yit, fori =1,2,... N andt =1,2,....,T
are generated by the panel data model (11) with x; given by (2)-(3), and Assumptions 1-3, 4.a,
and 5-6 hold. Then for any fired T > Ty, where Ty is given by Assumption 6, we have

Biast (BFE) = lm E (BFE - 5) =7 <f (0) - T‘I’T> h Xt (16)

where the FE estimator Bpg is defined by (12), T (0) and ¥r are defined by (8) and (14), respec-
tively,

T-1
. AW
=3 (1-7) 3. (17)
and
_ .
5(h) = Jim <> i (h). (18)
i=1

In addition, Biast (BFE) =0 (T_l).

The result in the above proposition extends the well-known Nickell bias (Nickell, 1981) and
covers both dynamic panel data models as well as static models with weakly exogenous regressors.

In what follows we illustrate these features by means of two simple examples.
Example 1 Consider the pure first-order autoregressive panel data model

Yit = Wi + Bt + wit,
where x4 = y;1—1. For this specification, (using the notations in (2)) we have

zi = (1= B) " + wit,



where wiy = Bwi—1 + Ui—1. It is now easily seen that

v(h) = FE (wi,t—i-huz't) = Ui,ﬂh_l, forh=1,2...
vi(h) = E (Wi,t-l—huz't) =0, forh=0,—1,....

Using (7) and noting that A;s = 0,;8°, we also have

2 ph
O-uiﬁ

1—p%

Ti(h) =Y AjnAl, =
s=0

Hence, using the above results in (8), (14), (17) and (18) we obtain

T-1
_ 9 oh1 - _ h _
() = aa8" " xr =00 (1— T) g,
h=1
B =2 =2 952 L1

o - o h
T and By = —Tu_y =0u 1- 2 g,
g T 1—622‘:( T)B

where 72 = limy oo N71 Zf\il o2.. Now using the above results in (16) we have

— (1= 5% fr (B) 1
r 1—L - 28fr(B)

Biast <BFE) =

where

— h 1 11-47
fT(ﬁ):hz::l(l—T> 6h_1:1—B_T(1_g)2' (19)

Also, after some algebra, it is easily seen that the expression for the bias can be written as

_ 1 (187
B"'“T@FE):_C;B) 11 : 22(1[16)11[#] ’ (20)

T — T(1-58) T T1-8

which is the expression first derived by Nickell (1981) for the case of homogeneous error variances.
But the above derivations show that the same expression for the bias obtains even if the error

variances are heterogeneous.
Example 2 Consider now the following static panel data model
Yit = Wi + BTit + wit, (21)

where

Tit = Ciz + PTit—1 + KYit—1 + Eit, (22)

fori=1,2,..,N and t = 1,2,...,T, and suppose || = |p+ rB| < 1, uy ~ II1D ((),012”), Eit ~



11D (0, Ugi), and that w; 1s independently distributed of €,y for any 1,7 and any t,t'. This model
is also a special case of (2), (3) and (11). Substituting (21) in (22) for y;—1, we obtain

Tig = (Cig + Kl;) + OTip—1 + it + KU1,
= My + wit,
where ¢ = p + kf, pi;, = (ciw + K1) [ (1 — @), and
wit = (1 — goL)_1 git + (1 — ch)_l RUjg—1. (23)

Hence, we obtain
v; (h) = B (wisrnuir) = e La2;, for h=1,2,.

and

v (h)= lim N 12% o' 15 G2, forh=1,2,. (24)

N—o0

where 62 = limy 0o N1 Zf\;1 o2.. Substituting (24) in (17), yields

Xr = K0, fr(¢) (25)
where -
RN L, 1 (=T
frp) = (1—) Pt = - = : (26)
hz:l T L—p T (1-)?
The remaining terms of the small-T bias formula (16) are
= o" 2-2
F(h)zl—gﬂ(a + K°5}) (27)
for h=0,1,2,..., and
. 52 + K252
Up = ———=[1+20fr(0)]. (28)

Now using (25), (27) for h =0, and (28) in (16), the exact small-T bias of Bpy for this example

is given by
P . s\ (1—@?) fr(p)
Biasy (BFE) == (T—1> (1+/<2772> 1— 22 fr(p)’ =

where n = &,/0e. Also recall that ¢ = p + kB, and fr(p) is given by (26). It is clear from

(29) that there is no bias when regressors are strictly exogenous, namely when k = 0. Moreover,

Biasr (BFE> — 0 as n — 0. The exact bias function is plotted in Figure 1 for several choices of
the parameter values. The sign of the bias depends on k, since fr (@) and 1 —2pfr (p) /(T —1)
are both positive for ¢ € (—1,1). The shape of the bias function is nontrivial. Noting that T (0),

10



U, and X are all O (1), the O (T_l) approximation to Biast (BFE) s given by

1 Kn?

The O (T_l) approzimation of the bias increases with p, k, and B and the variance ratio n?, and it

has a larger approximation error when o is in the neighborhood of 1.

Remark 7 In empirical research, such as the one on abortion and crime by Donohue and Levitt
(2001) which we re-examine in some detail below (see Section 6.2), the investigators use lagged
values of the regressors in the hope of avoiding the endogeneity problem. However, in the context
of panel data models with fized effects such a strategy does not solve the problem, and could even
accentuate it. As an illustration suppose (yit, zit) are generated as in Example 2. Substituting (22)
in (21), we have

Vit = (i + Bciz) + 025 1—1 + BRYi -1 + Beir + i,

where 0 = Bp, and, using (23) in the lagged (21),
Yit—1 = (; + Bhyy) + Bwip—1 + wig—1,

which can also be rewritten as,
Yit = /L;k + Qxi,t,1 + u;kt, (30)

where ! = p;+ Beiz + BK (1 + Brigy), and ufy = /1620.:@-715,1 + BKui -1+ Peir+wir. It is clear that uf,
and x; 11 = ;, + wir—1 are uncorrelated only when the regressor is strictly ezogenous (k = 0) in
which case the FE regression of y;; on x; ;1 consistently estimates the parameter 6 = Bp. However,

in the weakly exogenous case (k # 0), we obtain
p lim (Orp—0) = B2 +0(T7),

where k32 is the bias from the correlation of xit—1 and uy, and the O (T‘l) term is the weak

exogeneity bias due to the correlation between the error term uj, and future regressors.

3.2 Half-panel jackknife FE estimator

Assume that T is even and consider the following half-panel jackknife FE estimator of 3,
~ - 1 /- ~
Bre = QIBFE_§ <5a,FE + ﬁb,FE) ; (31)

where By is the FE estimator defined in (12) using the full sample of T' time periods, and Ba’ FE
and B(), rp are the FE estimators using the first 7'/2 and the last T'/2 observations, respectively.
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Specifically, the FE estimators B% rr and [‘357 rE are

Ba,FE = Q;}J‘EQa,FE7 and Bb,FE‘ = Qb_,}lrEQb,FB (32)
where
N T/2 _ N T/2
Qa,FE = ZZ (it — XQKIT;(;_XM s Qa,FE = ZZ XZt]:,;;; yn, (33)
; t=1 . =1 t=1
e = 3 3 b= b =) g,y = Yy Goe STl (3
i=1 t=T2 i=1 t=T/2+1

and X;., = 27! Zth/% X;t, and Rjp = 2771 ZtT:T /241 Xit are the temporal averages of regressors
over the first and the second half sub-samples. In the following exposition, we assume that the
sample is sufficiently large so that B& rg and Bb, i are well defined (similarly to Assumption 6 for

the full sample FE estimator).

ASSUMPTION 7 (Existence of half-panel FE estimators) There exists No,Ty > 0 such
that for all N > Ny and all even T > Ty, the matrices Qa FE,Qb FE and ( (0) — %\TJT/Q) are
invertible, where Qa rE and Qb rE are defined by (33) and (34), respectively, T (0) is defined by
(8), and \IIT/2 is defined by (14) with T replaced by T'/2.

Using the same arguments as in the derivation of the small-T" bias of the full-sample FE estimator
B rp in Proposition 2, we obtain (under Assumptions 1-3, 4.a, 5, and 7) the following small-T" biases

of the half-panel FE estimates :Ba,FE and Bb,FE:

A}EHOOE (,Ba FE — ﬂ) = A}E)nooE (Bb,FE — ﬂ) = —% (f (0) — ;‘i’Tﬂ)_l XT/25
and hence
i 5 (Bure—8) + 8 (Burs8)] = 2 (FO - 280a) xap 09

Using (16) and (35) we now obtain the following small-T bias of the jackknife FE estimator Bz,

. 2 (- 1-\! 2 (- 2.\ '
]\}ETlooE <5FE—,3) =7 <F (0) - T‘I’T) Xr+ T (F (0) - T‘I’T/2> X1/2- (36)

The above expression depends, in a complicated manner, on the ‘average degree of serial correlation’

in x;, represented by T (0), ¥ and ¥ /2, and the ‘average degree of correlation’ between w;; and

x;¢, represented by Xp and X7/p. Consider the special case where x;; are (on average) serially

12



uncorrelated so that ¥ = ¥y, /2 = Oxg. Then

Biast <BFE) = —%f‘ 07" {XT - )_CT/Z} : (37)
But using (17),
o ! B\ T2t 2\ _
oxe = X(1-g) 10 X (1-F) o)

_ _ 1_ 2 _ T/2—-1_

X=X = |V @4t T @2 (39)
T-1 L

+ ) <1—T>7(h).
h=T/2
Using Proposition 1, it readily follows from (38) that
Jir =22 =0 (3 )
XT — XT1/2|| = T

and therefore in view of (37) we have Biasr (B FE) =0 (T_Q). In the more general case where
the regressors, x;;, are serially correlated the bias of the half-panel jackknife FE estimator is of the

same order, O (T _2), as established in the following proposition.

Proposition 3 (Small-T bias of the half-panel jackknife FE estimator) Suppose y;t, fori =1,2,.... N
and t = 1,2,...,T is generated by the panel data model (11) with x;: given by (2)-(3), and As-
sumptions 1-8, 4.a, and 5-7 hold. Then, for any fixed even T > Ty, where Ty is chosen so that
Assumptions 6 and 7 are satisfied, the small-T bias of the half-panel jackknife FE estimator ,[:}FE
defined in (31) is given by (36) and it is of order O (T~?).

13



Example 3 Using the set-up of Example 2, the exact small-T bias of BFE s given by

, . 2 (- 1. \! 2 (- 2 \!
Biast (BFE) =7 (F (0) — T‘1’T> Xr+ 5 (F (0) - T‘I’T/2> XT/2;

where X1/, [ (0), and Wr are given by (25),(27), and (28), respectively. After substituting these

terms, the small-T bias of Bpg is

(1—¢?) mp?
1+ k202

T=21—7%frplp) T—11-75fr(p)

Biasr (/BFE) =2 1 fr/2 (#) 1 fr () ] 7

where fr (@) is defined in (25), and ¢ = p + kB. It is easily verified that this bias is of order
O (T~2) by noting that fr2 (@) = fr(p) =0 (T~1), and, therefore, the term in the square bracket
is O (T*2). Figure 1 plots Biast (BFE) as a function of k for T = 30, and p = 0.2 or 0,5 and

n=1or2. As can be seen the magnitude of Biast <BFE> is very small for all admissible values

of k, except for those values of k,B and p that result in ¢ close to unity.

3.3 Asymptotic distribution of half-panel jackknife FE estimator

Suppose now that N,T — oo jointly and note that
(BFE—B) =2 (BFE_/@> - % {(Ba,FE_/B> + (Bb,FE—ﬂﬂ ;

where 3 FEs Ba, rg and Bb7 rg are FE estimators for the full sample and the two half sub-samples -

all obtainable from the general formula in (12). Let

and

T
Z (Xit — Rib) Wit (42)
/2

14



and recall that Qpp, QQ,FE, and Q[LFE are defined by (13), (33) and (34), respectively. Then we

have

- . 1 /A .
Bre—B = 2Qupzre— (Qa}Eza,FE + Qb,ll?Ezb,FE)
o 1 1
= Qpp <2ZFE — 5%aFB ~ 2Zb,FE>
Lra 1 a1
+§ ( FE — Qa,FE) Za,FE
1 /4
5 (QFE Q, FE) Zb,FE- (43)

Consider the properties of QFE — Q%FE when N, T — oo jointly, and note that QFE — Q%FE can

be written as

1 N T 9 N T/2
QFE_Qa,FE - 722 th_xz Xt 722 Xit — Xza t
NT =1 t=1 NT =1 t=1
1 N T/2
/ - ! / - /
= — [Xitxit — XXy — 2 (XitXZ»t — Xi.axit)]
NT i=1 t=1
1 N T
+ﬁ Z Z (Xitxét - )_(i.X;t)
i=1t=T/2+1
1 N T/2 1 N 1 N
= %7 > XXy — ~ Z)‘ci.i;,a/Z + > RiaX]
i=1 t=1 i i=1
1 N T , ) _/
T ) D SO
i=1t=T/2+1
1 N 9 T T/2 N
S0 I CID SRS St B 5 o)
i=1 t=T/2+1 i=1
But under Assumptions 2, 3 and 5,
2 & 9 L2
T Z xitxzt Zx,txlt = 0wk, and
t=T/2+1 t 1

uniformly in ¢, as T'— oco. Hence

A A p
Qre — Qu,rE — OKxk,
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as N, T — oo jointly, without any restrictions on the relative rates of N and T'. Since also

pNhILl Qre=Q=T(0), (44)

is nonsingular, it follows that
(QFE Qa FE) o Okxk, as N, T — oo, jointly.

Similarly, (QI}}E — QI;},E) L 0pxi, as N,T — oo jointly. Using these results in (43) and noting
that VNTz, e = Op (1), and VNTz, pp = Op (1), we obtain

~ d _ 1 1
VNT (ﬁFE*ﬁ) ~VNTQ™ (QZFE — 3%aFE ~ 2Zb,FE> ;

as N,T — oo jointly. Substituting back the expressions for zrg, z, rr and z, pr (given by (40),
(41) and (42)), we have

N T
VNT (Brp8) 4 A 1[2ZZ><“

v NT i=1 t=1
N T/2 N T

- § § Xit — Xjq uzt § th — X b Uit
i=1 t=1 1=1¢=T/2+1

Let dita = xit — (2R, — Ria), diny = X3¢ — (2%;. — R;p), and
dit =1(t <T/2)dje + I (t>T/2)dins, (45)

and note that Zle d;; = 0p«1. Hence,

VNT <5FE 5) ~Qt \/— Z Zdztuzt

=1 t=1

Let T'= CN°€ for some 0 < C < oo and € > 0, and let N — oo. Since,

N
E (Jl\fT Z Z‘L‘t%‘t) =-V NT% <>_<NT - XN,T/2> ;

where
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N T
Z Z djpus

i=1 t=1

oY) o (x)

3

and E [\/NT (ﬁFE—ﬂ)} s Opy1 when € > 1/3. Hence, for T = CN€, with € > 1/3, and N — oo,
we obtain

AsyVar (\/NTEFE> - Q'RQ, (46)

where
1 N N T T
R= m wpf | 22 22 dudjouas

Although d;; is defined as a function of the regressors, it does not depend on the regressor fixed

effects. Specifically, after using (2) in the definition of d;;, we obtain d;; = by, where
by =1(t <T/2)bjya +1(t>T/2)byy, (47)

bita = wit — (20;. — @i.q), by = wit — (20;. — @;.p), and @;., @;.q and ;. are the full and the two
sub-samples temporal averages defined in the same way as X;.,X;., and X;;. Since {by,u;} are

cross-sectionally independent, then F <bz~tb;8uitujs> = Opxg for i # j, and

N T
R= N7 NT (Z > bztbzs“lt“w> , (48)

1 t=1s=1

which does not depend on the fixed effects. Hence, R can be estimated consistently by

N T
~ 1 N
RFE:iNT ; ; td/tuzt FE = NT Z Z h FEhzt JFEs (49)

i=1 t=1

where ﬁit,FE = djti rp and G rep = (Yie — Ui-) — BFE (xit — X;.), in which g;. is the temporal
average of y;; defined in the same way as X;..
The next proposition establishes consistency of Rpp and summarizes the earlier result on as-

ymptotic distribution.

Proposition 4 (Asymptotic distribution of half-panel jackknife FE estimator) Suppose yi, for
i =1,2,..,N and t = 1,2,..,T is generated by panel data model (11) with x; given by (2)-
(8), Assumptions 1-8, 4.b, and 5-7 hold, and N,T — oo jointly such that T = CN¢€, for some
0 < C < oo ande>1/3. Then the asymptotic distribution of the half-panel jackknife FE estimator

BFE defined by (31) is given by
VNT (Bpi - 8) ~ N (0.Q7'RQY),
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where Q and R are defined by (44) and (48), respectively. A consistent estimator of the asymptotic

variance of BFE s given by
AsyVar (\/ NTBFE> = Q}}EQFEQ;}E, (50)

where Qpr and Rpg are defined by (13) and (49), respectively.

4 Extensions

4.1 Models with fixed and time effects

Consider now panel data models with fixed (i;) and time effects (d¢)
Yit = p; + 0t + X8 + wit. (51)

The regressors are generated as before, but are now generalized to have time effects, 8y, of their
own, namely
Xit = Wiy + Opp + Wit, Wit = Z AisVii—s, (52)
s=0

The time effects, §; and 0y, are assumed to satisfy the following assumption.

ASSUMPTION 8 (Time effects) Time effects, 0; and 6y, for t = 1,2,....,T, can be non-
stochastic or stochastic. In either case, E 0| < K and E |04 < K.

The fixed and time effect (FE-TE) estimators for the full sample and the half-samples are given
by

Bre-re = Qpp_rpdre-TE, (53)
Ba,FEfTE = Q;,}F’E—TEqa,FE*TEv and Bb,FEfTE = Q;}:E_TEQZ),FE—TE, (54)
where
N T — — — — — —\/
A (xit — Xj. — X4+ X) (X4 — Xj. — Xp + X)
Qre-r6 = Z Z NT ’ (55)
i=1 t=1
N T/2 _ _ _ _ _ _
Q _ Z / (Xit — Xjq — Xt + Xa) (Xit — Xjqg — Xt + xa)' (56)
a,FE-TE 2.2 NT/2 ,
N T — — — — — = \/
A (Xit — Xjop — Xt + Xp) (Xit — Xjp — Xt + Xp)
- = 57
Qv rE-TE ; TZ: NT 2 , (57)
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and

N T 9 N T/2
DY (it — Rio — Rt + R) Yit, Qo pp-TE = NT > (it = Ria — Rt + Ra) it
i=1 t=1 i=1 t=1

élFE—TE =

N

T
Z Z (xit — Ribp — Xt + Xp) Yit,

=1 t:T/2+1

Q.FE-TE =

2‘[\3 2‘.—!
~ ~

in which x;, = N1 Zf\il X;+ is the cross section average of regressors at a point in time ¢,
x=(NT)™! Ef\i 1 Zthl x;+ is the overall (double) average of regressors for the full sample, and
%, = 2(NT) 'S8, Zth/% x; and X, = 2(NT)" ' 2N, Z;:T/%l x;¢ are the overall averages of
regressors over the two sub-samples.

The FE-TE estimators are well defined only when QFE_TE, Qa7FE_TE, and Qb,FE,TE are
invertible. This is postulated in the following assumption, which corresponds to Assumptions 6
and 7.

ASSUMPTION 9 (Existence of FE-TE estimators) There exists Ny, Ty > 0 such that for
all N > Ny and all even T > Ty, Qre_18, Qa,FE_TE, and Qb’FE,TE, defined by (55), (56),
and (57), respectively, are positive definite, and matrices [I_‘ (0) — %\TIT] and [I_‘ (0) — %@T/g] are
invertible, where T (0) and ¥ are defined in Assumptions 5 and 6.

The next proposition establishes that the small-T" bias of the FE-TE estimator and its half-
panel jackknife bias-corrected version is identical to the small-T" biases obtained in the context of

the panel data model without time effects considered earlier.

Proposition 5 (Small-T' bias of the FE-TE estimator and its half-panel jackknife version) Suppose
Yit, for i = 1,2,..,N and t = 1,2,...,T, is generated by the panel data model (51)-(52), and
Assumptions 1-8, 4.a, 5, and 8-9 hold. Then, for any even T > Ty, where Tj is given by Assumption

9, we have

Jm E (BFE—TE - 5) = —% {f‘ (0) - ‘I’T} h Xr=0(T""), (58)

and

, . 2 [ -1 2. 2 17" 2

Jim B (/BFE—TE - ﬁ) =-7 [F (0) - T‘I’T] Xr+ 5 [F (0) — T‘I’T/z] Xr2=0(T77),
(59)

where BFE_TE is defined in (53), its half-panel jackknife bias-corrected version BFE_TE 5 given

by

~ ” 1 /- -

Bre—TE = 2/3FE—TE_§ (ﬁa,FE—TE + /Bb,FE—TE) ; (60)

BWFE_TE and Bb,FE—TE are defined in (54), T (0) is defined in Assumption 5, Wr is defined in
(14), and X1 is defined by (17). \i’T/Q and Xy are obtained from the expressions for W and X
by replacing T with T'/2.
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Let

N T
1 _ _ _
ZFE-TE = Jom z; ; (xit — X4 — Xop + X) uiy, (61)
i1 =
9 N T/2 9 N T
ZoFE-TE = ﬁz (Xit — Rjoa — Xt + Ro) Uit, Zb FE— TE—Niz Z (Xt — Rijop — Xop + Xp) Wit
=1 =1 =1 4=T/2+41

Then similar to (43), the half-panel jackknife bias-corrected FE-TE estimator B rE_TE can be

written as

1 1

=Z4,FE-TE — Zb,FETE) (62)

Bro_rg—B = QEE_TE <2ZFE—TE —3 5

+% (Q;“}E—TE - Q;}PE—TE) Za,FE-TE T 5 . (QFE TE Qbi}l?EfTE) Zp,FE-TE-
Using results (A.1) and (A.2) of Lemma 1 in the Appendix, and noting that
Qre_15 > Q=T(0), as N,T — oo jointly,
where T (0) is invertible under Assumption 5, we obtain
<Q;71197TE - Q;}?EfTE> =5 Opxiy and <Q;“1157TE - Qb_,lle—TE) = Opcs

as N,T — oo jointly. Using these results in (62) and noting that (as in the FE case) V N1z, pp-1E =
O, (1) and VNTz, pp—1E = Op (1), then we have

~ d _ 1 1
VNT <5FE—TE - 5) ~VNTQ™! <2ZFE—TE — 3%a,FE-TE — 2Zb,FETE) ,

as N,T — oo jointly. Substituting the expressions for zrg_1E, 24 FE-TE, and 2, FE—TE, We Obtain

N T
> dju, (63)

i=1 t=1

\/ﬁ (BFE—TE - B)

%~
~

where d}, =1 (t <T/2)d},, +1(t>1T/2)d},, and
d:ta = Xt — (2)_(2 — )_(i.a) — X4+ (2)_( — )_(a) , d:tb = Xt — (2)_(1 — )_(i-b) — X+ (2)_( — )_(b) .
Consequently, we propose the following estimator of the asymptotic variance of v N TB FE_TE:

AsyVar <V NTBFE—TE) = Q;*JIE—TE‘f{FE—TEQI_?JlEfTE7 (64)
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where Qpp_7g is given by (55),

N T

~ 1 * 1%/ A

RFE—TE:NiT Z Z d;,d}{ i}y pp-rp, (65)
i=1 t=1

and
Uit pE-TE = (Yit — Yi- — Yt — ) — Bre_1E (Xit —Xi. — X4 +X),
in which ¢+ and g are defined in the same way as X.; and X.

The following proposition establishes sufficient conditions for the consistency of As/y%r (\/ NTA FE_T E)

and for the asymptotic unbiasedness of Bpp 75

Proposition 6 (Asymptotic distribution of jackknife two-way FE estimator) Suppose yit, for i =
1,2,...,N and t = 1,2,...,T, is generated by panel data model (51)-(52), Assumptions 1-3, 4.b, 5,
and 8 hold, and N,T — oo jointly such that T = CN€, for some 0 < C < 0o and € > 1/3. Then
the asymptotic distribution of the half-panel jackknife two-way FE estimator, ,[:}FE_TE, defined by
(60), is given by

VNT (BFE—TE - /3) N (0,Q'RQ ™), (66)

where Q =T (0), T (0) is defined in Assumption (5) and R is defined by (48). A consistent esti-

mator of the asymptotic variance of BFE_TE s given by
AsyVar (V NT:éFEfTE) = Qrp_rpRre 15Qrg_ 15 (67)
where QFE—TE and Rpp_rp are defined by (55) and (65), respectively.

4.2 Unbalanced panels

In this sub-section we consider the extension of the jackknife procedure to unbalanced panels. This
is an important extension for empirical analysis since most data sets are unbalanced. Suppose that
for cross section unit ¢ we have observations on y;; and x;; over the period ¢t = T;,Ty; + 1,...,T;,
where T; and Tj; are the first and last time periods for which data is available for this cross section
unit. Let T; = Tp; — T} + 1, Tinax = maxT;, Tinin = minT;, and denote the average number of time
series observations available by Ty = N1 Zf\il T;, and its limit by 7' = limy_oo 7. Moreover,
without any loss of generality, let the first time period of the panel be 1 = min; T}; and the last
T = max; T};. In this setting, gaps in the data are not allowed, but the panel could be unbalanced
at both ends of the time period (1,7").

4.2.1 Unbalanced FE panels

Consider the FE panel data model (11) first. The FE estimator in the unbalanced panel data
setting is given by
Bri. = Qrp,areu, (68)
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where

N le N le
QFEu - Z Z th - Xz ] [xzt — X;. (T’Z)] ) QFEu - Z Z xzt - Xz i ]yzt
Zz 1T2i1t Ty Z Tziltsz

(69)

and x;. (T;) = T% Z;‘FL"Tﬁ x;t. Let
T;
9. = =% 70
=7 (10)

and initially assume that |¢;| < K for all i. Also, as before, we require Jé; rp and its large-N
probability limit to exist. This is ensured by the following assumption, which replaces the earlier

Assumption 6.

ASSUMPTION 10 (Existence of FE estimators for unbalanced panels) There exists No, Tp >
0 such that for all N > Ng and all T; > Ty, QFEu defined in (69) is a positive definite matriz,
Ty (0) — T_l\il{Ti} and Ty (0) are invertible, where

Ty (0) = lim —2191‘ (71)

N—oo N

N
W1,y = Am N Z Wir,, (72)

Y5 is defined in (70), T'; (0) is defined in Assumption 5, and
T;—1 h
W, =T;(0)+ ; (1 - Tz) [T (h) + T (h)] . (73)

The following proposition derives the bias of 3 rp when the time dimensions of the panel {7;}

are all fixed and N — oo.

Proposition 7 (Small-T' bias of the FE estimator for unbalanced panels) Suppose yi, for t =
T, Tpi +1,..,T05, t = 1,2,..., N, is generated by the panel data model (11) with x; given by (2)-
(8), and Assumptions 1-3, 4.a, 5, and 10 hold. Then for any given {I;} such that T; > Ty for all

i, where Ty is given by Assumption 10, we have

LBy (0) - Ty

T X{Ti} =0 (Tﬁl) )

Jim (Bpp, - 8) =

where the unbalanced FE estimator, Bpp,, is defined by (68), Ty (0) and \il{Ti} are defined by (71)
and (72), respectively,

T;—1

| X
e lm L
M N2 N ; i=1

(1- ) wm=o@, (74)
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and ~y; (h) is defined by (9).

Proposition 7 establishes that the bias of the FE estimator in the case of unbalanced panels is of
order O (T _1), where T is the limit of the average time dimension as N — co. Moreover, the bias
also depends, among other factors, on the degree to which the panel is unbalanced as characterized
by the distribution of ¥; over 1.

A simple way of implementing the half-panel jackknife bias correction is to assume that T;
are all even and to divide the unbalanced sample into two unbalanced sub-samples; the first sub-
sample (denoted by subscript a) consisting of the first 7;/2 observations for cross section unit ¢,
i = 1,2,...,N, and the second sub-sample (denoted by subscript b) consisting of the last T;/2

th

observations of the same i"" unit. Specifically, let (using, for simplicity, the same notations as in

the case of balanced panels)

. 1
Ba,FEu= Qa riuba,rEe and By pp,= Qp ppuds,FEu, (75)
where
N Tyi+T;/2—-1
QurEu = Z Z [xit — Koo (T)] [xit — Ria (1)), (76)
ZZ lﬂi 1 t= sz
N Tpi+Ti/2—1
Qorpn = ——2, D [Xit—Ria(T) i,
Zz lﬂi 1 t=TYy;
and
Ty
Qure. = Z Z [xit — Xip (T3)] [xit — i (1)) (77)
pond 1Tu 1 =Ty +T1/2
Ty

Qv,rea = p Z > i —Rio (T)) i,

Zz 140 =1 =Ty, 4T /2

> xi, Ry (Th) = > X

tZTfi t =Ty +T; /2

Xi.a (E) =

Sl
'ﬂ\w

We continue to assume that the sample is sufficiently large so that the half-panel FE estimates

Ba’ rp and Bb’ rp are well defined (similar to Assumption 7 for the balanced panel).

ASSUMPTION 11 (Existence of half-panel FE estimators for unbalanced panels) There
exists No, Ty > 0 such that for all N > Ng and all even T; > Tjy, the matrices Qa,FEu, Qb,FEu,
and Ty (0) — 2Tﬁ1\fl{Ti/2} are invertible, where Q%FEU and Qb,FEu are defined in (76) and (77),
respectively, and Ty (0) and \Tl{Ti/g} are defined by (71) and (72), respectively.
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Using the same arguments as in the proof of Proposition 7, we obtain

lim E (BFE,(L - ﬂ) = ]\}EHOOE (/BFE,b - ﬂ) = [Ty (0) — 2T—1¢’{Ti/2}]_1 X{T;/2}+

N—o0
where X7, 2} is defined in (74), specifically
T;/2-1

> (1 — ?) vi(h)=0(T). (78)
=1

)

o0

N
_ . 1 29;
Xirj2p= lim = T
i=1
The large-N small-T bias of the half-panel jackknife estimator defined as
~ - 1 /- -
Breuw = 2Brp, — B <5a,FEu + Bb,FEu) ; (79)

where the unbalanced FE estimator 3 rEw 18 given by (68), and its half-panel counterparts ,B% FEu
and ,[:367 FEy are given by (75), is established in the next proposition.

Proposition 8 (Small-T bias of half-panel jackknife FE estimator for unbalanced panels) Suppose
Yit, fort = Ty, Ty +1,..,Ty;, © = 1,2,..., N, is generated by the panel data model (11) with x;
given by (2)-(3), and Assumptions 1-3, 4.a, 5, and 10-11 hold. Then, for any given {T;} such
that T; > Ty and is an even integer for all i, where Ty is chosen so that Assumptions 6 and 7 are

satisfied, we have

Biast (BFEU) = 1iille <BFEu - ﬁ)

2 = S —1_
7 Lo (0) = 2T ] X2y

where Bpp, is defined in (79),
T, = i Th, (80)

fl_’th is the sample harmonic mean of T;,

N -1
5 -1
Thn = <N Z_;T> , (81)
Ty (0) and \il{Ti} are defined by (71) and (72), respectively, and Xty is defined by (74).

Thus, Biast (B F Eu) is of order O (T b 2) in general, and when 1J; are bounded below and above
(with a possible exception of a finite number of units), then T and T}, are of the same order of
magnitude and Biasr (BFEU> =0 (T7%).

Consider now the case when N,{T;} — oo jointly such that 0 < K; < ¢; < Ky < oo for
all 4, and Tnin = KN, for some € > 1/3 and 0 < K < oo. Under these conditions, BFEU is
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asymptotically unbiased and its variance can be consistently estimated, as
AsyVar (VNTBpp,) = Qrh RreQrh,:
where Qpp is defined in (69), and

N Ty

. 1 .
Rreu=—x— > Y diud}if, pp,, (82)
i T i o,

in which d;; is given by (45) with the averages X;., X;.q, and X;.; replaced by their unbalanced

sample counterparts X;. (1), X;.q (T;), and X;.4 (T3), respectively, and
Uit ppu = (Yit — i) — BFEU [xit — % (13)]
fort =Ty, Tp; +1,...,Ty, © = 1,2,..., N. These results are formally stated in the next proposition.

Proposition 9 (Asymptotic distribution of the jackknife FE estimator for unbalanced panels) Sup-
pose Yit, fort =T, Ty +1,...,T3, i = 1,2,..., N, is generated by panel data model (11) with x;
given by (2)-(3), Assumptions 1-3, 4.a, 5, and 10-11 hold, and N,{T;} — oo jointly such that
Tmin = CN€, for some 0 < C < 0o and € > 1/3, and there exist constants 0 < Ki,Ky < 0o such
that 0 < K1 < 9; < Ko < 00 for all i except a finite set of cross section units. Then the asymptotic
distribution of the half-panel jackknife FE estimator for unbalanced panels, BFEU, defined by (79)
s given by

VNT (Brru—B8) * N (0,Q"'RQ),
where Q and R are defined by (44) and (48), respectively, and asymptotic variance of BFEU can be
consistently estimated by
AS/@/W”“ (mBFEu) = QE}EuRFEuQE‘IEW
where Qrpy and Rpgy are defined by (69) and (82), respectively.

4.2.2 Unbalanced FE-TE panels

Consider the FE-TE panel data model (51)-(52) in the case of an unbalanced sample next. The
FE-TE estimator in unbalanced panels can be obtained by using two sets of dummy variables to

take account of fixed and time effects. Let

Ty N Ty

_ 1 _ _ _ 1
i (T3) = T Z yit, § (N) = Nyt Zyita and y (Th, T3, ..., Tn) = Niz Z Yit,
’ t=TYy; 1€St Zi:1 vi=1t=Ty,
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where S; is the index set of units with available data for time period ¢. It is important to highlight

that the simple transformation used for the balanced FE-TE panels
y;t = Yit — g’t (E) - g‘t (Nt) + g (T17T27 7TN) y

is no longer valid and does not remove the fixed and time effects when the panel is unbalanced.
This simple transformation (applied to all variables) and the dummy variable approach are identical
only when the panel is balanced.

It is also important to highlight that de-meaning the variables by subtracting the time averages
first and then running a panel regression of [y;; — 7;. (T;)] on [x;; — X;. (T;)] and time dummies does
not filter out the fixed and time effects either. Although empirical papers in the literature often do
not report the details of how the FE-TE estimates are computed in the case of unbalanced panels,
it is our impression that the latter approach of adding time dummies to a panel regression using
demeaned data is often used in practice.

Adding both time and fixed effect dummies in a regression using non-transformed data can be
computationally cumbersome when N + 7' is large. To address such complications, Wansbeek and
Kapteyn (1989) proposed a computationally convenient transformation of variables that eliminates
the fixed and time effects simultaneously, and is identical to the fixed and time dummy approach.®
In the Monte Carlo experiments and the empirical applications, we apply Wansbeek and Kapteyn
(WK) transformation to compute the FE-TE estimates for unbalanced panels. In the case of jack-
knife FE-TE estimators for unbalanced panels, we first construct the two sub-samples as described
in sub-section 4.2.1, and then apply WK transformation to eliminate the fixed and time effects
from each of the two sub-samples, separately.

However, for theoretical derivations and proofs, the use of WK transformation is rather com-
plicated and in what follows we establish theoretical results for a simplified FE-TE estimation for
unbalanced panels, which is based on the insight that in the case of panels with weakly exogenous
regressors, it is only the de-meaning across the time dimension that gives rise to the small-T" bias.
In FE-TE panels with strictly exogenous regressors, indices ¢ and ¢ are interchangeable. This is no
longer the case in panels with weakly exogenous regressors, where the FE estimator is subject to
the small-T" bias, but the TE estimator (in a model with time effects only) is not subject to any
bias. Let n denote the number of cross section units with observations on all T' time periods, and
assume that n/N is bounded away from 0 as N — oo, namely n and N expand at the same rate.

Let S, be the index set of such n cross section units, and define the simple cross section averages

gt (n) = n~t Z yir and X4 (n) = nt Z Xit. (83)

1€Sn 1€Sn

Averaging (51) across the n cross section units in S, and then subtracting this average from (51)

See Section 9.4 of Baltagi (2008) for a textbook exposition of Wansbeek and Kapteyn transformation.
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yields the following transformed unbalanced FE specification:
it = i; + B'Xit + Uit (84)

fort =Ty, Tpi+1,...,T05, 1 = 1,2,..., N, where g3 = yir — Gt (n), ft; = pt; — B (n), Xip = Xi — Xt (1),
iy = ugy — .y (n), and, similar to (83), i(n) = n 1> cq p; and @y (n) = n~ 'Y g ui. The
transformed model (84) does not exactly correspond to the unbalanced FE model analyzed above,
but
at(n) =0, (n_1/2> ,and @ (n) = n~t Z wi(n) =0, (n_1/2) ,
1€Sn

uniformly in ¢, X = fi;, +wit+0, (n*1/2), and gt = f1;+ 0 (B, + wit) +uit+0, (n*1/2). Hence,
(84) corresponds to the unbalanced FE case analyzed above with the exception of the O, (n‘l/ 2)
terms. It can be established that these terms do not matter for any of the findings above for the
unbalanced FE case. Hence, we propose a half-panel jackknife FE-TE estimator by applying the
jackknife bias correction procedure to the FE estimator using the transformed variables {;;, X }.
The main findings for the half-panel jackknife FE estimator also extend to the half-panel jackknife
FE-TE estimator.

5 Small sample properties

Using Monte Carlo techniques, we now investigate the small sample properties of the FE and FE-TE
estimators and their half-panel jackknife bias-corrected versions under different set-ups, allowing
for different degrees of weak exogeneity of the regressors, with or without lags of the dependent
variable, and for both balanced and unbalanced samples. We selectively report some key results.
The full set of results are summarized in an online supplement.

5.1 Data generating process (DGP)

Observations on y;; and x;+ are generated jointly by
Yit = i + 0t + Ayyie—1 + (1= Ay) Brie + wi, (85)

and
Tip = (1 = Xg) i + (1 = A2) Kalii—1 + Aai—1 + Vi, (86)

fori=1,2,...,N and t = —99,-98,...,0,1,2,...,T, using y; —100 = %;,—100 = 0 as the starting
values. The first 100 time observations (t = —99, —98,...,0) are discarded. The fixed effects and
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the idiosyncratic errors are generated as:

Hig ™ IIDN(lvl)a Mi:p’im"i'nyb nyzNIIDN(1a1)7 (87)
v ~ IIDN(0,0%), o2 =05+0.250%, n%~I1IDx*(2), (88)
uy ~ IIDN (0,02%;), o2, =05+025n2, n2 ~IIDx*(2). (89)

This set up allows the fixed effects in the y;; and z;; equations to be correlated, which in turn
induces correlation between p,; and x;. For the time effects, d;, we consider three possibilities: no

time effects, linear time effects, and quadratic time effects, namely
§; =0, 0.025¢, or 0.025¢ — 0.001¢2. (90)

We consider three values for Ay, representing a "static" panel regression with A\, = 0, and two

dynamic panel regressions with a moderate and high values for A, # 0:
Ay=0,04, or 0.8 (91)

We also consider three values for the feedback coefficient, k, (no feedbacks, a low degree of feed-

backs, and a medium degree of feedbacks):
ky =0,0.2, or 0.4. (92)

Throughout we set 8 = 0.5 and A\, = 0.25.

In total, we conducted 27 experiments covering all combinations of ¢, A, and k,, summarized
in Table 1. All experiments were carried out for all N € {30, 60, 100,200, 500, 1000} and T €
{30, 60, 100,200} combinations, with the number of replications set to R = 2,000.

5.2 Experiments without lags of the dependent variable

In the case where A\, = 0, the parameter of interest, 3 (= 0.5), is estimated using the following four

estimators:

1. FE estimator 3p5. In experiments without time effects (§; = 0), the FE estimator is defined

by (12) and based on the panel regression
Yit = Wy + BTt + et (93)
When §; = 0.025¢ or 0.025¢ — 0.001¢2, the FE estimator is based on
Yit = i + gt + Bie + et (94)
Note that when 6; = 0.025¢ — 0.001#2, the panel regression model (94) is mis-specified.
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2. Half-panel jackknife FE estimator 35 defined by (31).

3. FE-TE estimator 3pp_;p is defined by (53), and based on
Yit = pi + 0t + Bri + eit. (95)

4. Half-panel jackknife FE-TE estimator 355 rp defined by (60).

As a benchmark, initially we report the results of Experiment 1, where there are no time effects
(04 = 0) and the regressor, xj, is strictly exogenous (since k; = Ay = 0). We report bias (x100),
root mean square error (RMSE, x100), and size (in %) at the 5 percent nominal level, for the
estimation of 8 = 0.5. In this case, FE and half-panel jackknife FE estimators are both valid for
a fixed T and have the same distribution asymptotically as N — oco. But one would expect the
FE estimator to be more efficient in small samples, since in this case the bias correction is not
required. This is confirmed by the small sample results reported in Table 2. The FE estimator
performs slightly better than its jackknife version (around 2% in terms of RMSEs) when T' = 30,
but for larger values of T' both estimators perform very similarly. The inclusion of time dummies
to allow for possible time effects does not alter this conclusion. The plot of power functions in
Figure 2 for selected values of NV and T also show that the two estimators have very similar power
performances. These benchmark results are important, since they show that half-panel jackknife
FE estimators perform well even if they are applied when bias corrections are not required.

Consider now Experiment 3 where x;; is weakly exogenous with x, = 0.4, and Ay = ¢; = 0.
The results are summarized in Table 3.7 It is clear that as compared to 3 rp (the jackknife bias-
corrected estimator), the standard FE estimator, B g is subject to the small-7" bias. For example,
for T = 30 and N = 200, the bias of FE estimator is —0.0013 as compared to 0.0004 for the
bias-corrected version. Although, in general, there is a trade off between bias reduction and the
variance, the RMSEs in Table 3 clearly show that overall the bias correction has been beneficial,
with substantial gains for small T and large N. It is also interesting that the gain in terms of RMSE
rises as N is increased relative to 1. For example, when T = 30 and N = 200, the RMSE of the FE
estimator is around 43% larger than the RMSE of the bias-corrected estimator, whilst this figure
rises to 250% for T = 30 and N = 1,000. Also, as to be expected, the bias of the FE estimator
declines with 7" and its RMSE falls towards its bias-corrected counterpart. Finally, as predicted
by the theory, the FE estimator shows substantial size distortions when N is large relative to T,
with its size approaching 70% for T = 30 and T' = 1,000. The results for FE-TE and jackknife
FE-TE estimators are given at the lower part of Table 3. The performance of 3 rE_TE is similar
to B rg, While the jackknife estimators continue to perform well, regardless of the feedbacks. The
half-panel jackknife estimator, B rE—7g, has negligible bias and the correct size for all values of

N and T considered. The power functions in Figure 3 also show that the half-panel jackknife FE

"Results for k; = 0.2 lie somewhere between the ones reported for k, = 0 and k, = 0.4, and are provided in an
online supplement.
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and FE-TE estimators perform well, while standard FE and FE-TE estimators are not correctly
centered at the true value of § (= 0.5).

Experiments 7 and 9 feature quadratic time effects (d; = 0.025¢ — 0.001¢?), with two choices
for the feedback parameter, x,. The results for k, = 0 and 0.4 are summarized in Tables 4 and 5,
respectively. Note that in these experiments 3 rp and 3 rp are mis-specified since they don’t allow
for the time effects. Interestingly, comparing the size distortion of Bpg in Table 4 (when k, = 0)
with the size distortion of 3 rp in Table 5 (when k, = 0.4), the latter size distortions are huge, with
rejection rates close to 100% for T' > 60, whereas the former size distortions are very small. In the
strictly exogenous case, the size becomes a problem only when 7' is large (7' > 60), with the reported
over-rejections for the largest values of T' considered being less than 13%. The miss-specification of
time effects compounded with the small T bias has resulted in very poor performance for /3 FE in
the weakly exogenous case. Since the presence of time dummies allows for arbitrary time effects,
the performance of FE-TE only suffers in the weakly exogenous case (Table 5), and overall the
performance of j3 rE_7g in Table 5 is similar to B rg and 3 FE_TE 1D experiments without time
dummies in DGP (see Table 3). The half-panel jackknife FE-TE estimator 3pp_rp performs well
regardless of the time effects in the DGP, as expected. The power functions in Figures 4 and 5 also
show that when z;; is strictly exogenous (Figure 4, with x, = 0), even though bias corrections are
not required, the half-panel jackknife FE-TE B re_7p performs almost as well as the non-jackknife
FE-TE BFE—TE- But when z;; is weakly exogenous (Figure 5, with r, = 0.4), the power functions
of FE-TE estimators, 355 _7p, are not centered at the true value of 8 = 0.5, while the ones for the

half-panel jackknife FE-TE estimator, B rE_TE, are correctly centered.

5.3 Experiments with lagged dependent variables

In these experiments A\, = 0.4 or 0.8, and the parameter of interest is given by the long-run

coefficient, § = —b/¢, where b and ¢ are estimated using the following dynamic panel regressions:
1. FE estimator BFE When 6; =0, ,@’FE is based on
Ayit = pi + yig—1 + bz + €it, (96)
and when &; = 0.025¢ or 0.025¢ — 0.001¢2, BFE is based on:
Ayt = pi + gt + dyig—1 + bz + eqr. (97)

As before, we note that when J; = 0.025¢t — 0.001¢2, the model (97) is mis-specified. 3 is
estimated by
bre

B - =
e Orp
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The estimator for the asymptotic variance of B r is obtained by the delta method:

~ ~ -~ /
AsyVar <BFE> = (E};E7—A1> AsyVar ( ?FE > (bFE7—1> . (99)

=2 =
(Z)FE' ¢FE brE ¢FE ¢FE

2. Half-panel jackknife FE estimator /3 rr- We first compute the half-panel bias-corrected
FE estimators ¢y and bpg based on EFE and bpp. Brp is obtained as

~ brE
Brg=—=—,
OrE

and the estimator for the asymptotic variance of 3 rg is obtained by the delta method similar
to (99).

3. FE-TE estimator 35 ;5 is based on

Ayis = p; + 00 + dyig—1 + bxit + eqr. (100)
As in the case of BFE, BFE,TE = —ZFE—TE/&BFEfTE and its asymptotic variance is obtained

by the delta method, as in (99).

4. Half-panel jackknife FE-TE estimator (5 7y is computed in the same way as Bpg,

but FE-TE estimators are used instead of the FE estimators.

The results for Experiment 12 (A, = 0.4, §; = 0 and k, = 0.4) are reported in Table 6. The FE
and FE-TE estimators are biased downwards, due to the well-documented downward small-T" bias
due to the presence of the lagged dependent variable and the weak exogeneity of x;;. The small
sample bias of FE and FE-TE estimators is duly manifested in large size distortions. As can be
seen from Table 6, both FE and FE-TE estimators show size distortions that rise in N and fall in
T. The size rises very rapidly in N for any given choice of T'. For N = 1000 and T = 30, the size
reaches 99%. The half-panel jackknife estimators, in contrast, are subject to a small positive bias
and achieve correct size for all values of N and T' considered, with the exception of N = 1000 and
T = 30, where the size is 9%. The plot of the power functions in Figure 6 also show that the half-
panel jackknife FE estimator, 3 rg, performs well for all selected values of N and T' except when
N = 1000 and T = 30, but for the FE estimator the power functions for all N and T' combinations
are shifted to the left of the true value of .

Consider now Experiment 18, which features quadratic time effects (with §; = 0.025¢ —0.001¢2),
and Ay = k; = 0.4 as in Experiment 12. The results are reported in Table 7 and Figure 7. Brp
and B g are miss-specified due to the quadratic trends in DGP, and the size distortions of B FE
and f3 rp are huge, with rejection rates 100% in many cases when both N and T are large. Once

time dummies are included (considering FE-TE and half-panel jackknife FE-TE estimators), the
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relative performance of bias uncorrected and bias corrected estimators (B re_7p and Brp 7 E) are
very similar to the relative performance of 3 rg and 3 rg reported in Table 6.
Similar results are also obtained for the other experiments, but to save space those results are

provided in an online supplement.

5.4 Experiments with unbalanced panels

We also consider unbalanced panels by dropping [T'/5] observations from the beginning and from
the end of the sample period for units i = 1,2, ..., [N/4], and [T'/3] observations from the beginning
and from the end of the sample periods for units ¢ = [N/4] + 1,[N/4] + 2,...,[N/2|, where [a]
denotes the integer part of a. For unbalanced panels we only report the results for Experiment 18
(Ay =04, 6; = 0.025¢t — 0.001¢2 and x, = 0.4). Again, the results for other experiments are similar
to the ones reported for balanced panels. The results are summarized in Table 8 and Figure 8. In
the case of models with both fixed and time effects we employ the Wansbeek and Kapteyn (1989)
transformation as discussed in sub-section 4.2.2.

As a whole, the findings for the unbalanced panels are similar to the results for the balanced
panels reported in Table 7. That is, B rg and B g are mis-specified and the size distortions are
huge, with rejection rates 100% in many cases, B rE_rg is biased and size-distorted due to weak
exogeneity, and Bpp_rp performs well. However, the RMSE of BFE—TE in Table 8 are about 20%
larger than the RMSE in Table 7, due to a smaller average value of T in the case of unbalanced
panels. Interestingly, the performance of ,5’ rE_TE 1s seemingly better in term of size when the
samples are unbalanced. For example, when N = 1000 and T' = 30, the size of Bpg_7p in Table 8
is only 6.70% while in Table 7 it is 9.35%. However, Figure 8 shows that this could be due to the
fact that the power functions of Bpp_pp for the unbalanced panels are flatter than ones for the

balanced panels (see Figure 7), due to fewer observations.

6 Empirical illustrations

It is reasonable to ask if the jackknife bias correction makes that much of a difference in practice.
In this section we provide two empirical illustrations, one by Berger et al. (2013) on the effect of
the US political influence on bilateral trades of US and foreign countries during the Cold War, and
a second application by Donohue and Levitt (2001) on the determinants of crimes in the US. The
former involves an unbalanced panel of countries in the world economy, and the latter a balanced
panel of 48 States in the US.

6.1 Empirical illustration I: Commercial Imperialism

Berger et al. (2013) studied the effect of the US political influence on the bilateral trades of US
and foreign countries during the Cold War. Using an annual unbalanced panel of country-level
data of 131 countries over the period 1947 — 1989 (43 years), Berger et al. (2013) used the FE-TE
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estimator to estimate the following panel data regression (equation (7) in their paper):

Uus )
In it = . + 5, + BUSinfluencey + ¢plntYS — ¢ (In P75 + In P}) + Xy + uze, (101)

Yit

where the dependent variable, In (mgs Yit), is the natural log of imports into country ¢ in year
t from the US normalized by country i’s total GDP. USin fluence; is an indicator variable that
equals one, in country i in year ¢, if the CIA (Central Intelligence Agency) either successfully
installed a foreign leader or provided covert support for the regime once in power. This valuable
dataset was constructed by Berger et al. (2013) according to various studies of the history of
the Cold War, typically based on declassified historical documents. In7{° and In PV® + In P}
respectively denote the trade costs and the multilateral resistance terms, which are given by the
distance between US and country ¢, and four indicator variables for US and country ¢ sharing a
common language (English), sharing a border, both being GATT (General Agreement on Tariffs
and Trade) participants, and belonging to a regional trade agreement. X;; is a vector of control
variables including the per capita income of country 4, an indicator variable for Soviet interventions
(constructed in the same manner as CIA interventions), an indicator variable for the change in
leadership, a measure of the tenure of the current leader, and an indicator variable for democracy.
Berger et al. (2013) also estimated the effects of CIA interventions on log normalized imports from
the rest of the world, log normalized exports to the US, and log normalized exports to the rest of
the world, with estimating equations derived in an analogous manner as equation (101). Berger
et al. (2013) found that the US influence raised the imports from the US to the intervened country
but had no effects on imports from the rest of the world, exports to the US, or to the rest of the
world.

We apply the half-panel jackknife bias-correction estimator for unbalanced panels (developed
in sub-section 4.2.2) to the same dataset of Berger et al. (2013). For countries with odd numbers
of observations, we drop the first observations before applying the half-panel jackknife. The results
are summarized in Table 9. Column (1.a) shows the estimates reported by Berger et al. (2013) for
equation (101). Before jackknife bias-correction, the coefficient of U Sin fluence;; is estimated to be
0.293 and is statistically significant. As it happens the bias corrected estimate of this coefficient at
0.450 is even larger with a higher level of statistical significance. This is in line with the theoretical
downward bias of the FE-TE estimators in the presence of weakly exogenous regressors. For other
control variables, interestingly, we also find different results from Berger et al. (2013). For example,
in column (1.a) both the estimates of the coefficients of the common language indicator and the
GATT participants indicator are not statistically significant. However, the bias-corrected estimates
given under column (1.b) are both positive and statistically significant. These estimates suggest
that sharing a common language and joining GATT would have positive effects on the imports
from the US, which makes more sense than the statistically insignificant effects obtained when
using FE-TE estimators.

Columns (2.a), (3.a) and (4.a) show the estimates of Berger et al. (2013) with dependent
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variables log normalized imports from the rest of the world, log normalized exports to the US, and
log normalized exports to the rest of the world. Before the jackknife bias correction, the estimates
of the coefficients of USinfluence; are statistically insignificant. Berger et al. (2013) argued
that the results provided some evidence that the CIA interventions did not create trades in all
directions, but only created markets for US exports. Our jackknife estimates (in columns (2.b),
(3.b) and (4.b)) support the findings of Berger et al. (2013). After the jackknife bias-correction, the
estimates of the coefficients of USin fluence;; remain statistically insignificant, but there are some
important differences in the case of other coefficients. For example, under columns (3.a) and (3.b),
the bias-corrected estimates of the effects of democracy, contiguous border, and GATT participation
variables are statistically significant at the 5% level, but none of the estimates reported by Berger
et al. (2013) for these coefficients are statistically significant. There are also large differences in
the magnitudes of these estimates, which could reflect the extent to which FE-TE estimates could

be biased if uncorrected.

6.2 Empirical Illustration II: Abortion and Crime

Donohue and Levitt (2001) studied the effect of legalized abortion on crimes in the US, using a
balanced panel of data on 50 US States and the District of Columbia over the period 1985 — 1997
(13 years). These authors estimate the following FE-TE panel data regression (equation (2) in
their paper):

yie = In (erimey) = p; + 8¢ + ByABORTy + "X + uyy, (102)

where In (crime;;) is the logarithm of the crime rate per capita in state ¢ and year ¢. Donohue
and Levitt (2001) considered three types of crimes: violent crime, property crime and murders.
ABORT}, the "effective" legalized abortion rate, and is computed as a weighted average of the
abortion rates in which the weights are determined by the fraction of arrests from different age
groups. X; is a vector of control variables, including lagged prisoners and police per capita, a
number of variables for state economic conditions, the lagged state welfare generosity, the concealed
handgun laws, and per capita beer consumption. Notably, Donohue and Levitt (2001) use the
one-year lags of prisoners and police per capita as controls to deal with the endogeneity of these
covariates. But as our theoretical analysis shows, lagging the covariates does not eliminate the
bias due to possible feedbacks from changes in crimes to policing and imprisonments. Donohue
and Levitt (DL) conclude that legalized abortion in 1970s has been one of the main causes of the
substantial decline in crime observed in the US during 1990s.

DL study has attracted a great deal of attention with a large number of studies considering
different aspects of their analysis ranging from measurement problems, the choice of the control
variables, the choice of the abortion variable (whether to focus on aggregate measures of abortion
or teenage abortion), data extensions, and possible missing common factors which have led to crime

decline not only in the US but across most of the industrialized economies.® In this sub-section

8Gee, for example, Joyce (2004, 2009), Foote and Goetz (2008), Moody and Marvell (2010), Belloni et al. (2014),

34



we focus on the rather narrow estimation and inference issue and adopt DL’s original 2001 data
set and the associated measurements. To simplify the analysis we follow Belloni et al. (2014) and
estimate model (102) only on the 48 contiguous states, and drop the District of Columbia, Alaska
and Hawaii from the analysis.” However, unlike Belloni et al. (2014) who were concerned with the
robustness of DL results to the choice of the covariates, in our analysis we include all the covariates
as in Donohue and Levitt (2001).1

We estimated model (102) by FE-TE and jackknife FE-TE methods, for all the three crime
categories, based on the sub-sample of 48 contiguous states over the period 1985-1997. Given the
odd number of available time periods (T' = 13) we experimented with deleting the first, the last or
a random mixture of the first and the last observations to obtain an even number of time periods,
needed for implementation of the half-panel jackknife estimator.!! The results were qualitatively
very similar and in Table 10 we only report the jackknife estimators with the first observations
(for 1985) deleted. The estimates reported in Donohue and Levitt (2001) are reproduced under
columns (1l.a), (2.a) and (3.a), the FE-TE estimates are given in columns (1.b), (2.b) and (3.b),
and the half-panel jackknife FE-TE estimates are under columns (1.c), (2.c) and (3.c). The FE-
TE estimates of the coefficient of the abortion variable, 3, for violent crime, property crime and
murders, are very close to the estimates reported by Donohue and Levitt (2001). But there are
some important differences between FE-TE and the jackknife FE-TE estimates, although these
differences are quantitative in nature and do not alter DL’s main conclusion, with all statistically
significant coefficients estimated to be larger in magnitude by the jackknife procedure. For example,
for violent crimes, according to DL’s own estimates, only the abortion variable has a statistically
significant coefficient estimated to be -0.129, while the jackknife FE-TE estimates are statistically
significant for prisoners per capital and log state income per capita variables with coefficient much
larger than those estimated by FE-TE procedure. A similar picture also emerges for property
crime. But for the murder per capita, the estimates based on the jackknife FE-TE procedure are
statistically less significant.

Another source of possible bias in the analysis of the relationship between abortion and crime
is dynamic mis-specification. DL recognize the importance of the cumulative and persistent effects
from abortion to crimes but do not check the robustness of their results to dynamics of crimes

as they respond to changing values of the covariates. As a first step towards allowing for such

and Shoesmith (2015). See also responses by Donohue and Levitt (2004, 2008), and Levitt (2004).

9The FE-TE estimates of (102) turn out to be highly sensitive to whether District of Columbia, Alaska and Hawaii
are included in the analysis. Belloni et al. (2014) estimate a first-differenced version of (102) with time-dummies,
and obtain estimates of 3; which are similar to the original estimates of Donohue and Levitt (2001), when all the
control variables are included in the panel regression.

10As pointed out by Moody and Marvell (2010), there are also potentially important missing controls such as per
cent black, per cent urban, or age distribution by states, often used in crime studies in the US.

"'We also carried out additional Monte Carlo experiments to see if the performance of the half-panel jackknife
FE-TE estimator is adversely affected given the rather small sample (N = 48 and T' = 12) under consideration. We
found that our main findings hold and the jackknife FE-TE estimator works well even in such a case. The results
are summarized in the online supplement. Recall that for this application N/T? = 0.028 which is sufficiently small
as required for the validity of our bias correction.
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dynamics we also considered the following simple dynamic panel model:
In (erimeir) = p; + 0 + A (crime; ¢—1) + 81(1 — N\)ABORTy + (1 — Nap'xit + wit, (103)

where In (crime; ;1) is the lagged logarithm of crime rate per capita. It is clear that the FE-TE
estimates of 3, are likely to be biased given the rather small value of T" which is now reduced
to T = 12 due to the presence of lagged values of In (crime;;) amongst the regressors. But the
jackknife estimators are likely to be valid even in this application since N/T3 = 48/123 ~ 0.028
is sufficiently small. The results are summarized in Table 11, with the estimates of A given at
the bottom of the table. The jackknife FE-TE estimates of A are statistically significant at the
1% level for all three crime categories. They are also noticeably larger than the FE-TE estimates
that are known to be biased downward. The jackknife estimates of A\ are quite a bit larger for
violent and property crimes as compared to murder crimes. Turing to the short term estimates
given by by = (1 — A) and by = (1 — \)2p, we notice a number of differences as compared to the
corresponding estimates in Table 10. Most importantly, using jackknife estimates we find that the
abortion variable is no longer statistically significant in the property crimes regressions. Overall,
allowing for dynamics shed some doubt on the robustness of DL findings, with mixed results. The
abortion variable continues to be statistically significant for violent and murder crimes but not for
property crimes. Allowing for dynamics has strengthen the explanatory power of other covariates
such as prisoners and police per capita, the unemployment rate (for property crimes), and log state
income per capita (for violent and property crimes). The beer consumption per capita is no longer
statistically significant. The long run estimates, namely (; and % in (103), are summarized in

Table 12 and give a similar picture.

7 Conclusion

In this paper we consider the problem of estimation and inference in panel data models with
weakly exogenous regressors when NN is relatively large and 7" is moderate. The existing estimation
techniques in the literature have not sufficiently covered this problem since no estimator proposed
in the literature is established to deliver a valid inference in this set-up. We have derived exact
expressions for the bias of FE and FE-TE estimators when N is large for a given 7', and considered
the half-panel jackknife method to remedy the bias. We have derived the exact expression for
the large-N small-T bias of this particular jackknife method, and we have established that it is
asymptotically unbiased as N,T — oo jointly such that T' = KN, for some 0 < K < oo and
€ > 1/3, which makes this method suitable for N large and moderate T'. The inference based on
the proposed variance estimator in this paper is very good, even for N as large as 1000 and T
as small as 30 in the considered set of Monte Carlo experiments. FE and FE-TE estimators, on
the other hand, can be grossly oversized in the presence of weakly exogenous regressors (regardless

whether the panel includes lagged dependent variable or not), unless N/T is sufficiently small.
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The two empirical applications included in the paper illustrate the potential use of the half-panel
jackknife method for panel data analysis with dynamics and weakly exogenous regressors.
Overall, our theoretical results backed up with extensive Monte Carlo evidence suggest that
jackknife bias correction is a useful remedy to the small-T" bias problem of the FE and FE-TE
estimators in panels with weakly exogenous regressors when N is large and 7" is moderate. Moreover,
the cost of the half-panel jackknife bias correction seem small when regressors are strictly exogenous.
Hence, the jackknife corrected FE and FE-TE estimators are useful additions to the toolkit of

applied researchers, particularly since these estimators are also quite easy to implement.
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Table 1: List of Monte Carlo Experiments

DGP: without lagged with lagged
dep. variable dep. variable
Ay =0 Ay =04 Ay = 0.8
Ot K Exp. Exp. Exp.
0 0 1 10 19
0 0.2 2 11 20
0 0.4 3 12 21
0.025¢ 0 4 13 22
0.025t 0.2 5 14 23
0.025¢ 0.4 6 15 24
0.025¢ — 0.001¢2 0 7 16 25
0.025¢t — 0.001¢2 0.2 8 17 26

0.025t — 0.001t2 0.4 9 18 27
Notes: DGP with lagged dependent variable is described in Subsection 5.2 and DGP with lagged dependent variable
is described in subsection 5.3. §; is the time effect in the y;: equation, . is the feedback coefficient of y; +—1 in the
xit equation, and Ay is the autoregressive coefficient for the lagged dependent variable in the y;; equation.

Table 2: Bias (x100), RMSE (x100), and Size (%) at 5% nominal level with A, =0, J; = 0, and
kz = 0 (Experiment 1)

Bias (x100) RMSE (x100) Size (%)
(N,T) 30 60 100 200 30 60 100 200 30 60 100 200
FE estimator Spp
30 0.05 0.06 0.07 -0.01 339 237 1.76 1.27 545 580 4.65 5.10
60 0.02 0.01 0.00 -0.04 235 165 1.24 0091 595 570 420 5.50
100 0.03 0.01 0.01 -0.02 1.81 1.27 0.96 0.69 5.80 5.10 4.60 5.40
200 0.02 0.00 0.00 -0.01 1.25 090 0.68 0.49 510 520 480 5.00
500 0.02 0.01 0.01 0.00 0.80 0.57 0.44 0.30 510 530 480 5.25
1000 0.00 0.00 0.00 -0.01 0.59 041 031 0.22 5.75 545 520 540
Half-panel jackknife FE estimator Spp
30 0.01 0.05 0.07 -0.02 3.46 239 1.78 1.28 3.90 475 430 5.35
60 -0.02 0.01 0.00 -0.04 241 167 1.25 0.92 445 465 3.90 5.50
100 0.01 0.01 0.00 -0.02 1.85 1.28 0.97 0.70 4.70  3.90 4.70 5.35
200 0.00 0.00 0.00 -0.01 1.30 091 0.69 0.49 430 4.60 4.45 5.00
500 0.01 0.01 0.01 0.00 0.83 0.58 0.44 0.31 3.75 445 425 475
1000 0.00 0.00 0.00 -0.01 0.61 041 031 0.22 545 5.15 4.85 5.00
FE-TE estimator Bpp_1p
30 0.02 0.04 0.07 -0.02 3.43 240 1.79 1.29 6.30 6.15 5.70 540
60 0.00 0.00 -0.01 -0.04 237 166 1.25 0.91 6.15 560 440 5.75
100 0.03 0.01 0.00 -0.02 1.82 1.28 0.96 0.70 5,50 540 4.75 5.60
200 0.02 0.00 0.00 -0.01 126 0.90 0.68 0.49 5.15 525 4.80 5.00
500 0.02 0.01 0.01 0.00 0.80 0.58 0.44 0.30 5.00 545 490 5.10
1000 0.00 0.00 0.00 -0.01 0.59 041 031 0.22 595 540 540 540
Half-panel jackknife FE-TE estimator Srp_rg
30 -0.02 0.04 0.06 -0.02 3.52 242 181 1.29 450 535 4.95 5.60
60 -0.03 0.00 -0.01 -0.04 244 168 126 0.92 4.60 4.80 3.90 5.90
100 0.01 0.01 0.00 -0.02 1.87 128 0.97 0.70 480 410 4.95 5.30
200 0.00 0.00 0.00 -0.01 1.30 091 0.69 0.49 435 455 4.50 5.10
500 0.01 0.01 0.01 0.00 0.83 058 044 0.31 3.95 4.65 425 4.90
1000 0.00 0.00 0.00 -0.01 061 041 031 0.22 535 5.00 4.75 5.10

Notes: DGP is given by Ayir = p; + 0 — (1 — Ay) yi,e—1 + (1 — Ay) Bxir + uit, where

Tit = (1= Xz) phyp + (1 — Aa) Kalit—1 + Aaie—1 +vie, 8=0.5, Xy =0, =0, pt; = p, +Nys5 Nys ~ IITDN (1,1),
wit ~ IIDN (0,0%;), 0oy = 0.5+ 0.2502,, 02, ~ I1DX (2), A\a = 0.25, ko = 0, p;, ~ IIDN (1,1),

vit ~ ITDN (O, U%Z—), o2, =0.540.2502,, n%, ~ IIDx*(2). R = 2000. FE and half-panel jackknifed FE are based on
equation (93): yit = p; + Bzt + uir. FE-TE and half-panel jackknifed FE-TE are based on equation (95):

Yit = by + Ot + BT + wir.

39



Figure

Rejection Frequency (%)

Rejection Frequency (%)

Rejection Frequency (%)

Rejection Frequency (%)

2: Rejection frequency (%) at 5% nominal level with A\, =0, 6; =0, and k; =0
(Experiment 1)

T =30,N=100 T=60,N=100

0.4 0.5 0.6 0.4 0.5 0.6

T =30, N=200 T =60, N=200

T =30, N =500 T =60, N =500

40 40

20 20

10 10

] SRR ' CELEEEEEEEREE R RAREEEEE EEREEEEEEEREEE

0 ‘ 0 ‘

0.4 0.5 0.6 0.4 0.5 0.6

T =30, N = 1000 T =60, N = 1000

------- FE
JKFE
------- FE-TE
JKFE-TE




Table 3: Bias (x100), RMSE (x100), and Size (%) at 5% nominal level with A\, =0, d; = 0, and
Ky = 0.4 (Experiment 3)

Bias (x100) RMSE (x100) Size (%)
(N,T) 30 60 100 200 30 60 100 200 30 60 100 200
FE estimator Bpp
30 -1.33  -0.63 -0.34 -0.21 342 230 1.67 1.19 8.05 6.85 5.10 5.80
60 -1.33  -0.66 -0.40 -0.23 254 166 120 0.86 9.85 7.80 5.50 6.95
100 -1.30  -0.65 -0.39 -0.21 212 135 097 0.67 12.00 9.35 7.20 7.10
200 -1.31  -0.66 -0.39 -0.20 1.75 1.056 0.73 0.49 19.70  12.90 8.85 7.85
500 -1.30  -0.64 -0.38 -0.19 1.49 083 0.56 0.34 40.35 23.00 16.65 10.40
1000 -1.31  -0.65 -0.38 -0.20 1.42  0.75 0.48 0.28 70.40 42.85 28.35 16.50
Half-panel jackknife FE estimator Srg
30 0.01 0.05 0.06 -0.01 3.27 225 1.65 1.18 4.15 5.15 4.50 4.75
60 0.01 0.02 0.00 -0.03 228 155 1.14 0.84 3.85 4.45 3.85 5.80
100 0.05  0.02 0.01  -0.02 1.75 1.20 0.90 0.65 4.20 4.00 5.35 5.80
200 0.04 0.01 0.01  -0.01 1.22 083 0.63 0.45 3.40 4.60 4.40 5.35
500 0.07  0.02 0.02 0.00 0.78 0.54 041 0.28 4.15 5.10 4.95 4.65
1000 0.05  0.01 0.01 0.00 0.57 0.39 0.29 0.20 5.00 5.25 5.15 5.40
FE-TE estimator SBrpp_rg
30 -1.35  -0.64 -0.35 -0.22 348 233 1.69 1.20 8.50 7.00 5.50 5.60
60 -1.34  -0.67 -0.41 -0.23 256 1.67 121 0.86 10.85 8.45 6.10 7.15
100 -1.30  -0.65 -0.39 -0.21 213 135 097 0.68 12.15 9.40 7.20 7.15
200 -1.31  -0.66 -0.39 -0.20 1.75 1.056 0.74 0.49 19.90 12.70 9.00 7.80
500 -1.30  -0.64 -0.38 -0.19 1.49 083 0.56 0.34 40.85 22.90 16.80  10.50
1000 -1.31  -0.65 -0.39 -0.20 1.42  0.75 0.48 0.28 70.35 42.65 28.60 16.40
Half-panel jackknife FE-TE estimator Spp_rg
30 -0.01 0.04 0.06 -0.02 3.33 228 1.67 1.19 4.30 5.30 4.90 5.35
60 0.00 0.01 -0.01 -0.04 230 156 1.15 0.84 4.20 4.85 3.75 5.25
100 0.05  0.02 0.01  -0.02 1.75 1.20 091 0.65 4.85 4.15 5.15 5.60
200 0.04  0.01 0.01  -0.01 1.23  0.83 0.63 0.45 3.85 4.50 4.50 5.20
500 0.07  0.02 0.01 0.00 0.79 0.55 041 0.28 4.15 5.20 4.90 4.80
1000 0.05  0.01 0.01 0.00 0.57 039 0.29 0.20 5.15 5.20 4.90 5.50

Notes: 5 =0.5, Ay =0, §: =0, and x5 = 0.4. For the rest of the settings, see the notes for Table 2.
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Figure 3: Rejection frequency (%) at 5% nominal level with A, =0, §; = 0, and &,

(Experiment 3)
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Table 4: Bias (x100), RMSE (x100), and Size (%) at 5% nominal level with A\, = 0,
§; = 0.025¢ — 0.001¢2, and r, = 0 (Experiment 7)

Bias (x100) RMSE (x100) Size (%)
(N, T) 30 60 100 200 30 60 100 200 30 60 100 200
FE estimator Brp
30 0.04 0.05 0.04 -0.16 3.40 250 245 498 6.00 6.70  7.30 11.75
60 0.01 0.01 0.00 -0.13 236 175 1.75 3.53 5.85  6.05 7.70 12.40
100 0.03 0.01 -0.01 -0.09 1.81 1.34 1.33 2.70 5.70  5.50  6.40 12.15
200 0.01  0.00 0.02 0.00 1.26 095 096 1.91 5.35 5.40  7.60 12.10
500 0.02 0.01 0.01 0.01 0.81 0.60 0.61 1.22 5.10 5.55 7.65 11.45
1000 0.00 0.00 0.00 0.02 0.59 043 043 0.86 6.35 6.20  8.30 11.60
Half-panel jackknife FE estimator Spp
30 -0.01 0.04 -0.01 -0.28 3.51 285 377  9.49 4.60 9.35 2290 39.95
60 -0.02  0.00 -0.02 -0.21 2.45 2.01 273 6.70 4.45 9.25 2545 39.70
100 0.01 0.01 -0.03 -0.14 1.88 1.52 2.05 5.15 4.80 830 23.50 41.05
200 0.00 0.00 0.03 0.00 1.32 1.09 148 3.65 4.25 8.75 25.00 39.55
500 0.01 0.01 0.01 0.02 0.84 0.69 095 2.34 4.00 8.80 24.45 41.50
1000 0.00 0.00 -0.01 0.06 0.62 049 0.65 1.64 5.65 9.80 23.80 41.60
FE-TE estimator Spp_1g
30 0.02 0.04 0.07 -0.02 343 240 1.79 1.29 6.30  6.15 5.70 5.40
60 0.00 0.00 -0.01 -0.04 237 166 1.25 091 6.15 5.60  4.40 5.75
100 0.03 0.01 0.00 -0.02 1.82  1.28 0.96 0.70 5.50 540 4.75 5.60
200 0.02 0.00 0.00 -0.01 1.26  0.90 0.68 0.49 5.15 5.25  4.80 5.00
500 0.02 0.01 0.01 0.00 0.80 0.58 0.44 0.30 5.00 5.45 4.90 5.10
1000 0.00 0.00 0.00 -0.01 0.59 041 031 0.22 595 5.40  5.40 5.40
Half-panel jackknife FE-TE estimator Srpp_rg
30 -0.02  0.04 0.06 -0.02 3.52 242 181 1.29 4.50 5.35 4.95 5.60
60 -0.03 0.00 -0.01 -0.04 2.44 168 1.26 0.92 4.60 4.80  3.90 5.90
100 0.01 0.01 0.00 -0.02 1.87 1.28 097 0.70 4.80 4.10 4.95 5.30
200 0.00 0.00 0.00 -0.01 1.30 091 0.69 0.49 4.35 4.55 4.50 5.10
500 0.01 0.01 0.01 0.00 0.83 0.58 044 0.31 3.95 4.65 4.25 4.90
1000 0.00 0.00 0.00 -0.01 0.61 041 031 0.22 5.35 5.00 4.75 5.10

Notes: = 0.5, Ay =0, §; = 0.025¢ — 0.001¢%, and k, = 0. FE and half-panel jackknife FE are based on equation
(94): yir = p; + gt + Bxit + uir. FE-TE and half-panel jackknife FE-TE are based on equation (95):
Yit = W; + 0t + Bxi + use. For the rest of the settings, see the notes for Table 2.
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Figure 4: Rejection frequency (%) at 5% nominal level with A, = 0, §; = 0.025¢t — 0.001¢2, and
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Table 5: Bias (x100), RMSE (x100), and Size (%) at 5% nominal level with A, = 0,
§¢ = 0.025¢ — 0.001¢2, and k. = 0.4 (Experiment 9)

Bias (x100) RMSE (x100) Size (%)
(N, T) 30 60 100 200 30 60 100 200 30 60 100 200
FE estimator Brp
30 -1.19 2.22 19.52 126.98 3.39  3.24  19.69 127.04 7.70 19.85 100.00  100.00
60 -1.16 2.18 19.44 126.86 247 272 19.52  126.89 9.15 30.45  100.00  100.00
100 -1.13 2.20 1941 126.79 2.02 253 1947 126.81 10.05  46.85  100.00 100.00
200 -1.13 2.19 19.41  126.73 1.62 236 19.44 126.74 15.60 74.15 100.00  100.00
500 -1.11 2.21 1942  126.75 1.34 228 19.43 126.76 31.85  97.70  100.00  100.00
1000 -1.13  2.20 19.40 126.74 1.25 224 1940 126.74 57.35 100.00 100.00  100.00
Half-panel jackknife FE estimator Spp
30 0.36  5.60 38.39 234.48 3.38 6.28 38.63 234.58 5.35 66.35  100.00  100.00
60 0.37  5.52  38.28 234.32 2.35 5.87 38.41 234.36 4.75 88.10  100.00  100.00
100 0.42 5.53  38.22  234.20 1.82 574 38.29 234.23 5.15 97.65 100.00  100.00
200 0.40  5.53  38.22 234.08 1.30  5.63 38.26 234.09 5.20  100.00 100.00 100.00
500 0.43 554 38.21 234.11 090 558 38.23 234.11 6.95  100.00 100.00 100.00
1000 0.41 553 38.18 234.10 0.71 555 38.19 234.10 11.30  100.00 100.00  100.00
FE-TE estimator 8pp_71p
30 -1.35  -0.64 -0.35  -0.22 3.48 233 1.69 1.20 8.50 7.00 5.50 5.60
60 -1.34 -0.67 -0.41 -0.23 256 1.67 1.21 0.86 10.85 8.45 6.10 7.15
100 -1.30  -0.65 -0.39 -0.21 2.13  1.35 0.97 0.68 12.15 9.40 7.20 7.15
200 -1.31 -0.66 -0.39  -0.20 1.75  1.05 0.74 0.49 19.90  12.70 9.00 7.80
500 -1.30  -0.64 -0.38  -0.19 149 083 0.56 0.34 40.85  22.90 16.80 10.50
1000 -1.31  -0.65 -0.39  -0.20 142 0.75 048 0.28 70.35  42.65 28.60 16.40
Half-panel jackknife FE-TE estimator Spp_rg
30 -0.01  0.04 0.05 -0.02 3.33 228 1.67 1.19 4.30 5.30 4.90 5.35
60 0.00 0.01 -0.01 -0.04 230 1.56 1.15 0.84 4.20 4.85 3.75 5.25
100 0.05  0.02 0.01 -0.02 1.75 120 091 0.65 4.85 4.15 5.15 5.60
200 0.04  0.01 0.01 -0.01 1.23 083 0.63 0.45 3.85 4.50 4.50 5.20
500 0.07  0.02 0.01 0.00 0.79 055 0.41 0.28 4.15 5.20 4.90 4.80
1000 0.05  0.01 0.01 0.00 0.57 039 0.29 0.20 5.15 5.20 4.90 5.50

Notes: 8 =0.5, Ay =0, §; = 0.025¢ — 0.001t> and k. = 0.4. For the regression equations, see the notes for Table 4.
For the rest of the settings, see the notes for Table 2.
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Figure 5: Rejection frequency (%) at 5% nominal level with A, = 0, §; = 0.025¢ — 0.001¢2, and
ky = 0.4 (Experiment 9)
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Table 6: Bias (x100), RMSE (x100), and Size (%) at 5% nominal level with A\, = 0.4, §; = 0,
and x; = 0.4 (Experiment 12)

Bias (x100) RMSE (x100) Size (%)
(N,T) 30 60 100 200 30 60 100 200 30 60 100 200
FE estimator Brpp
30 -3.87  -1.89 -1.07 -0.60 6.33 4.07 290 2.02 15.35  10.40 7.20 6.35
60 -3.86 -1.93 -1.16 -0.63 5.18 3.14 218 1.50 23.00 13.65 8.95 8.10
100 -3.79  -1.91 -1.14 -0.60 4.62 270 1.85 1.22 32.40 18.85 11.90  9.50
200 -3.80 -1.91 -1.14 -0.58 422 233 153 0.94 55.00 30.45 18.80 12.15
500 -3.78  -1.88 -1.13 -0.57 3.96 2.07 1.31 0.73 89.75 60.45 39.80 22.65
1000 -3.81  -1.90 -1.14 -0.58 390 200 1.23 0.66 99.55 87.75  69.20 42.25
Half-panel jackknife FE estimator Spg
30 057 024 015 0.01 585 3.85 280 1.97 4.40 4.95 4.40 4.50
60 0.51 0.17 0.05 -0.04 409 266 1.93 1.40 4.85 4.10 3.75 5.40
100 0.61 0.17 0.07  -0.01 3.14 204 153 1.08 4.60 3.90 5.10 5.60
200 058 0.15 0.07r 0.01 225 142 107 0.76 5.10 4.25 4.45 5.20
500 0.62 0.17 0.07 0.01 1.52 094 0.70 0.47 6.45 5.60 5.00 4.55
1000 0.58 0.16 0.06 0.01 1.17  0.68 0.49 0.34 9.30 6.15 5.55 4.95
FE-TE estimator Spp_71g
30 -3.90 -1.91 -1.09 -0.61 6.42 412 294 2.05 16.75  10.90 7.55 6.40
60 -3.87  -1.95 -1.17 -0.64 521 3.16 220 1.51 23.20 13.80 9.15 8.75
100 -3.79  -1.90 -1.14 -0.60 463 270 185 1.22 3240 1895 12.30 9.60
200 -3.79  -191 -1.13 -0.58 422 233 153 0.94 54.65 30.85 19.15 11.95
500 -3.78  -1.88 -1.13 -0.57 3.96 2.07 1.31 0.73 89.80  60.70  39.70  22.75
1000 -3.81  -1.90 -1.14 -0.58 390 200 1.23 0.66 99.55 87.70 69.20 41.95
Half-panel jackknife FE-TE estimator Srpp_rg
30 053 022 014 0.00 596 391 284 200 4.95 5.50 4.65 4.80
60 049 016 0.04 -0.04 412 2.67 194 141 5.40 4.40 4.20 5.35
100 0.60  0.17  0.07 -0.01 3.16 205 153 1.08 4.95 4.05 5.30 5.65
200 0.58 0.16 0.07 0.01 226 142 1.07 0.76 5.15 4.55 4.40 5.10
500 0.62 0.17  0.07 0.01 1.52 095 0.70 0.47 6.35 5.70 5.20 4.95
1000 0.57 0.16 0.06 0.01 1.17  0.68 0.49 0.34 9.35 6.20 5.50 5.00

Notes: 8 =0.5, \y = 0.4, 6; =0, and s, = 0.4. FE and half-panel jackknife FE are based on equation (96):
Ayit = p; + ¢Yit—1 + brie + eir. FE-TE and half-panel jackknife FE-TE are based on equation (100):
Ayir = p; + 6t + Oyit—1 + bxis + eir. For the rest of the settings, see the notes for Table 2.
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Figure 6: Rejection frequency (%) at 5% nominal level with A, = 0.4, 6; =0, and k; = 0.4
(Experiment 12)
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Table 7: Bias (x100), RMSE (x100), and Size (%) at 5% nominal level with A, = 0.4,

§; = 0.025¢t — 0.001¢2, and k, = 0.4 (Experiment 18)

Bias (x100) RMSE (x100) Size (%)
(N,T) 30 60 100 200 30 60 100 200 30 60 100 200
FE estimator Brp
30 -3.42 6.38 48.33 167.31 6.13 7.64 48.58 167.33 13.75 36.75  100.00  100.00
60 -3.36 6.31 48.16 167.27 4.84 6.95 48.29 167.28 18.00 60.90  100.00  100.00
100 -3.26 6.36 48.15 167.26 4.22 6.74 48.23 167.27 25.25 81.65 100.00  100.00
200 -3.25 6.37 48.16 167.24 3.74 6.56 48.20 167.25 42.65 98.15  100.00  100.00
500 -3.22 6.40 48.15 167.25 3.43 6.48 48.17 167.25 78.55  100.00  100.00  100.00
1000 -3.24 6.38 48.13 167.24 3.36 6.42 48.14 167.24 96.40  100.00  100.00  100.00
Half-panel jackknife FE estimator Spp
30 1.88  21.37  2069.45 -1124.19 6.43 2246 68163.06 2334.83 5.95 94.60 50.50 90.05
60 1.81  20.99 606.02  -1049.33 4.61 21.53 11466.34 1093.71 6.95 99.70 70.05 99.55
100 1.91 2091 1092.30 -1024.70 3.74  21.24 5040.90  1045.91 8.65 100.00 85.95  100.00
200 1.88  20.88 974.57  -1006.88 2.94  21.04 1361.11  1016.38 12.05  100.00 97.70  100.00
500 1.93  20.86 898.05 -998.06 241 20.93 920.89  1001.69 26.25 100.00 100.00  100.00
1000 1.88  20.82 875.31 -994.51 2.16  20.85 884.36 996.31 44.25 100.00 100.00 100.00
FE-TE estimator Spp_1g
30 -3.90  -1.91 -1.09 -0.61 6.42 4.12 2.94 2.05 16.75 10.90 7.55 6.40
60 -3.87  -1.95 -1.17 -0.64 5.21 3.16 2.20 1.51 23.20 13.80 9.15 8.75
100 -3.79  -1.90 -1.14 -0.60 4.63 2.70 1.85 1.22 32.40 18.95 12.30 9.60
200 -3.79  -1.91 -1.13 -0.58 4.22 2.33 1.53 0.94 54.65 30.85 19.15 11.95
500 -3.78  -1.88 -1.13 -0.57 3.96 2.07 1.31 0.73 89.80 60.70 39.70 22.75
1000 -3.81  -1.90 -1.14 -0.58 3.90 2.00 1.23 0.66 99.55 87.70 69.20 41.95
Half-panel jackknife FE-TE estimator Srpp_rp
30 0.53 0.22 0.14 0.00 5.96 3.91 2.84 2.00 4.95 5.50 4.65 4.80
60 0.49 0.16 0.04 -0.04 4.12 2.67 1.94 1.41 5.40 4.40 4.20 5.35
100 0.60 0.17 0.07 -0.01 3.16 2.05 1.53 1.08 4.95 4.05 5.30 5.65
200 0.58 0.16 0.07 0.01 2.26 1.42 1.07 0.76 5.15 4.55 4.40 5.10
500 0.62 0.17 0.07 0.01 1.52 0.95 0.70 0.47 6.35 5.70 5.20 4.95
1000 0.57 0.16 0.06 0.01 1.17 0.68 0.49 0.34 9.35 6.20 5.50 5.00

Notes: 3= 0.5, \, = 0.4, 6; = 6; = 0.025t — 0.001¢>, and s, = 0.4. FE and half-panel jackknife FE are based on

equation (97): Ayir = p; + gt + ¢y, t—1 + bxit + 4. FE-TE and half-panel jackknife FE-TE are based on equation
(100): Ayt = p; + 0+ + dyi,t—1 + bxst + es¢. For the rest of the settings, see the notes for Table 2.
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Figure 7: Rejection frequency (%) at 5% nominal level with \, = 0.4, §; = 0.025¢ — 0.001¢?, and
ky = 0.4 (Experiment 18)
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Table 8: Bias (x100), RMSE (x100), and Size (%) at 5% nominal level with A\, = 0.4,
§; = 0.025¢ — 0.001¢2, and k, = 0.4 (Experiment 18, unbalanced samples)

Bias (x100) RMSE (x100) Size (%)
max T 30 60 100 200 30 60 100 200 30 60 100 200
avgT 22 44 73.5 147 22 44 73.5 147 22 44 73.5 147
N min T 10 20 34 68 10 20 34 68 10 20 34 68
FE estimator Spp
30 -4.95  3.41 36.57 156.99 7.68  5.86 36.96 157.03 17.20 13.15  100.00  100.00
60 -4.83  3.42 36.40 156.83 6.28  4.71 36.61 156.85 24.75  20.70  100.00  100.00
100 -4.68  3.51 36.43 156.80 5.62  4.34 36.56 156.81 36.05  30.85  100.00 100.00
200 -4.67  3.53 36.45 156.77 5.15  3.94 36.51 156.78 58.80  54.00  100.00  100.00
500 -4.61  3.54 36.44 156.80 4.82  3.72 36.47 156.80 92.15  88.25  100.00  100.00
1000 -4.64  3.48 36.40 156.77 4.75  3.58 36.41 156.77 99.90  99.25  100.00 100.00
Half-panel jackknife FE estimator Spg
30 1.43  15.12 136.85 -1283.45 7.60 16.70 5844.08  8538.55 5.20 68.60 98.65 59.05
60 1.41  14.83 244.64 -1511.99 5.31 15.64 25141  2133.35 5.70 91.50  100.00  89.45
100 1.50  14.83 238.33 -1374.06 4.20  15.32  242.18  1476.16 6.40 98.95  100.00  98.30
200 1.41  14.81 235.28 -1302.76 3.11 15.04 237.16  1329.32 7.25  100.00 100.00  100.00
500 1.47  14.76  232.56  -1279.45 231 14.86  233.24  1289.08 13.25 100.00  100.00  100.00
1000 1.41  14.67 231.48 -1267.79 1.89 14.72  231.83  1272.54 21.50  100.00  100.00  100.00
FE-TE estimator Spp_r1g
30 -5.28  -2.64 -1.61 -0.86 7.96  5.05 3.63 2.47 20.40  13.45 9.20 7.65
60 -5.22  -2.60 -1.62 -0.84 6.60  3.88 2.73 1.80 28.45  16.35 11.30 9.30
100 -5.06  -2.53 -1.53 -0.79 5.94  3.40 2.32 1.46 41.45  23.55 15.85 10.15
200 -5.07  -2.53 -1.55 -0.79 5.51 297 1.95 1.18 67.30  38.70 25.55 15.70
500 -5.02  -2.52 -1.53 -0.78 521  2.72 1.71 0.96 96.85  73.90 52.90 29.80
1000 -5.07  -2.56 -1.55 -0.79 5.16  2.66 1.64 0.89 99.95  96.10 82.40 53.10
Half-panel jackknife FE-TE estimator Spp_rg
30 0.39 0.24 0.08 -0.03 739  4.70 3.45 2.38 5.45 5.80 5.15 5.20
60 0.38 0.20 0.02 -0.03 5.04 3.14 2.34 1.64 5.30 4.25 4.45 5.50
100 0.50 0.23 0.10 0.00 3.85  2.50 1.85 1.27 4.75 4.50 5.05 4.85
200 0.43 0.23 0.09 0.01 2,73 1.72 1.26 0.90 5.25 4.70 4.20 5.20
500 0.50 0.23 0.10 0.01 1.80 1.13 0.83 0.56 5.65 4.65 4.20 5.10
1000 0.43 0.18 0.07 0.01 1.30 0.81 0.59 0.41 6.70 4.95 4.50 5.10

Notes: 8 =0.5, Ay, = 0.8, 0 =0, and s, = 0.4. For the regression equations, see the notes for Table 7. For the rest
of the settings, see the notes for Table 2.
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Figure 8: Rejection frequency (%) at 5% nominal level with \, = 0.4, §; = 0.025¢ — 0.001¢?, and
ky = 0.4 (Experiment 18, unbalanced samples)
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Table 9: Berger et al. (2013) and half-panel jackknife estimates for the effects of US
interventions on trade with the US and the rest of the world

In normalized imports In normalized imports In normalized exports In normalized exports
from the US from the world to the US to the world
(1.a) (1.b) (2.a) (2.b) (3.a) (3.b) (4.a) (4.b)
BENS! Jackknife BENS! Jackknife BENS! Jackknife BENS! Jackknife
FE-TE FE-TE FE-TE FE-TE
US influence 0.293%** 0.450%** -0.009 0.041 0.058 0.081 0.000 0.006
(0.109) (0.068) (0.045) (0.031) (0.122) (0.096) (0.052) (0.035)
In per capita income 0.296** 0.469%*** 0.129 0.290%** 1.234%** 1.213%%* 0.647%** 0.631%**
(0.148) (0.106) (0.111) (0.072) (0.239) (0.163) (0.134) (0.075)
Soviet intervention -1.067**%  -1.819%** -0.080 -0.143** -0.682%*  _1.197*** -0.082 -0.154*
(0.430) (0.243) (0.102) (0.066) (0.307) (0.323) (0.100) (0.081)
Leader turnover 0.001 0.006 0.026 0.040%** 0.028 0.064 0.037* 0.053%**
(0.037) (0.035) (0.018) (0.018) (0.039) (0.043) (0.022) (0.020)
Leader tenure 0.003 -0.002 0.005** 0.005** 0.013%* 0.020%** 0.006* 0.008%**
(0.008) (0.004) (0.003) (0.002) (0.007) (0.005) (0.004) (0.002)
Democracy 0.121%* 0.226%** 0.069 0.152%%* 0.065 0.136%* 0.082 0.114%**
(0.073) (0.048) (0.053) (0.031) (0.094) (0.062) (0.058) (0.031)
In distance -0.277*F* _(0.397*** -0.127**F%  _(0.149*** -0.214%**  .0.293%** -0.143%%*%  _0.177F**
(0.065) (0.047) (0.026) (0.016) (0.079) (0.055) (0.029) (0.015)
Contiguous border 2.952%* 3.7T3H** -0.274 -0.267 1.965 3.285%* -0.104 -0.094
(1.709) (1.262) (0.516) (0.292) (2.648) (1.623) (0.415) (0.323)
Common language 1.430 5.087*** -0.847** 0.719%%* 3.676*** 5.810%** 0.145 0.880***
(1.204) (0.793) (0.343) (0.227) (1.280) (0.960) (0.355) (0.242)
GATT participant 0.057 0.840** -0.075 -0.157*** 0.365 0.872%* -0.086 -0.202%%*
(0.549) (0.378) (0.055) (0.032) (0.561) (0.370) (0.063) (0.036)
Regional trade -1.216%*%  -2.019%** -1.200%*%*  _1.579*%** -1.283 -0.956* -1.126%**%  _1.553%**
agreement (0.532) (0.454) (0.205) (0.121) (0.882) (0.510) (0.266) (0.145)
Observations 4,149 4,110 4,149 4,110 3,922 3,886 3,922 3,886
N 131 131 131 131 131 128 131 128
max T 43 43 43 43 43 42 43 42
avgT 31.7 314 31.7 314 29.9 304 29.9 30.4
min 7T 3 2 3 2 1 2 1 2

Notes: 1. BENS estimates, under columns (1.a), (2.a), (3.a), and (4.a), are taken from columns (3)—(6) in Table 1 of
Berger, Easterly, Nunn, and Satyanath (2013). The remaining columns are the half-panel jackknife bias-corrected
FE-TE estimates. For the jackknife FE-TE, we drop the first observations for countries with odd numbers of
observations. All regressions include country fixed effects and year time effects. The standard errors of the jackknife

FE-TE estimates (in parentheses) are computed according to equations (55) and (65).
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A dynamic formulation

Table 11: Alternative panel data estimates of the relationship between abortion rates and crime:

In (violent crime
per capita)

In (property crime
per capita)

In (murder
per capita)

(1.a) (1.b) (2.a) (2.b) (3.a) (3.b)
FE-TE Jackknife FE-TE Jackknife FE-TE Jackknife
FE-TE FE-TE FE-TE
“Effective” abortion rate x100 -0.067FFF 0.078%F* -0.039%%* -0.012 -0.147FFF 0.246%F*
(0.013) (0.023) (0.008) (0.013) (0.043) (0.077)
In (prisoners per capita) (¢t — 1) -0.076***  -0.160%** -0.073%*%%  _0.099%** -0.249%** -0.251*
(0.028) (0.049) (0.018) (0.029) (0.087) (0.142)
In (police per capita) (¢t — 1) -0.095%**  -0.269%** -0.025 -0.142%** 0.228* 0.074
(0.035) (0.061) (0.027) (0.044) (0.127) (0.224)
State unemployment rate -0.095 -0.012 0.545%%* 0.562%* -0.836 -2.516%*
(percent unemployed) (0.344) (0.447) (0.212) (0.284) (1.082) (1.310)
In state income per capita 0.541*** 0.572%%* 0.292%%* 0.388*** -1.006 -0.694
(0.149) (0.188) (0.097) (0.135) (0.708) (0.957)
Poverty rate (percent 0.002 0.003 -0.000 -0.000 0.001 -0.000
below poverty line) (0.002) (0.002) (0.001) (0.002) (0.005) (0.006)
AFDC generosity (t — 15) 0.003 0.006 0.005%* 0.009** -0.013 -0.009
(0.004) (0.006) (0.003) (0.004) (0.011) (0.017)
Shall-issue concealed -0.002 0.015 0.018** 0.030%*** 0.009 0.029
weapons law (0.001) (0.017) (0.008) (0.011) (0.032) (0.048)
Beer consumption per -0.003 -0.007 0.001 0.001 -0.003 0.005
capita (gallons) (0.002) (0.004) (0.002) (0.002) (0.006) (0.008)
In (crime per capita) (¢t — 1) 0.716***  0.857*** 0.683***  (.883*** 0.118* 0.306%**
(0.037) (0.056) (0.045) (0.062) (0.069) (0.094)
Observations 576 576 576 576 576 576
N 48 48 48 48 48 48
T 12 12 12 12 12 12

Notes: The regression equation is (103). Columns (1.a), (2.a), and (3.a) are the FE-TE estimates. Columns (1.b),
(2.b), and (3.b) are the half-panel jackknife bias-correction estimates. See also the notes to Table 10.

Table 12: FE-TE and jackknife FE-TE estimates of the long-run coefficients

In (violent crime In (property crime In (murder
per capita) per capita) per capita)
() () ) ) ) 5)
FE-TE Jackknife FE-TE Jackknife FE-TE Jackknife
FE-TE FE-TE FE-TE
“Effective” abortion rate x100 -0.235%**%  _(.549%* -0.124%%* -0.103 -0.167*FFF  0.354%F*
(0.048) (0.215) (0.025) (0.106) (0.050) (0.113)
In (prisoners per capita) (¢t — 1) -0.267H%* -1.124%* -0.230%** -0.848%* -0.283%%* -0.362%*
(0.103) (0.577) (0.057) (0.464) (0.103) (0.205)
In (police per capita) (¢t — 1) -0.333%**%  _1.887** -0.080 -1.215 0.258* 0.106
(0.128) (0.821) (0.087) (0.749) (0.145) (0.327)
State unemployment rate -0.336 -0.086 1.722%%%* 4.811%* -0.947 -3.625*
(percent unemployed) (1.212) (3.130) (0.628) (2.887) (1.217) (1.954)
In state income per capita 1.906%** 4.004* 0.922%** 3.319 -1.140 -1.001
(0.545) (2.068) (0.323) (2.189) (0.803) (1.402)
Poverty rate (percent 0.006 0.023 -0.001 -0.003 0.002 -0.001
below poverty line) (0.007) (0.019) (0.004) (0.014) (0.006) (0.009)
AFDC generosity (t — 15) 0.009 0.041 0.016* 0.076 -0.015 -0.013
(0.013) (0.045) (0.008) (0.054) (0.012) (0.025)
Shall-issue concealed -0.008 0.102 0.057%* 0.260%* 0.010 0.041
weapons law (0.040) (0.121) (0.024) (0.137) (0.036) (0.070)
Beer consumption per -0.010 -0.045 0.004 0.008 -0.003 0.007
capita (gallons) (0.008) (0.036) (0.006) (0.018) (0.006) (0.012)
Observations 576 576 576 576 576 576
N 48 48 48 48 48 48
T 12 12 12 12 12 12

Notes: The estimates reported in this table are computed using the estimates of the underlying dynamic panel data

regressions summarized in Table 11. See also the notes to that table.
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A Appendix

A.1 Lemmas (Statements and Proofs)

Lemma 1 Suppose i, for t = 1,2,.... N and t = 1,2,...,T, is generated by (52), and Assumptions 2-3, 5, and 8
hold. Then,
Qre-r5 — Qu,re—TE = Okxr, (A1)

and
Qre_rE — Qb,FE—TE 2 Opx, (A.2)

as N, T — oo jointly, where QFE,TE, QG,FE,TE, and Qb’pE,TE are defined in (55)-(57).

Proof. Using x;t — X;. — Xt + X = wir — @;. — @.+ + @, where the averages (aggregates) @;., @.¢, and @ are defined

in a similar way as the averages X;.,X.¢, and X, we can write Qre—1E — Qa,FE—TE as

N T
N ~ 1 _ _ _
Qre—178 — Qa,rE-TE = NT Z Z (Wit — @ — @y + @) Wiy
i=1 t=1
9 N T/2
S DY (Wit — Bia — @+ @) Wi,
NT o

in which @;., and @, are defined in a similar way as X;., and X,. Re-arranging the terms in the expression above

gives

N T/2

N T
QFE—TE—Qa,FE—TE = %ZZ itwit TZZ“’”“"”

i=1 t=1 =1 t=1

;LT N T/2
_Nigzw w1t+NTz;;wzawzt
;LT g N T2
— /
_WZZ“’ Wit s D> @
=1 t=1 =1 t=1
1 N T 9 N T/2
— ’ —_ !
-‘,—WZwazt — szwawit. (AS)
=1 t=1 i=1 t=1
We focus on the individual rows on the right side of (A.3) below. Consider the first row, which reduces to
N T/2
1
—ﬁzzwztwnﬁ‘iz Z Wity = Ok,
i=1 t=1 i=1¢=T/2+1

as N, T — oo jointly, since (NT)™' 3N, Zt Pwipwl, 5 T(0) /2 as well as
(NT)* SN, ZtT:T/z-H wiwly 2 T (0) /2. Consider next the second row on the right side of (A.3),

N T/2

T 1 1 N
Z:j n+— DoGiawh = — Y @@Lt Y @ia@h

i=1 t=1 i=1 i=1

b
NT

HMZ

as N,T — oo jointly, where we have used @;. = Op (Tﬁl/2 and @;.q = Op (T71/2) by the covariance stationarity
of w;; with absolute summable autocovariances (uniformly in 7). Given the independence of w;; across 4, and the

upper bound condition, ||E (w;twi;)|| < K, we obtain the following result for the expression in the third row on the
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right side of (A.3),

| XT N T/2 1 9 T/2
TZZQ 'Lt+ NTZZw twn = _T Zwtalt‘i‘f L_d).t(:’{t
i=1 t=1 i=1 t=1 t=1 t=1
T/2 T
= 7 Z Wt f Y @@
t=1 t=T/2+1
3’ kakv

where @, = O, (Nfl/z). Last but not least, consider the last row on the right side of (A.3). Using again the
covariance-stationarity of w;; with uniformly absolute summable autocovariances in ¢ and the cross-sectional inde-
pendence of w;; across i, we have @ = O (N71/2T71/2)7 @0e =0 (Nfl/QTfl/z), and

N T N T/2
1 - 1 2 - ! -] - —/ P 0
NT wWit = NT Waip = W& =Wala = Dhxks
=1 t=1 i=1 t=1

as N,T — oo jointly. Hence, overall

A A D
Qre-1E — Qa,FE-TE — Okxk,

as N,T — oo jointly, which completes the proof of result (A.1). Result (A.2) can be obtained in the same way. ®

A.2 Proofs of Propositions
Proof of Proposition 1. Using (2) we have

h—1

E (wit+nuit) = Z AisE (Vit4h—stit) + Z A E(Vitth—stit) .
s=0 s=h+1

But, under Assumption 4.a,

Okx1, fors>h+1

E(v; —sUit) =
(Viren ) { Yiuo (B —5), for s<h

where
1V iuw (h = 8)|| < Kp"~* for s < h. (A.4)

Hence,
E (wi,t+huit) Z AisY iy (h=35) =7, (h),

as desired. Taking the norm of -y, (h) and using the triangle inequality, (A.4), and condition (6) of Assumption 5, we
have

h—1

h—1
v ) < 3 1Ay (o= )< 3 A 70 (= 9)]
s=0 s=0
h—1
< ZKPS LK = K2h"
5=0

Noting that p < 1, there exists e = (1 — p) /2 > 0. Set p, = p+e€ < 1, p* = p/p; and note that

no = (hel) (0°)"

60



Since 0 < p; < 1, there must exist a positive finite constant K™ such that |K2hp1 | < K™ for all h = 1,2, ....Therefore
* xh
7 (W] < K™p™,

as desired, since p* = p/p; < 1. This completes the proof. m

Proof of Proposition 2. Using (2), we have

L
N -

M=

1 N
(Xit - iz) (xit - Xz — Z Wit — wz 'Lta
7,:1

s
Il
-

— — T . . .
where @; = T * > i1 wit. Since wj; are cross-sectionally independent, we have for a fixed T and as N — oo,

N N
1 _
p]\}gnoo Z Wit — @;) Wiy = hm L ZIE' (wit — @3) Wiy
Hence,
;] XT L& T
WZ“ZI Xit — Xi.) (Xie — Xi.) _>1\}1—r»nooﬁzl < Z Xit — Xi.) (Xit — Ry )')
i1 t— im =1
But, since
1 X T
T tz:; (xzt — X ) (th — X ) — T z;witw;t:| — WiWw;,
then
£l , 1 /
( Z Xit — (xit — Xi.) > = T(0)— ﬁE [(wil + wiz + .wir) X (Wit + w2 + ...wiT) ]
= TI;(0)— l'~IJ
- i T T

Qr

I
2
85

\

!
s
N~
S
IH—I

W, (A.5)

T (0) = limy—oo = >, T (0), and ¥7 = imy—oe % > e, ¥ir. Note that |T(0)| < K and |[¥r| < K under

Assumption 5. In particular, using the triangle inequality and (6), we obtain

A
g
|

IFO) < gim > )

A
“
85
=
M=
N
E
=
A
>

and, since [T ()] < S [ A | | AL i]| < Ko,

1] < T ( |+Z(1~) IT Wl + [T W] < K

Consider now the second term on the right side of (12), and let zr g be given by (40) and note that BFE -8 = Q;}EZF‘E,

where Qpp is invertible under Assumption 6. Recall that for a finite 7 and as N — oo, Qre = Qr, where Qr is
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given by (A.5). Consider F (zrg) next,

1
E(@;u;) = ﬁE [(wi1+wiz+ ... twir) X (w1 +ui2 + ... +us7)]
T-1
1 h
- S (1-2)
T 2 ( T) 7: (h)

Hence,

1 o= h
Jin Br) =3 3 (1) 700,

where 7 (h) is given by (18). Therefore, we obtain

—1
Nleoo (BFE —ﬂ) = 7 <F (0) — %‘T’T> X

as desired. To establish the order of the asymptotic small-T bias, note that under (10),
T—1 T-1
X2 <D M<K p"=0(1).
t=1 t=1

In addition, T (0) is nonsingular, and H‘iITH < K, which implies ||Q;1|| = O (1),and therefore Biasr (,E}FE) =
(0] (T_l), as required. m

Proof of Proposition 3. The exact analytical bias formula for the half-panel jackknife FE estimator is derived in
the body of the paper; see the derivations preceding the result (36). We prove the order of the asymptotic bias in

the general case next. First note that (using (15))

T = TO)+Y (17 %) [T (h) + T ()]
Frp = T(0)+ (1 _ %) [T(h) + T (n)] .
and
B B 1 T/2-1 ~
r—¥rp = o > h[T(h)+T'(h)]

Since ||T (h)|| < Kp", then
‘i’T - ‘i’T/Q = O (*) 5 (A6)
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and'?

BiasT(,BFE) = —%

2
T
_ 1=\l 2. _ 22\
+ (F (0) — T‘IJT> <?'I’T - T‘IJT/Q) <F (0) — f'I’T/Q) XT/2}

Now using (39) and (A.6), we have Biasr (BFE) = O (7%), as required. ®

T2

Proof of Proposition 4. The asymptotic variance is established in the body of the paper; see the derivations leading
0 (48). We establish the consistency of AsyVar (\/NTBFE) next. Let h;; = b;zu;s. Without the independence of

Vit+n and uge for all ¢,¢ and all A <0, it is not guaranteed that
T
Z Z (hithi,) — Opx, (A7)
t=1 s=1,s#t

as Ty, N — oo jointly such that T'= K N€, with ¢ > 1/3. But under the independence postulated in Assumption 4.b,

we have
| XNIT L N
N7 2o 2D B (b)) = on Y B (hahi) (A.8)

To establish (A.8) first note that

T

T
!
E WitW;sUitUis

t=1 s=1

T T
ZZ tCIzsultUZS: (A.Q)

t=1 s=1

M

T T

/
E E bitbiSUituis =
t=1 s=1

where @it = I (t <T/2)GQia + I (t > T/2)Qip, Qia = 20; — Dia, and Gip = 20; — @ip. Consider the first term on the
right side of (A.9). Under the independence of (current and past values of) regressors and future errors, we have, for
h=s—t>0,

E (witwg’t+;bu¢tui,z+h) = O0gxg foralli=1,2,...,. Nt=1,2,...,T, and h > 0,

and therefore
T T T
>N E (wiwhuivuis) Z (wirwirul) (A.10)
t=1 s=1 t=1

Consider next the second term on the right side of (A.9) and note that

T
23
| 12
= qlaqza Z Z ittis + qzanb Z Z UitUis

tqzsultuzs

’ﬂ \

ﬂ HMH

t=1 s=1 t 1s=T/2+1
T/2
+q7,qua § g UitUss + qzqub g g UitWUis-
t T/2+1 s=1 t T/2+1s=T/2+1

2 We use the following identity: A™'a—B™'b=A"'(a—b)+ A~ (B — A)B™'b, for invertible k¥ x k matrices
A, B and k£ x 1 vectors a, b.
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But ia = Op (T‘lm), i, = O, (T_l/Q), and the double-sums involving the product of error terms wiiu;s/T can
be stochastically bounded as O, (1). This can be established by noting that

2

T/2T/2 W T/2T/2T/2 T/2
it Uis
=1 s= s=1¢'=1s'=1

but ui; and w; are independent for any ¢ # ¢’ and the fourth moments of u;: are uniformly bounded under Assumption

1. Hence,
T/2T)2 2
t=1 s=1
T/2 T/2 T/2
= T2 ZE uzt T2 Z Z uzt uzs) < K7

t=1 s=1,s#t

and the double-sums involving the product of error terms wu;zu;s /T are all Op (1). It now readily follows that

T
Z tqfisuituis = Op (Tﬁl) 5 (All)

Sl =
an

uniformly in i. Since, at the same time, |q;+Q;suittis| is uniformly integrable, then (A.11) implies

rEye

uniformly in 4, as T — oco. Results (A.10) and (A.12) in turn imply (A.8). Moreover, by independence of h;; across

B @it @i wirtiis| — Ok, (A.12)

HMH

i, and by consistency of 4, we have

1 N T
RFE T;; 'Lthzt Hokxky

as N,T — oo jointly, which establishes the consistency of Rrp. As established in (44), Q can be consistently
estimated using
T
Qre = NT ZZ Xit — %) (Xie — %),
=1 t=1
as N, T — oo jointly. The consistency of Rrp and QFE proves the consistency of AsyVar (\/ NTBFE) = Q;}ERFEQ;}E,
as required. m

Proof of Proposition 5. Using Xt — X — Xt +X = wit — @i. —@0.+ + @, Qre—_7E can be written as

R ] TN . ) .
Qre-TE = ﬁ;;(wn — ;. — W +w) wiy
1 T N N T
= NT Z Z witwiy — Z Z @@ + o'

-
Il
-
o
Il
—

The last two terms are new, compared to the FE model analyzed in Proposition 2. Noting that the variance of w;;

is uniformly bounded and w;; is independent across i, we obtain @. = N~ Z L Wit = Op (N71/2), and therefore,

for a finite T, we have T~ thl @@ =0, (N7), and



Hence, QFE_TE 2 Qr, as T is fixed and N — oo, where Q7 is defined in (A.5). Consider next

N T
1
ZFE-TE = NT Z Z (xit — Xi. — Xt + X) Uit
i=1 t=1
N T
1
= WZZ(Q}M — W — Wt +(:J) Wit . (A13)

@
Il
—
-
Il

1

zrp—7E consists of the following four terms:

1 LT L& 1 & -
ZFE-TE = N ;;wituit N szuz -7 Zwtu.t + w1,

where @;. = T7! Zf:1U¢t, e = N7'YY uy, and @ = (NT)! Zilthzl uit. The last two terms are new
compared to the earlier analysis. But @.. = O, (]V71/2)7 and 4. = Oy (Nfl/Q), and therefore 77! ZZ;I @4l =
Op (N_l). Moreover,

Hence,

1 h
Jim B Grere) = in Br) = -3 3 (1) 700,

and, assuming (T (0) — £ ¥ ) is invertible, the small-T bias of the FE-TE estimator B p_pp in the model with fixed
and time effects is the same as the bias of the FE estimator ,C:IFE in the model with FE. The analytical bias formula
for the half-panel jackknife FE-TE estimator B, 5 defined in (60) will therefore be the same, given by (36). m

Proof of Proposition 6. First we establish (66). Consider (63) and note that dj; is not cross-sectionally

independent, but, using x;; — X;. — Xt + X = wit — @i. — @.+ + @, dj, can be written as
di; = by + ¢, (A.14)

where by is defined in (47),
Cty = I(t < T/Q)Cza +[(t > T/Q)Ctb,

and

Ctq — —(:J.t + (2(.7) — U_Ja)7 Cip = —U_J.t + (2(:’ — OJb) .
Hence,
1 N T 1 N T N T
Q_li Z Zd:tuz't = Q_li Z Zbituit + Q_lwl —_— thﬁ.t. (A15)
v NT =1 t=1 NT =1 t=1 T t=1

Clearly, by independence of w;; across i, b;; is cross-sectionally independent. Using the same arguments as in the

proof of Proposition 4, we obtain

N
AsyVar <Q11 Z Z bituit> =Q 'RQ, (A.16)
NT = =

as N,T — oo jointly such that T'= K N°€, for some 0 < K < oo and € > 1/3. Consider next the second term on the
right side of (A.15). We have

T
[N _

—E cuy = —
Tt:l

/2 T
(Zaau.H— > @i (A.17)



Note that E (&.44.t) = Okx1 and

t=1 t=1
But
1 X
o - (3
i=1 j=1
1 & _
= = ZE (wztw,t) = NI‘ (0),
=1
and
1 al e
E<a2t) = ﬁ;E(uzt) = N
and therefore
N L
?Zw tt.t — Ogx1,
t=1

as N,T — oo jointly. Consider next the term 2v/ NTw@. We have @ = O, (N_I/ZT_l/z) and & = Oy (N_l/zT_l/Q),
and hence

2VNTDT S 0px1,

as N,T — oo jointly. Consider next the terms in the second row on the right side of (A.17). We have

N~

~

N
gl

T/2 1
A\ = Zwaut = \/NT(:JEE

N
o«
Il
o

= E’a’aad

2

where (same as before) @, = O, (Nfl/szl/z) and Gq = Op (N71/2T71/2). Hence,

T/2
\/ Zwautqokxh

as N,T — oo jointly, and, using similar arguments,

as N, T — oo jointly. Overall, using these results in (A.17), we obtain

N T
\/ ? th@-t 2 Okx1,
t=1

as N,T — oo jointly. Hence,

N T N T

* d —1
E E diiuie ~ Q E 5 bituit,
i=1 t=1 =1

and

77

NT (Brs-rz—B8) £ N (0,Q 'RQ ),
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as desired. The consistency of As/y_\7ar (\/ NT,BFE,TE) can now be established in the same way as in Proposition
4. =
Proof of Proposition 7. Noting that

N T,
!
Qre = ; ? :ZT Xit — Xi. )] [xzt - X;. (Tz)] 5
where
Ty; Ty
T Z [xit — Ri. (T3)] [xit — X (T7) T Z wiwiy — @ (1) @i (Ty),

Y =Ty,

is independent across ¢, and @;. (T;) =T, ZtT“T wit, we have for a fixed {13, 1 =1,2,..., N}

N T4

N . 1

QFE ﬂ) ]\}I_I)I(l)o N Z’L?ZE Z wztht @;. (Tl) wz. (Tz)
i=1 Ti 2 Ty

But 7, Zf”Tf E (wawly) =T (0), and E [@;. (T3) @} ()] = T, ®,r,, where

Wiry, (A.18)

where T'y (0) is defined in (71) and W7} is defined in (72). Ty (0) = O (1) and it is nonsingular by assumption.
Moreover, |7, || < K, and therefore

1= =
7Py =0(T . (A.19)
To obtain the small-T' large-N bias of B, note that Bpp — Bpp= Q;;zFE, where

Ty;

Zrg = Niz Z [xit — 1)) wit

s T iz 1t=Ty;

S_MZ

Ty,
1 1 _
N ﬂlf E [wit — Wj. (TZ)} Uit
1 t=Ty;

Using (A.18), we have

-1
N a [= 1=
Bre — Brp ~ {I‘ﬂ (0) — ?\I,{Ti}:l ZFE,
as N — oo and {7;} are fixed. Consider E (zrg) next.
1 N 1 Ty 1 Ty
E(zrg)=F N Zﬁi T Z wittis — @;. (T3) T Z Uit
i=1 t=Ty, t=T},
But E (witust) = Ogx1, and
Tyq
_ 1 1
E Wi (Tl)i Z Uit = EX'L’
=T},
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where x; = > 1" (1 —

Hl=

Jim || (zr5)| < K Jim <Jif 3 i) o(T7Y).

N=1

Therefore

a - 1o 17" X _—
ngnoo (BFE - :6) = |:I‘19 0) - ?‘I’{Ti}] Xgl} =0 (T ) )

where T~ X{T y = lmyoeo N7 Zl 1 T ; not (1 — —) ~; (h) =0 (T™"), as required. m

) v (h) = O(1). Hence, E (zrp) = N3 N_, %Xi, and noting that ||x;|| < K, we have

Proof of Proposition 8. The exact large-N small-T" bias expression for BFE directly follows from substituting

the bias expressions into
(,BFE—ﬁ) =2 (BFE_:B) - % [(Ba,FE_ﬂ) + (Bb,FE—,B)] .

We establish the order of the bias next. We have

by Assumption 5. Moreover,

Ty (0)=0(1),and Ty;" (0) =0 (1), (A.20)

15 -
7Py =0(T7), (A.21)

see (A.19). Using the same arguments as in the derivation of (A.19), we also have

Consider the leading term 2X 7.y /T — 2X (7, j23/T next. We have

T;—1

T;/2—1
2 h h
2%/ = 2% 7] = | X0 (5 (1= )= X (1= ) w0 )| a2
i=1 Lo\ t=1 ¢ t=1 ¢
But
;-1 b T, /2—1 b T2,
S (1-g)rm- X (1-pg)nw| = | X g+ b (1- ) n
t=1 t=1 t=1 t=T/2
| T2
< g 2 Mol > (- B o,
t=T/2
and using ||y, (h)|| < Kp", we obtain
T;/2-1 T;—1
> kvl =0, 7)) =0 ("),
t=1 i=T; /2
and there exists 0 < K < oo so that
T, /2-1
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Using this result in (A.23), it follows that

HQ)_C{T,i}/T*%_C{T,-/z}/TH < : ‘
=1 4 g
N
1 1 1
2K — —
B ~ i]\;lTiN; @

where T}, n is the harmonic mean of T} given by (81). Overall, as N — oo,
HQX{T,L-}/T - 27({:@/2}/TH =o(T7'T, "),
and using also (A.20)-(A.22)

1
T

1

1 ! Xqri/2)
= i

WA o171,

-1 =
. ~ - - X, - -
ngnooE(BFE,a—ﬂ):z[m(0>— ‘I’{m} %—2@9(0)— Tr 2y

where T}, is given by (80). Using the arithmetic-harmonic mean inequality, we have T), < T, and therefore T7! < T;l,
and limy 00 (,BFE’G - ,3) =0 (T;Q). Assuming

0< K1 <¥ < K2 < 00, (A.24)

for all ¢ where K1, K2 do not change with sample size, we obtain T,L-_1 < (Klf’N)_l

1 1
x =Ny <KUNTT Y 2 =0 (T,
i=1 " i=1
T,'=0(T™"), and
. z _ 2
A}EHOOE (BFE,a rB) =0 (T ) ) (A.25)
as desired. When (A.24) does not hold for a finite subset of units, then 7 and T}, continue to be of the same order,

and therefore (A.25) continues to hold. m

Proof of Proposition 9. Proposition 9 can be established in the same way as Proposition 4. m
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