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LABOR MATCHING: PUTTING THE PIECES TOGETHER

ANTON A. CHEREMUKHIN

Abstract. The original Mortensen-Pissarides model possesses two elements that
are absent from the commonly used simpli�ed version: the job destruction mar-
gin and training costs. I �nd that these two elements enable a model driven by a
single aggregate shock to simultaneously explain most movements involving unem-
ployment, vacancies, job destruction, job creation, the job �nding rate and wages.
The job destruction margin's role in propagating aggregate shocks is to create an
additional pool of unemployed at the onset of a recession. The role of training costs
is to explain the simultaneous decline in vacancies and slow response of job creation.
JEL classi�cation: E24, E32, J20, J63.
Keywords: Search, Matching, Job Destruction, Training, Business Cycle.

I. Introduction

The labor search model pioneered by Mortensen and Pissarides (1994 [23], 1998
[24]), the MP model, has attracted considerable attention recently because of its in-
tuitive explanation of equilibrium unemployment. However, Shimer (2005, [30]) has
shown that a calibrated stochastic steady state version of the model with only produc-
tivity shocks is incapable of quantitatively explaining the behavior of unemployment
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and vacancies during the business cycle. Even under an alternative calibration pro-
posed by Hagedorn and Manovskii (2008 [15]) additional exogenous shocks1 correlated
with productivity shocks are required to �t the data (see Lubik (2009, [21])). This
suggests that the simple model studied by Shimer lacks some propagation mechanism.

One shortcoming of this model is that it operates through the job creation margin
only, assuming a constant rate of job destruction. The model does not allow �rms
facing worsened economic conditions to lay o� more people. This is at odds with
establishment level data studied by Davis and Haltiwanger (1992, [8]) and Davis et.
al. (1997, [9]), who document sharp increases in the pace at which �rms destroy jobs
in recessions, while the response of job creation is mild.

There are several reasons why the job destruction margin has been largely ignored.
First, data on worker �ows seem inconsistent with the view that the job destruction
margin plays an important role. The rate at which workers separate from jobs is
almost constant at business-cycle frequencies2. One shortcoming of this data is that
it is dominated by worker �ows that do not immediately a�ect employment: job-to-
job transitions and worker replacement. More recent data from the BLS and JOLTS
rea�rm3 the view that much of the adjustment in a recession comes through the job
destruction margin.

The second reason the literature discounts variations in job destruction is its coun-
terfactual implications for the behavior of the vacancy rate. An increase in the number
of workers searching for jobs following a spike in job loss makes it easier for �rms to
�ll positions, thus, encouraging them to open more vacancies. This contradicts the
negatively sloped Beveridge curve relationship between unemployment and vacancy
rates observed in the data.

In this paper I solve this problem by introducing training costs in addition to
recruiting costs. I build on the observation by Silva and Toledo (2009, [32]) that
more than 90 percent of costs associated with the job creation process are incurred

1Exogenous shocks to matching e�ciency are an example of such shocks.
2See Shimer (2005, [30]).
3See Davis et. al. (2006, [7]).
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after a worker has been hired. Introducing training costs attenuates the e�ect of
reduced market tightness on the incentives of a �rm to post vacancies, restoring the
Beveridge curve relationship.

The third reason is computational. To explain why some �rms choose to layo�
workers while others prefer to retain them, a model needs to exhibit match-speci�c
heterogeneity and to keep track of the distribution of job productivities. This makes
the computation and analysis of equilibrium behavior a challenging task and calls
for convenient simplifying assumptions. In this paper, I propose such a simplifying
assumption. I link the size of the support of the distribution of productivities to
the number of jobs that can operate in the economy at any point in time. This
assumption captures the idea that once the least productive jobs are destroyed, the
jobs that survive are better on average. As a result, a persistent decline in aggregate
conditions leads to an abrupt but short-lived response of job destruction.

I take advantage of this simplifying assumption to construct a tractable general
equilibrium version of the MP model where match-speci�c heterogeneity leads to en-
dogenous variations in the job destruction rate. I introduce training costs into the
model and explore its �t. I �nd that the two new elements: endogenous job destruc-
tion and training costs - enable a model driven by a single aggregate shock of plausible
magnitude to simultaneously explain most movements in unemployment, vacancies,
job destruction, job creation, the job �nding rate, pro�ts and wages. Thus, I �nd
that the original MP model possesses a propagation mechanism that the simpli�ed
version does not.

To properly evaluate the �t of the model I expand the set of variables the model
seeks to explain. In addition to productivity, unemployment, vacancies and wages
used in most of previous studies, I include job creation, job destruction and job �nd-
ing rates into the analysis. To measure the �t of the model and compare di�erent
speci�cations, I use Bayesian techniques developed for analyzing DSGE models. I
form relatively wide priors for parameters of interest and let the data choose pa-
rameter combinations that provide the most likely explanation. I then measure the
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fraction of variations in the data that the model can explain under the best parame-
ter combination. Posterior densities of parameters of interest not only tell me which
values of parameters are preferred by the data, but also shed light on how well they
are identi�ed and, hence, how important they are for the propagation mechanism.

I use this estimation strategy instead of the commonly used calibration strategies
for three reasons. First, there is no consensus in the literature regarding many of the
parameters of interest. A recent debate between Shimer (2005, [30]) and Hagedorn
and Manovskii (2008, [15]) demonstrates how di�erent calibrations of the model can
lead to di�erent results. Second, a likelihood function, by giving natural weights
to all the moments of the data, provides a tighter measure of success compared to
most previous studies. Finally, the Bayesian approach provides a simple tool for
understanding which assumptions of the model are important to �t the data and
which are not.

Using this estimation strategy, I establish that the explanatory power of the model
does not rely on an extreme calibration, like that of Hagedorn and Manovskii, who
need relatively small job creation costs to generate large �uctuations in unemployment
and vacancies, and a tiny value of the bargaining power of the worker to explain the
behavior of real wages. Instead, the model �ts the data reasonably well for almost
any values of these two parameters.

To better understand the mechanism, I analyze two new elements of the model
separately and �nd that both are crucial for model �t. The �rst element is that a
�rm and a worker can each choose to preserve or terminate their relationship based
on match pro�ts. This makes �rms more eager to destroy jobs when aggregate con-
ditions are worse and the value of a match is lower. The role of the job destruction
margin in propagating aggregate shocks is to immediately create an additional pool
of unemployed at the very beginning of a recession.

The second element is that job creation costs are a mix of recruiting and training
costs. Recruiting costs are costs associated with opening and �lling a vacancy, while
training costs include all costs speci�c to the new match incurred conditional on
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�nding a worker to �ll the vacancy4. When more jobs are destroyed and the labor
market becomes less tight, it is much easier for �rms to �nd workers. In absence
of training costs this would lead to an increase in the number of vacancies. The
introduction of training costs attenuates the e�ect of reduced market tightness on the
total cost of creating a new job. Firms facing a lower value of a prospective match
and a relatively small decrease in the cost of hiring choose to post fewer vacancies
and create fewer new jobs. The dual structure of creation costs explains the decrease
in vacancies and the slow response of job creation once jobs have been destroyed.

The contribution of this paper is to construct a tractable general-equilibrium model
with match-speci�c heterogeneity, which not only explains the magnitudes of observed
�uctuations in labor market variables, but also generates impulse responses to ag-
gregate shocks re�ective of the data. Using the simplicity of the model I derive an
analytical relationship between the parameters of the model and the slope of the Bev-
eridge curve. I show how the elasticity of the matching function, the ratio of training
to recruiting costs and other parameters jointly determine the slope of the Beveridge
curve. This derivation also illustrates why, in this model, the total size of job creation
costs does not play a crucial role in determining the response of unemployment and
vacancies to aggregate shocks.

My main �nding is that a reasonably parameterized labor matching model aug-
mented by a job destruction margin and training costs can simultaneously explain
more than three-quarters of �uctuations in unemployment, vacancies, job destruction
and the job �nding rate, all as a result of a single aggregate shock. The model is
also consistent with empirical volatility and cyclicality of productivity, real wages
and pro�ts, and generates reasonably slow responses of job creation.

Because the model I construct is deliberately simple, it does not take into account
several important aspects of the labor market emphasized in the literature. I abstract
from on-the-job search and job-to-job transitions, which account for a large fraction of

4The idea that creation costs can be a mix of vacancy-speci�c and match-speci�c costs was recently
revived and discussed by Pissarides (2009, [27]). Non-linear creation costs were also used by Yashiv
(2006, [35]) and Rotemberg (2006, [29]).
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worker �ows5. The assumption about the nature of heterogeneity that simpli�es the
solution of the model also makes employed workers reluctant to search for new jobs.
I abstract from the interaction between job destruction and capital adjustment as in
den Haan, Ramey and Watson (2000, [10]). Introducing capital and incorporating
vintage e�ects would signi�cantly complicate the analysis. The model also ignores
the multi-worker nature of a �rm, wage rigidities, collective bargaining and market
power, variations in search e�ort, labor force participation and many other factors6.
Nonetheless, the model goes a long way toward explaining the response of the US
labor market to aggregate shocks. As such it can serve as a useful starting point for
further analysis of the e�ects of the margins mentioned above and for quantitative
studies of labor market policies.

The paper is organized as follows. Section 2 lays out the model and derives the
slope of the Beveridge curve. Section 3 describes the data and empirical methodology.
Section 4 provides a discussion of the results and section 5 concludes.

II. Model

Before describing the primitives of the model, I provide an explanation for some
of the modeling choices I make. In the Mortensen-Pissarides framework, at every
point in time, each job is characterized by an individual productivity level. Di�er-
ences in productivity lead to di�erences in pro�ts and wages across jobs. A large
enough decrease in the productivity of a job leads to termination of the job at the
mutual agreement of the worker and the �rm. In this model, aggregate shocks have
a non-trivial e�ect on the productivity distribution, which becomes a state variable.

5See Pissarides (1994, [26]) and Nagypal (2008, [25]).
6Introduction of capital and its vintage e�ects are studied by Caballero and Hammour (1996,

[3]), Hornstein et. al. (2005, [18]) and Eyigungor (2008, [11]). Consequences of rigid wages are the
focus of Hall (2005, [16]), Farmer and Hollenhorst (2006, [12]), and Gertler and Trigari (2006, [13]).
Krause and Lubik (2007, [20]) study decisions of �rms with multiple workers, Gertler and Trigari
(2006, [13]) and Rotemberg (2006, [29]) study e�ects of collective bargaining and market power,
Veracierto (2008, [34]) incorporates the labor force participation decision, and Meyer (1990, [22])
measures the discouraging e�ects of unemployment insurance on search e�ort.
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Variations in the number of jobs destroyed are a result of shifts in the productivity
distribution over time.

Instead of carrying the productivity distribution, I choose to model the job de-
struction margin in a somewhat reduced form. I assume that in every period, the
idiosyncratic component of productivity, represented in my model by a taste shock,
is drawn independently from the same distribution with varying support. The size of
the support is equal to the number of existing jobs. This makes the number of jobs
a state variable, which characterizes the productivity distribution. I use variations in
the support of the distribution to capture the idea that once the relatively unproduc-
tive jobs are destroyed, the remaining jobs are better on average. This assumption
ensures that a persistent aggregate productivity shock does not lead to a persistent
increase in the rate of job destruction.

The model I construct is a real business cycle model with a matching friction.
I deliberately simplify the model to concentrate the discussion around the two key
elements: endogenous job destruction and training costs. First, I describe the physical
environment. Then I explain how employment relationships between workers and
�rms are formed, operated and terminated. I close the model with a description of the
household's problem and equilibrium conditions. I then explain how the incorporation
of endogenous job destruction and training costs a�ects the propagation of shocks.

II.1. Physical Environment. Time is discrete and continues forever. The economy
is populated by a unit measure of workers and a large number of �rms. Workers can be
unemployed searching for a job, headhunting or engaged in a productive employment
relationship. I denote the measure of unemployed, Ut, the measure of headhunters,
Xt, and Nt represents the measure of workers engaged in productive activities. Their
sum is equal to the total number of workers:

Nt + Xt + Ut = 1. (1)

Each �rm has a blueprint for producing a di�erent variety of the consumption good
and needs a worker to be productive. A �rm can be in one of three states: matched
with a worker and producing, searching for a worker or idle. A �rm can hire at
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most one worker, who provides at most one unit of time. As operating �rms always
demand the maximum amount of time, Nt represents both the measure of workers
in productive activities and the measure of operating �rms. I denote the measure
of �rms searching for a worker Vt, which also represents the number of vacancies.
The measure of idle �rms is su�ciently large so there are always enough potential
entrants.

The production technology of a �rm is linear in labor so that each worker produces
At units of the �nal good. At represents aggregate labor productivity and follows
an autoregressive process of order one governed by exogenous productivity shocks εt

drawn from a standard normal distribution:

At = A1−ρ
ss Aρ

t−1e
σεt , εt ∈ N (0, 1) , (2)

where Ass is the steady-state value of productivity, ρ is persistence, and σ is the
standard deviation of shocks to labor productivity.

New employment relationships are formed through a matching process between
�rms with openings and unemployed workers. The mass Vt of �rms that decide to
post vacancies are matched with the mass of unemployed workers Ut according to a
constant returns to scale matching function7:

Mt = BUα
t V 1−α

t , (3)

where Mt is the mass of new employment relationships starting to operate in the next
period.

The cost of job creation has two components: a recruiting component includes costs
of advertising and interviewing, and a training component includes costs of setting
up a working environment and training a worker to meet speci�c needs. Thus, �rms
post vacancies at a cost c and then �rms matched with workers incur an additional
training cost K per match.

7Given the estimated parameter values, the condition Mt ≤ min (Ut, Vt) holds in all the simula-
tions with a very high probability.
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To cover these costs, �rms hire headhunters in a specialized competitive labor
market. The total mass of headhunters, Xt, required to cover job creation costs in
period t, satis�es 8:

Xt = cVt + KMt. (4)

I assume that workers are members of a large family that pools income and then
distributes it equally to all members. The representative household then maximizes
the expected discounted utility of a representative worker, which values consumption
and leisure:

E0

∞∑
t=0

βtu (Ct, Nt + Xt) .

Consumption aggregator Ct is de�ned over di�erent varieties of the �nal good:

Ct =

∫ Nt

0

zitqitdi, (5)

where zit denotes the idiosyncratic taste shock for variety of �rm i, and Nt is the
measure of productive units operating in period t. I assume that the taste shock is
drawn from a distribution with variable support:

zit = e−gi, i ∈ U [0, Jt] , (6)

where i indexes �rms uniformly distributed on a closed interval [0, Jt] and Jt is the
measure of jobs available at the beginning of period t.

At the beginning of each period, after aggregate productivity and idiosyncratic
tastes become known, �rms and workers in existing productive relationships meet and
decide whether to preserve the relationship or terminate it. I follow the literature in
assuming that if they decide to keep it, they split the surplus using a Nash bargaining
solution. I denote ψ the bargaining power of a worker. The threat point of the worker

8Assuming that headhunters have the same productivity, At, as production workers does not
change any of the results. Head-hunters are introduced in order to separate them from production
workers, to simplify the exposition and make the interpretation of job creation costs more transpar-
ent. In equilibrium headhunters represent a tiny fraction of the labor force.
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is to become unemployed and the threat point of the �rm is to become idle. Firms
and workers discount the future at the same rate.

I denote ζt the fraction of jobs that are terminated at mutual agreement of the
worker and the �rm. Workers join the unemployment pool and start searching for
new jobs during the same period. The number of productive units that keep operating
in period t is:

Nt = Jt (1− ζt) . (7)

While Nt units produce �nal goods, idle �rms open Vt new positions and hire Mt

unemployed workers to �ll them. These workers are trained in period t to become
productive in period t + 1. I assume that the training cost, K, is split between the
worker and the �rm in the same proportion as their future surpluses.

The number of jobs carried to the next period is the sum of survivors, Nt, and new
matches, Mt:

Jt+1 = Nt + Mt. (8)

Having described the primitives, technologies and preferences, I now describe the
competitive equilibrium in this economy.

II.2. Characterization of Equilibrium. First, I describe the household's problem.
The solution of this problem determines how the price of each variety of the �nal
good is resolved. Second, I describe how the outside option of a productive worker
is determined. Third, I derive the continuation values of �rms and workers, and
describe how through bargaining they split the total surplus of the match. Fourth,
I discuss the problem �rm i and worker i face, when deciding whether to terminate
their relationship. Finally, I describe how idle �rms choose their recruiting activity.
I conclude by de�ning a competitive equilibrium.

The representative household chooses consumption qit of each variety i to maximize
utility subject to (5) and a budget constraint:
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∫ Nt

0

pitqitdi = wtXt +

∫ Nt

0

Witdi− ψKMtwt + Πt,

where all of the wage and pro�t income net of training costs borne by the workers is
spent on �nal goods produced by �rms in the same period. In equilibrium, markets
for all varieties of the �nal good clear:

qit = At. (9)

Therefore, aggregate pro�ts Πt are the sum of individual pro�ts of �rms net of
headhunting costs:

Πt =

∫ Nt

0

(pitAt −Wit) di− wtcVt − wt (1− ψ) KMt.

Household optimization dictates that output of individual �rms is priced using mar-
ginal utility of consumption with the price of each variety proportional to household
taste for that variety:

pit =
u
′
Ct

λt

zit, (10)

where λt is the Lagrange multiplier on the budget constraint.
The wages of headhunters wt are set competitively such that members of the house-

hold are indi�erent between headhunting and being unemployed. Therefore, the wage
wt compensates a headhunter for the disutility of work and for the option value of
�nding a job while being unemployed:

wt = −u
′
Xt

λt

+
Mt

Ut

(
ΓW

t − ψKwt

)
, (11)

In equation above, the ratio of matches to unemployment, Mt

Ut
, is the probability

of �nding a job, and ΓW
t is the worker's expected future bene�t from engaging in an

employment relationship (see below). The future bene�t is taken net of the training
cost, which is split between the worker and the �rm.

The total value of job i to the worker is the present discounted sum of wages, Wit,
net of her outside option, wt. When deciding whether to preserve the relationship
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with the �rm, the worker compares this total bene�t to the alternative of walking
away and getting nothing. Therefore, the value of job i to the worker, V W

it , satis�es:

V W
it = max

{
Wit − wt + Eitβ

λt+1

λt

V W
i′t , 0

}
.

Because of the simplifying assumption that taste shocks are i.i.d., the values of
future bene�ts to the worker are independent of i:

ΓW
t = Eitβ

λt+1

λt

V W
i′t+1 = Etβ

λt+1

λt

max
{
Wi′t+1 − wt+1 + ΓW

t+1, 0
}

. (12)

Similarly, the present discounted sum of pro�ts of �rm i is compared to the alter-
native of walking away and getting nothing. The value of the job to �rm i satis�es:

V F
it = max

{
pitAt −Wit + Eitβ

λt+1

λt

V F
i′t , 0

}
.

Likewise, the values of future bene�ts to �rms are all equal:

ΓF
t = Eitβ

λt+1

λt

V F
i′t+1 = Etβ

λt+1

λt

max
{
pi′t+1At+1 −Wi′t+1 + ΓF

t+1, 0
}

. (13)

Every period the �rm and the worker bargain over the wage, Wit, which splits the
current surplus in �xed proportions:

Wit − wt = ψ (pitAt − wt) . (14)

From combining this equation with equations (12) and (13) above, it follows that
future and total surpluses are split in the same proportions:

ΓW
t = ψ

(
ΓW

t + ΓF
t

)
= ψΓt,

where joint future surplus Γt is de�ned as follows:

Γt = Etβ
λt+1

λt

max {pi′t+1At+1 − wt+1 + Γt+1, 0} . (15)

Since taste shocks (6) are strictly decreasing in i by construction, and prices (10)
are linear in tastes; pro�ts, wages and match values are all strictly decreasing in
i. Wage bargaining condition (14) and surplus split (15) together imply, that the
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value of a job to the �rm and to the worker equal zero simultaneously. Hence, there
exists a unique cuto� value i∗, such that worker i∗ and �rm i∗ are indi�erent between
terminating their relationship and keeping it. For all i > i∗ the worker and the �rm
mutually agree to terminate their relationship. For all i ≤ i∗ the worker and the �rm
prefer to keep it. The cuto� i∗ = Nt satis�es:

pitAt − wt + Γt|i=Nt
= 0. (16)

This equation determines the number of surviving jobs, Nt, the cuto� price, p
	t

=

pNt,t, and the e�cient endogenous rate of job destruction, ζt. Firms and workers
terminate their relationships when the sum of current and future surpluses becomes
negative.

Finally, free entry of new �rms into the labor market guarantees that vacancies are
open until their expected marginal costs are equal to their expected marginal bene�ts:

cwt =
Mt

Vt

(
ΓF

t − (1− ψ) Kwt

)
, (17)

where wt is the competitive wage paid to headhunters and Mt

Vt
is the vacancy �lling

rate, which �rms take as given. Thus, exactly enough �rms advertise vacancies such
that the cost of posting an extra vacancy equals the expected future bene�t of a
match, net the cost of training the worker if the vacancy is �lled.

The assumption that the costs of training the worker are split in exactly the same
proportion as the future surplus of the match makes implementation of the planner's
solution possible. In Appendix VI.1, I compare the competitive equilibrium to the
planner's solution and show that they coincide if, and only if, the Hosios condition is
satis�ed:

ψ =
∂Mt

∂Ut

Ut

Mt

= α.

A competitive equilibrium of the model economy is a solution to equations (1)-(17),
where {Ut; At; Mt; Xt; Ct; zit; ζt; Jt+1; qit; pit; λt; ΓW

t ; ΓF
t ; Wit; Γt; Nt; Vt} are endoge-

nous variables, wt is the numeraire and εt is the exogenous shock.
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II.3. Propagation Mechanism. In this subsection, I �rst provide the motivation
for the general equilibrium setup of the model. I augment the description of the model
by explaining the choice of preferences with respect to consumption and leisure of the
representative household. Then I describe the two key elements of the model, and
how they jointly determine the response of unemployment and vacancies to aggregate
shocks. Finally, I derive the slope of the Beveridge curve and show how it is a�ected
by the parameters of the model.

Let me make two observations about the properties of the model. First, notice that
shocks to aggregate demand, which could be introduced into the model by having an
aggregate component of tastes, Zt, enter linearly into the price, pit, and, therefore,
are indistinguishable from productivity shocks, At. Thus, the model describes the
response of the labor market to aggregate shocks, which could come both from the
demand and from the supply sides.

Second, compared to the MP model and most of the literature that studies its
quantitative implications, this is a general equilibrium model. The advantage of gen-
eral equilibrium analysis is that it can simultaneously take into account variations in
the outside option of the worker due to the consumption-leisure trade-o�, as well as
unemployment bene�ts, search costs and other factors. At the same time it decouples
parameters that determine the size of variations in the value of a match from param-
eters that a�ect average match value. The �rst set of parameters relates variations
in the value of the match to the marginal utility of consumption of a representa-
tive household. The second set of parameters pins down the average match value by
equalizing revenues a job yields over its lifetime to average costs of job creation.

To capture this idea, I use the following preference speci�cation:

u (Ct, Nt + Xt) =
C1−γ

t − 1

1− γ
−$ (Nt + Xt) . (18)

This speci�cation borrows in�nite Frisch elasticity of labor supply from the model
of indivisible labor and employment lotteries of Hansen (1985, [17]) and Rogerson
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(1988, [28])9. The only di�erence from the standard speci�cation is that this utility
function is not necessarily consistent with balanced growth10. Blanchard and Gali
(2010, [2]) show that under the standard speci�cation, when γ = 1 (log consumption),
the outside option of the worker moves exactly in line with aggregate productivity,
so the value of the match stays constant. As a result, variations in productivity have
no e�ect on any of the labor market variables. Based on this �nding Shimer (2009,
[31]) argues in favor of rigid wages as a mechanism to explain variations in the labor
wedge - the di�erence between the marginal product of labor and the marginal rate of
substitution between consumption and leisure. However, Cheremukhin and Restrepo-
Echavarria (2009, [4]) show that within a similar model, wage stickiness does not help
explain the labor wedge and argue in favor of variations in matching e�ciency. In the
model studied in this paper - a model with endogenous job destruction and match-
speci�c heterogeneity, neither variations in matching e�ciency, nor rigid wages are
helpful in generating variations in the labor wedge.

In the absence of a widely accepted explanation for variations in the labor wedge11

I use a reduced form speci�cation (18). Parameter γ determines the response of the
outside option of a worker to variations in productivity and, thus, leads to variations
in the labor wedge and in the value of a job. Through variations in values of jobs,
this speci�cation has concrete predictions for the behavior of pro�ts that I later use
as an independent check of consistency.

I now illustrate the e�ects of two parameters on the response of the value of a match
to variations in productivity. I linearize equations (5), (10) and (15) and substitute
them into each other to obtain the elasticity of the value of the match with respect
to productivity:

9See a full derivation for alternative values of labor supply elasticity in Appendix VI.3. Because
the Frisch elasticity is not identi�ed separately from other parameters of the model, I �x it at its
conventional value.

10Note that a model with habit persistence would be equivalent to this speci�cation, while con-
sistent with a long-run balanced growth path.

11In yet another approach Karabarbounis (2010, [19]) explores a calibrated model of home pro-
duction. Substitution between home goods and market goods over the business cycle generates
variations in the observed labor wedge, while the true labor wedge remains constant.
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Γ̂t

Ât

≈ 1− γ

γ + δ
ρ (1 + δ) , (19)

where x̂t denotes percentage deviations from steady-state12, ρ denotes persistence of
the productivity shock, and 1 + δ = zmax

zmin
is the di�erence between the highest and

the lowest taste shock.
It is clear that curvature of preferences, γ, plays a decisive role in the response of

match value to variations in productivity. When γ = 1, there is no response in any
of the labor market variables. When γ ≤ 1, the value of the match, employment and
match pro�ts all fall in response to a decline in productivity. Parameter δ, on the
other hand, is closely related to the average match value and to the average cost of
job creation. It has little e�ect on the size of variations in match values. As a result,
the response of the labor market to aggregate shocks is sensitive to γ and not very
sensitive to δ.

Now, I move to the discussion of how the two key elements of the model work. The
job destruction margin is the �rst key element of the model. Figure 1 depicts the
price distribution as a function of the �rm index i ∈ [0, Jt]. The cuto� price level,
p
	t
, corresponds to the number of productive jobs, Nt. A fraction ζt of available jobs

that are not worth operating according to equation (16) are terminated at the mutual
agreement of the worker and the �rm. In a steady-state, all of the destroyed jobs are
replaced by new matches.

A negative productivity shock εt leads to a persistent decrease in productivity
At and results in a decrease in expected future bene�ts, Γt. This shifts the cuto�
price upward and leads to a spike in job destruction and a consequent increase in
unemployment:

Ût

Ât

≈ −1− Uss

Uss

1− γ

γ + δ
, (20)

where Uss is the steady-state unemployment rate. The response of unemployment is
determined by the same two parameters mentioned above, γ and δ, as well as by the
average unemployment rate.

12Full derivation of the steady-state and the linearized equations are described in Appendix VI.2.
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Figure 1. Price Distribution and the Cuto� Price.

Training costs are the second key element of the model. They help explain the
response of vacancies and job creation to productivity shocks. To demonstrate the ef-
fect of training costs, I linearize equation (17) and substitute in the matching function
(3):

Ût − V̂t =
Γ̂t

α (1− ϕ)
, (21)

where α is the elasticity of the matching function, ϕ = ϕ2(1−ψ)
ϕ2(1−ψ)+1−ϕ2

is the fraction of
training costs incurred by the �rm in proportion to total costs incurred by the �rm,
and ϕ2 = KMss

cVss+KMss
is the fraction of training costs in total costs of job creation. This

equation shows how training costs modulate the response of labor market tightness
to variations in the value of a match.

When training costs are absent, ϕ → 0, the response of market tightness to changes
in prospects of future pro�ts is small. A negative productivity shock leads to a sharp
increase in unemployment, which through a mild response in market tightness leads
to an increase in the vacancy rate. Thus, when most of the costs are recruiting costs,
a sharp increase in unemployment makes workers much easier to �nd, encouraging
�rms to post more vacancies.
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When, on the contrary, most of the costs are training costs, ϕ → 1, a decrease in
the value of the match leads to a sharp decrease in market tightness. Training costs
attenuate the response of total costs to market tightness, discouraging �rms from
opening vacancies in a recession.

Combining equation (21) with equations (19) and (20) I derive the slope of the
Beveridge curve:

V̂t

Ût

= 1− 1

α (1− ϕ)

Uss

1− Uss

ρ (1 + δ) . (22)

Figure 2. Beveridge Curve.

The slope of the Beveridge curve is strongly a�ected not only by the elasticity of
the matching function, α, but also by the relative size of training costs, ϕ. Parameter
γ, according to equation (20), is the main determinant of the size of movements along
the Beveridge curve, but has no e�ect on the slope of the curve. To illustrate the
combined e�ect of the job destruction margin and training costs, I use a comparative
statics exercise. I look at three cases: constant exogenous job destruction, as well as
endogenous job destruction with and without training costs.

To give a numerical illustration, I set tentative values for the key parameters.
One can infer the elasticity of the matching function directly from comparing the
volatilities of market tightness and the job �nding rate following Shimer (2005, [30]).
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I use this method to set α to 0.72. I build on evidence from Silva and Toledo (2009,
[32]) to infer the size of total costs and its split into recruiting and training costs.
Using this evidence, I set δ to 0.8, so that total job creation costs represent 40 percent
of the quarterly wage of a typical employee, and ϕ to match the observation that
training costs account for 93 percent of job creation costs incurred by �rms. I also
set ρ to 0.92 - the typical value for persistence of productivity shocks in the business
cycle literature, and Uss to 5.6 percent - the historical average unemployment rate in
the U.S.

First, when jobs are destroyed at an exogenously given rate, the Beveridge curve co-
incides with an isoquant of the matching function. Its slope is determined exclusively
by the elasticity of the matching function, α:

V̂t

Ût

=
−α

1− α
= −2.57. (I)

Second, when �rms are allowed to choose whether to destroy jobs based on future
pro�ts, and all job creation costs are recruiting costs, the Beveridge curve is positively
sloped:

V̂t

Ût

= 1− 1

α

Uss

1− Uss

ρ (1 + δ) = 0.86. (II)

Increasing the fraction allocated to training costs solves this problem. When train-
ing costs are set to correspond to 93 percent of job creation costs, leaving 7 percent to
recruiting costs, the predicted slope of the Beveridge curve comes close to the slope
of -1 - the slope of U.S. unemployment and vacancy data.

V̂t

Ût

= 1− 1

α (1− ϕ)

Uss

1− Uss

ρ (1 + δ) = −0.95. (III)

Figure 2 illustrates in the unemployment-vacancy space how the slope of the Bev-
eridge curve is determined by a combination of shifts in the matching curve and the
job creation curve. Let point A be the original steady-state. In case I, when job
destruction is given exogenously, variations in the value of the match shift the job
creation curve (21) clockwise. The economy moves along the isoquant of the matching
function (3) to point B. In case II, when job destruction is endogenous, but training
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costs are absent, a spike in job destruction shifts the matching curve upwards. This
shift is much larger than the shift in the job creation curve, so the economy ends up in
point C. Finally, when training costs are a large fraction of total costs, an aggregate
shock leads to a concerted movement in both the matching curve and the job creation
curve, leading the economy to point D. This corresponds to case III, with the slope
of the Beveridge curve resembling the behavior of the data.

The dynamic response of the calibrated model is summarized by impulse response
functions to a productivity shock depicted in Figure 3. It works as follows: A neg-
ative productivity shock lowers contemporaneous pro�ts of �rms leading to a sharp
increase in job destruction. As more workers lose their jobs the number of unemployed
workers increases, making the labor market less tight. A decline in contemporaneous
productivity also leads to a decline in expected future pro�ts. This lowers the bene�ts
to �rms of creating new jobs and, because of the mild response of job creation costs,
signi�cantly undermines their incentives to open vacancies. The number of vacancies
falls. As the number of employment opportunities shrinks due to lower productivity,
the number of newly created jobs does not respond much.

After a sharp employment adjustment in the �rst period, the least productive jobs
have already been destroyed and the job destruction rate quickly returns close to its
original level. As productivity slowly recovers, the cuto� price for job destruction
slowly returns to its original level. As �rms see an increase in future pro�ts, they
start opening more vacancies and creating more jobs.

III. Empirical Methodology

To explore the ability of the model to �t the data I use recently developed Bayesian
methods for analyzing DSGE models.13 This methodology has several advantages
when compared to commonly used calibration strategies. In the context of vigorous
debates over parameters of the standard matching model, the Bayesian framework

13A survey of these methods is provided for instance by An and Schorfheide (2007, [1]).
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Figure 3. Impulse Responses to a 1% Negative Productivity Shock.

allows me to remain agnostic. I let the data choose a calibration that is most likely
to explain its behavior.

The second advantage of this methodology is that a likelihood function gives nat-
ural weights to di�erent moments of the data instead of focusing on just a few. In
addition, setting relatively wide priors allows me to conduct a sensitivity analysis of
model performance to the parameter combination. If I �nd that a posterior estimate
is as wide as the prior, then the exact value of the corresponding parameter is not
important for explaining the data. Conversely, if a posterior estimate is very nar-
row, this means that model dynamics are very sensitive to the exact calibration of a
parameter.

In this section, I describe the strategy that I use to evaluate the model. I also
discuss data sources and prior distributions. First, I solve for the steady-state of
the model. I then log-linearize the equations of the model around the steady-state
and solve the resulting system of linear forward-looking equations using a method
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developed by Sims (2002, [33]). This gives me the state-space representation of the
model:

Xt = FXt−1 + Gεt (23)

Yt = HXt + υt, (24)

where Xt is the vector of state variables and Yt is the vector of observables. I assume
that the innovation to labor productivity, εt, is the only exogenous shock in the
model. I attribute all the residual variation in observed �uctuations to a vector of
measurement errors, υt. The fraction of variations in Yt explained by the model is
represented by HXt and the unexplained component is captured by the error term.
To allow for enough variation in the data and to avoid stochastic singularity, I assume
there are as many sources of measurement error as there are observables so that each
measurement equation has its own error term14.

I treat the model as the data-generating process and use the Kalman �lter to
construct the likelihood function of the data conditional on parameters. I combine the
likelihood function with the prior distribution of parameters to obtain the posterior
distribution of parameters and use the random-walk Metropolis-Hastings algorithm
to explore it numerically15. I then use the Kalman �lter to obtain smoothed estimates
of the shock process for labor productivity using parameter values at posterior mode.

III.1. Data. For estimation, I use seven observables: unemployment, vacancies, job
destruction, job creation, the job �nding rate, real wages and labor productivity.
All data are quarterly, seasonally adjusted for the period 1951:1 - 2009:416. The
unemployment series is the unemployment rate for those older than age 16, provided

14To avoid stochastic singularity I need at least as many shocks as observed variables. If I include
productivity shocks, I can exclude one of the measurement errors. I choose not to do so because that
would imply a prior choice of the variable I want the model to explain exactly. I choose to remain
agnostic about the choice of variables the model can best explain.

15The algorithm is extensively discussed in Geweke (1999, [14]). I use the open source DYNARE
software developed by Collard and Juillard (2003, [6]) and collaborators.

16To avoid merging data series from di�erent sources for job creation, job destruction, job �nding
rate and vacancies, I could restrict selection to a time interval ending in 2004:4 and exclude the



LABOR MATCHING: PUTTING THE PIECES TOGETHER 23

by the BLS. The vacancy series is the index of help-wanted advertisements provided
by the Conference Board before 2001, merged with JOLTS data after 2001. The series
for real wages is constructed by dividing average hourly earnings in private nonfarm
payrolls by the consumption price index.

As a proxy for job destruction and job creation, I use destruction and creation
rates in manufacturing constructed by Davis et. al. (2006, [7]). Davis, Faberman
and Haltiwanger also provide series for all sectors for a much shorter period of time.
The series for manufacturing and for all sectors have notably di�erent volatilities,
but a correlation close to one (see Appendix). I use this observation to scale the
series for manufacturing to represent the whole economy. For the period after 2005, I
augment the series with rates of job loss in contracting establishments and job gains
in expanding establishments in manufacturing supplied by BED. Finally, I use the job
�nding rate series computed from CPS data by Shimer (2005, [30]) and augment it
for the period after 2007 with the transition rate from unemployment to employment
constructed from CPS data.

I use the series for labor productivity, measured as real output per worker in the
non-farm business sector. This series is constructed by the BLS from the National
Income and Product Accounts and the Current Employment Statistics. For a consis-
tency check, I also construct data series for pro�ts and output. For the pro�ts series,
I take nominal corporate pro�ts before taxes from the BEA and divide them by the
nominal value of GDP. The output series is the real GDP index provided by the
BEA divided by the labor force. I apply the Hodrick-Prescott �lter with smoothing
parameter 1600 to detrend all series.

III.2. Priors. There are nine structural parameters in the model, of which {g,B, c,K}
are hard to directly compare with micro estimates. Instead of estimating them di-
rectly, I construct an alternative set of steady-state values that I then treat as pa-
rameters. I de�ne u = Uss - the steady-state unemployment rate, s = ζss - the job
destruction rate, ϕ - the fraction of training costs in total job creation costs incurred

recession of 2008. This would not change any of my conclusions, so I prefer to include the most
recent recession episode.
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Parameter Density Mean Std. Dev.
Discount factor β Fixed 0.99 -
Matching elasticity α Beta 0.5 0.2
Bargaining power of worker ψ Beta 0.5 0.2
Curvature of demand γ Beta 0.5 0.2

Unemployment rate u Fixed .056 -
Job destruction rate s Gamma 0.03 0.015
Fraction of training costs ϕ Beta 0.8 0.1
Total costs φ Beta 0.3 0.15

Persistence of productivity ρ Beta 0.5 0.2
Table 1. Prior Distributions

by �rms and φ - the sum of recruiting and training costs per employee incurred by
a �rm as a fraction of their quarterly wage. I then use the fact that conditional on
the rest of the parameters, there is a one-to-one mapping between {g,B, c, K} and
{u, s, ϕ, φ}.

Prior distributions are reported in Table 1. I choose prior means based on values
used in previous studies. I make the priors uninformative by setting prior standard
deviations to relatively large values whenever possible. This allows me to remain
agnostic and let the data choose the parameter combination that is most likely to
capture the dynamic properties of the data. For parameters with support on the unit
interval, I use the Beta distribution and for real-valued parameters I use the Gamma
distribution.

I set the discount factor β to 0.99. The unemployment rate is �xed at its historical
mean of 5.6 percent. Based on evidence from Silva and Toledo (2009, [32]), I set total
cost of job creation to 30 percent of the quarterly wage of a new hire and the fraction
of training costs to 80 percent of the job-creation amount. I allow for large variations
in both of these values.
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I set the steady-state job destruction rate at 3 percent to match the average �ow
from employment to unemployment during a quarter.17 I choose to be completely
agnostic about the bargaining power, the matching elasticity, the curvature of de-
mand and the autoregressive parameter of labor productivity. As priors for standard
deviations of errors, I choose inverse-gamma distributions with standard deviations
of 0.5 percent for productivity, 1 percent for output and wages and 5 percent for all
other variables. I run 10 blocks of 5000 iterations each from di�erent starting points
and target an acceptance rate of 30 percent.

IV. Results

In this section I describe the posterior estimates and discuss their implications for
calibration of labor matching models. I then evaluate the �t of the model along
di�erent dimensions and use values of the marginal density to evaluate the relative
importance of the two key elements.

IV.1. Parameter Estimates. I report means and 90 percent con�dence intervals
of posterior estimates in Table 2. The matching elasticity is estimated to be 0.64,
close to Shimer's estimate of 0.72. This is not surprising given that the parameter is
identi�ed in the same way through the relationship between the job �nding rate and
market tightness.

The posterior estimate of the bargaining power of workers, ψ, has a very wide
con�dence interval: from 27 percent to 61 percent. This implies that the value of
bargaining power has little or no e�ect on the dynamic properties of the model. This
con�rms the analytical expressions described in equations (19)-(22) � only the way in
which training costs are split matters. Since this e�ect is also accounted for by the
parameter ϕ, the �nding that bargaining power does not a�ect model performance is
not at all surprising.

17This is consistent with the �ndings of Nagypal (2008, [25]) that only about 20 percent of all
separations (which are approximately 10 percent per quarter) correspond to transitions from em-
ployment to unemployment. Also, according to the distribution of unemployment duration provided
by the BLS, about 60 percent of all unemployed �nd jobs within a quarter, which is about 3 percent
of the labor force in steady-state.
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Parameter Prior Posterior
Mean Mean 90% conf. interval

Matching elasticity α 0.5 0.64 [0.63 0.65]
Bargaining power of worker ψ 0.5 0.42 [0.27 0.61]
Curvature of demand γ 0.5 0.13 [0.07 0.20]

Job destruction rate s 0.03 .0435 [.0402, .0480]
Fraction of training costs ϕ 0.8 0.97 [0.96 0.98]
Total costs φ 0.3 0.35 [0.14 0.48]

Persistence of productivity ρ 0.5 0.91 [0.86 0.94]
Table 2. Posterior Estimates

The only point at which the data that are directly a�ected by the bargaining power
of the workers is the volatility of real wages. Like labor productivity, the series for real
wages has a large measurement error, driven mostly by changes in the consumption
price index, while nominal wages remain largely unchanged over the cycle. The model
prefers to attribute most of variations in the wage series to measurement error rather
than placing signi�cant weight on its random movements.

The estimate for the total job creation cost, φ, incurred by a �rm lies in a wide range
from 14 to 48 percent of quarterly wages of a new hire. The fraction of training costs
and other costs speci�c to a match in total creation costs, ϕ, is tightly estimated at
97 percent. As noted before, the second parameter is key to explaining the behavior
of vacancies and the negatively sloped Beveridge curve. Both of these parameters
match quite closely the evidence presented by Silva and Toledo (2009, [32]). They
estimate total costs to be between 36 and 55 percent of the quarterly wage of a new
hire, with the fraction of training costs estimated at around 93 percent.

The result that bargaining power and the size of total job creation costs do not
play a very important role in explaining the behavior of unemployment, vacancies
and wages over the business cycle is in stark contrast with existing literature. One
reason for this is the omission of the job destruction margin. When �rms are not
allowed to vary their �ring activities, a much larger decline in the value of a match



LABOR MATCHING: PUTTING THE PIECES TOGETHER 27

is required to explain the increase in unemployment through the job creation margin
alone. When variations in match value are large, the bargaining power of a worker
has to be unreasonably small to match low variability in wages. The other reason is
the general equilibrium speci�cation, which decouples the job creation cost parameter
from variations in the value of the match, which are mainly driven by the curvature
of preferences.

The estimate for the curvature of demand, γ, is at a surprisingly low value of 0.1318.
However, a closer look at the implications of this value for the behavior of the value
of a match clari�es its meaning. Substituting γ = 0.13, ρ = 0.9 and δ = 1.6 implied
by the posterior mode into equation (19) gives a value of the elasticity of match value
to an aggregate shock of 1.17. In the standard labor search model, this corresponds
to a replacement rate of 0.1519. This is in the ballpark of the value of 0.4 used by
Shimer and by studies of the e�ects of unemployment bene�ts and rigid wages, and
much lower than the value of 0.95 used by Hagedorn and Manovskii.

I do a simple check for consistency of this parameter using its implications for
the behavior of pro�ts. Figure 5 in the Appendix compares the series for pro�ts as a
fraction of GDP predicted by the model with that observed for the U.S. economy. The
prediction of the model matches remarkably well both the volatility and cyclicality
of the pro�t series, even though the data for pro�ts was not used in the estimation
of the model.

Finally, the posterior mode of the average job destruction rate is estimated between
4 and 5 percent. This value is somewhat higher than the prior and implies a job �nding
rate of 70 to 85 percent. This is contrary to the �nding of Cole and Rogerson (1999,
[5]) that a relatively low job �nding rate required to match data on job creation and
job destruction implies counterfactually long duration of unemployment. Instead, the
implied estimate of duration is at the lower bound of plausible duration values.

18The value of a match needs to fall to discourage �rms from creating jobs or to encourage them
to destroy more jobs. For the value of a match to fall in response to a negative aggregate shock the
labor wedge has to be procyclical, which implies a value of γ smaller than one.

19If p
p−z = 1.17, then z = 1− 1

1.17 = 0.15.
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IV.2. Model Fit. To evaluate the �t of the model, I compare the second moments
of the data with moments of arti�cial data generated by the model when hit by the
estimated productivity shock. Table 3 compares standard deviations of seven observ-
ables of interest as well as their correlations with output. The results indicate that
the model �ts the data well, explaining virtually all of the �uctuations in vacancies,
the job destruction and job �nding rates, more than three-quarters of �uctuations in
unemployment, and more than half of variations in job creation, with a single aggre-
gate shock. The required variations in labor productivity and implied variations in
wages are both of reasonable magnitude. Given the simplicity of the model this is a
remarkable result.

The model matches well most of the cross correlations between observables with
one exception. In the data job creation responds to aggregate shocks negatively at
�rst and then rebounds slowly to rehire workers. The model predicts an immediate
although slow positive response of job creation. When compared to the model, the
data on job creation has a lag of about one or two quarters. This is essentially the
only dimension on which the model doesn't perform well. The gap between wages in
the model and in the data is satisfactory given that the discrepancy between the two
commonly used series for real wages is large20. The series for labor productivity also
has a large measurement error component.

To study the importance of the two key assumptions for model performance, I
compare the performance of the benchmark model with �ve alternative speci�cations.
In the �rst alternative speci�cation, I set training costs to zero and re-estimate the
model. In the second alternative speci�cation, in addition to absence of training
costs, I �x the job destruction rate at its steady-state level. The third alternative
speci�cation is the model of Lubik (2009, [21]), where jobs are destroyed exogenously
at a constant rate, but non-linear job creation costs are allowed. In this speci�cation
I measure the joint explanatory power of shocks to productivity, preferences and

20The two commonly used series for real wages are average hourly earnings in private nonfarm
payrolls divided by the consumption price index and the labor share times labor productivity. The
root mean square di�erence between the two detrended series is 0.94 log points which is comparable
to average wage variability over the cycle of 0.97 log points.
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Standard Deviations
Y U V JD JC JF W Y/N

Data 1.51 12.3 14.4 12.5 7.7 8.2 0.87 1.07
Model 0.83 9.2 13.5 10.1 3.9 8.1 0.21 0.55

Procyclicality
Data 1 -0.81 0.81 -0.64 0.26 0.77 0.19 0.49
Model 1 -0.99 0.99 -0.37 -0.98 0.99 0.99 0.99

Table 3. Comparison of Second Moments

markups21. Lubik applies similar methods to the same data on GDP, unemployment,
vacancies and wages. He allows for exogenous shocks to preferences and market
power, which are somewhat similar to the preference speci�cation I use. Thus, this
speci�cation provides a comparable account for the explanatory power of a model
with constant exogenous job destruction, but variable creation costs.

In the fourth alternative speci�cation, I apply the same estimation strategy to
Shimer's model allowing for variations in the value of the outside option and the
bargaining weight. I denote this speci�cation "H-M" because the resulting estimates
replicate the calibration of Hagedorn and Manovskii (2008, [15]). The last speci�ca-
tion is Shimer's original calibration.

Results of model comparison are summarized in Table 4. Numbers in the rows of
Table 4 describe fractions of standard deviations of the data explained by the �ve
alternative speci�cations and the benchmark speci�cation. The last column com-
putes the gain in marginal data density of each model compared to Shimer's original
calibration. Marginal data density is a Bayesian analog of the Bayes information
criterion, a robust means of model comparison, which uses the likelihood function as
a measure of �t and penalizes the model for over-parametrization.

21The only residual source of variations not included is represented by shocks to matching
e�ciency
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Fraction of Variations Explained
U V JD JC JF W Y/N ∆ MD

0. Benchmark .77 .99 .83 .54 .94 .20 .22 560
1. K=0 .76 .06 .79 .43 .88 .29 .30 222
2. JD �xed .41 .98 .00 .61 .79 .23 .26 307
3. Lubik .08 .61 .00 � � .85 � �
4. H-M .53 .70 .00 .96 .95 .27 .47 245
5. Shimer .07 .09 .00 .11 .06 .77 .79 0
Table 4. Explanatory Power of Alternative Speci�cations

Comparison of lines 4 and 5 indicates that the calibration of Hagedorn and Manovskii,
indeed, improves the performance of the labor search model, explaining half of varia-
tions in unemployment and 70 percent of variations in vacancies. Lubuk's speci�cation
in line 3 of the table demonstrates that even allowing for nonlinear job creation costs
and adding other sources of �uctuations to the model does not improve the explana-
tory power of productivity shocks22. Line 2 con�rms that a model with match-speci�c
heterogeneity but without the job destruction margin or training costs has implica-
tions similar to that of line 4.

Comparison of lines 0 and 1 to line 2 demonstrates that both the job destruction
margin and training costs are key to the empirical performance of the benchmark
model. Explaining variations in job destruction enhances the ability of the model
to explain the behavior of unemployment, accounting for its initial increases dur-
ing recessions. Incorporating training costs is crucial for explaining the decrease in
vacancies and the sluggish response of job creation.

The explanatory power added by these two elements is more than two times larger
than that produced by the H-M calibration. However the benchmark speci�cation
does not rely on the two most controversial assumptions: an extremely low value for
job creation costs and low bargaining power of the worker. Instead, it matches very

22Direct introduction of training costs into Shimer's model under both calibrations does not alter
its empirical performance and, therefore, is not reported.
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well empirical values for both the total job creation costs and the split of these costs
into the recruiting and training components.

Additional dimensions where the benchmark model outperforms its predecessors
are impulse response functions to a recessionary shock. Figure 4 compares impulse
responses of four of the model speci�cations. Shimer's calibration generates almost no
response to a recessionary shock. The calibration of Hagedorn and Manovskii explains
about half of the response of unemployment, all of it through the job creation margin.
Introduction of job destruction alone also explains a large fraction of �uctuations in
unemployment, but is less satisfactory at explaining the behavior of vacancies. In
fact, it generates countercyclical vacancy rates. The benchmark model explains, both
quantitatively and qualitatively, a large fraction of the observed �uctuations in all of
the variables of interest.

To my knowledge this model is the �rst incarnation of the MP model capable of
generating realistic patterns of a large set of labor market variables as a result of a
single aggregate shock of reasonable magnitude.

V. Conclusion

In this paper, I emphasize two elements of the Mortensen-Pissarides model: the
job destruction margin and training costs. I show that these two elements enable the
model to explain the sharp increases in unemployment and the large declines in job
availability in recessions. I embed these two key elements into a general equilibrium
model with a matching friction. I show that such a model driven by a single aggregate
shock can simultaneously explain most variation in unemployment, vacancies, job
creation, job destruction and the job �nding rate, while remaining consistent with
variability and cyclicality of pro�ts, labor productivity and real wages. I estimate
parameter values that provide the best �t of the data and �nd that they are all of
plausible magnitude.

One desirable extension of this model is allowing on-the-job search and accounting
for job-to-job transitions, which require modeling the persistence of the idiosyncratic
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Figure 4. Impulse Responses of Alternative Speci�cations to a Reces-
sionary Shock.

component of �rm productivity. Another desirable extension of this model includes
understanding the role of capital formation and the vintage e�ects of matches between
capital and labor. A third important direction of further research is a plausible spec-
i�cation of the job creation process that allows for additional delays in creation and
takes into account detailed microeconomic studies of creation costs. Cross-country
analysis of job creation costs and their consequences for the slope of the Beveridge
curve is another potential research topic.

Another potential line of research concerns the interaction of matching frictions
with market power as discussed by Rotemberg (2006, [29]). Among the main unan-
swered questions are the sources of shocks driving the economy and the possibility of
endogenous cycles in models with matching frictions.
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VI. Appendix

VI.1. Planner's solution. In this section I characterize the planner's solution for
the model. I then compare it to the competitive equilibrium to draw conclusions
about the optimal division of rents.

The planner maximizes utility:
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max
{qit,Xt,Nt,Ut,Vt,Jt+1}

E0

∞∑
t=0

βtu (Ct, Nt + Xt) ,

where the consumption aggregator is de�ned as:

Ct =

∫ Nt

0

zitqitdi,

and the taste shocks are drawn from:

zit = e−gi, i ∈ U [0, Jt] ,

subject to the production technology:

qit = At,

the headhunting technology:

Xt = KM (Ut, Vt) + cVt,

the job accumulation equation:

Jt+1 = Nt + M (Ut, Vt) ,

and the constraint on time use:

Nt + Xt + Ut = 1.

I de�ne Lagrange multipliers: pit on production function of good i, wt on the
headhunting technology, Γt on the job accumulation constraint, and µt on time use,
all multiplied by a common intertemporal Lagrange multiplier λt. Then the following
�rst order conditions characterize the solution to the planner's problem. The value
of product i satis�es:

pit =
u′Ct

λt

zit,

the value of a job:
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Γt = Eitβ
λt+1

λt

{
u′Ct+1

λt+1

zi,t+1qi,t+1 +
u′Nt+1

λt+1

− µt+1 + Γt+1, 0

}
,

the optimal rate of productive employment:

u′Ct

λt

zi,tqi,t|i=Nt
+

u′Nt

λt

− µt + Γt = 0,

the value of an unemployed:

µt = (Γt − wtK)
∂M

∂Ut

,

the value of a headhunter:

wt = −u′Xt

λt

+ µt,

and the optimal number of vacancies:

wtc = (Γt − wtK)
∂Mt

∂Vt

. (25)

Substituting the value of an unemployed into the value of a headhunter leads to:

wt = −u′Xt

λt

+ (Γt − wtK)
∂M

∂Ut

, (26)

Most of the equations of the planner's solution already coincide with equations that
characterize the competitive equilibrium. The only di�erence comes from equations
(25) and (26). From comparing them to equations (17) and (11) it follows that
the competitive equilibrium is Pareto-optimal if and only if the Hosios condition is
satis�ed:

ψ
∂M

∂Vt

Vt

Mt

=
∂M

∂Ut

Ut

Mt

(1− ψ)

For a Cobb-Douglas matching function used in the model this simpli�es to:

ψ =
∂M

∂Ut

Ut

Mt

= α.
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VI.2. Computation of the Steady-state. For the general derivation I use a general
speci�cation of preferences:

u (Ct, Nt + Xt) =
C1−γ

t − 1

1− γ
−$

(Nt + Xt)
1+η

1 + η

The system of equations of the model can then be reduced to:
(1) At = A1−ρ

ss Aρ
t−1e

σεt εt ∈ N (0, 1)

(2) Mt = BUα
t V 1−α

t

(3) Ut = 1−Nt −Xt

(4) Xt = cVt + KMt

(5) Jt+1 = Nt + Mt

(6) Nt = Jt (1− ζt)

(7) Pt = 1
λt

C−γ
t

(8) Ct = At
1−e−gNt

g

(9) wt = $(Nt+Xt)
η

λt
+ ψ (Γt −Kwt)

Mt

Ut

(10) cwt = (1− ψ) (Γt −Kwt)
Mt

Vt

(11) Γt = Etβ
λt+1

λt

(
Pt+1Ct+1

Nt+1
− wt+1 + Γt+1

)

(12) PtAte
−gNt − wt + Γt = 0

(13) Wt

Pt
= ψ Ct

Nt
+ (1− ψ) wt

Pt

(14) Profit
GDP

= Πt

PtCt
= (1− ψ)

(
1− wtNt

PtCt

)

where {At, Jt, Nt,Mt, Ut, Xt, Vt, λt, Pt, Ct, Γt, ζt, Wt, Πt} are the endogenous variables
of the model, wt = 1 is the numeraire and εt is the exogenous shock.

The structural parameters of the model are:
{β, γ, ψ, α, ρ, σ} {c,K, g, Ass} {B} {η, $}
There is a one-to-one mapping between:
{c,K, g, Ass} ⇔

{
s = ζss, ϕ = KMss(1−ψ)

cVss+KMss(1−ψ)
, φ =

c V
M

+K(1−ψ)

ψ PC
N

+1−ψ
, u = Uss

}
and {B} ⇔{

vf = Mss

Vss

}

To compute the steady-state I follow the following steps:
a) ϕ2 = ϕ

(1−ϕ)(1−ψ)+ϕ

b) Γ = 1
1−ψ

φ
−ψ( 1

β
−1)

π = 1

( 1−ϕ2
1−ψ

+ϕ2) 1−ζ
ζ

1
Γ

+1

c)N = (1− U) (1− π) M = ζ
1−ζ

N V = M
vf
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d)X = (1− U) π J = N
1−ζ

I plug these values into a numerical solver to �nd g that satis�es:
e) 1 = egN−1

gN
1−Γ

1+( 1
β
−1)Γ

I then compute:
f) µ = (1− Γ) egN c = (1− ϕ2)

X
M

M
V

K = ϕ2
X
M

g) B = M
UαV 1−α λ = $(1−U)η

1− b
w
− ψ

1−ψ
V
U

c

h) A =
[
µλ

(
1−e−gN

g

)γ] 1
1−γ

C = A1−e−gN

g

i) P = 1
λ
C−γ W

P
= ψ C

N
+ (1− ψ) 1

P
Profit
GDP

= 1− N
PC

VI.3. Derivation of the Beveridge Curve. I linearize the reduced system of equa-
tions above to obtain:

(1′) at = ρat−1 + σεt

(2′) mt = αut + (1− α) vt

(3′) (1− π) nt + πxt = −κut

(4′) xt = (1− ϕ) vt + ϕmt

(5′) jt+1 = nt (1− s) + smt

(6′) nt = jt − s
1−s

st

(7′) pt = −γct − λt

(8′) ct = at + nt

(9′) λt = η ((1− π) nt + πxt)− ς (vt − ut)

(10′) gt = (1− ϕ2) (vt −mt)

(11′) gt = Et (at+1 + pt+1 + nt+1 + λt+1)− λt

(12′) gt = χ (at + pt − δnt)

where I introduce new notation:
κ = U

1−U
s = M

N
ϕ2 = KM

cV +KM

η, ρ, Λ = X
M
≈ δ

2
ϕ2

ϕ
1

1−s
π = sΛ

1+sΛ

ς = 1
1−ψ

ψ
κ
π

1
1−ϕ

−1

−1
χ

= 1
1−π

π
s

1−s
ϕ

ϕ2
−1

1− Γ = 1
1− 1

χ

= 1− π
1−π

1−s
s

ϕ2

ϕ
= 1− Λ (1− s) ϕ2

ϕ

δ = zmax

zmin
1 + δ = exp (gN) ≈ µ

1−Λ(1−s)
ϕ2
ϕ

I then combine the linearized equations to derive the Beveridge curve:
Substitute (2′) mt = αut + (1− α) vt
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Substitute (4′) xt = (1− ϕ) vt + ϕ (αut + (1− α) vt)

Solve for vt and ut :

(3′) (1− π) nt + π ((1− ϕ) vt + ϕ (αut + (1− α) vt)) = −κut

(10′) gt = (1− ϕ2) (vt − αut − (1− α) vt)

Hence,
vt = gt

(1−ϕ2)α
+ ut

ut = − 1−π
π+κ

nt − π
π+κ

(1−ϕα)
(1−ϕ2)α

gt

vt = − 1−π
π+κ

nt +
(

1
1−ϕα

− π
π+κ

)
(1−ϕα)
(1−ϕ2)α

gt

vt

ut
= 1− κ(1+sΛ)+sΛ

(1−ϕ2)α
nt
gt

+sΛ(1−ϕα)

mt = ut + (1− α) (vt − ut) = − 1−π
π+κ

nt +
(

1−α
1−ϕα

− π
π+κ

)
(1−ϕα)
(1−ϕ2)α

gt

xt = ut + (1− ϕα) (vt − ut) = − 1−π
π+κ

nt +
(
1− π

π+κ

)
1−ϕα

(1−ϕ2)α
gt

Substitute in (9′):
λt = η

(
κ−πκ
κ+π

nt +
πκ

π+κ
(1−ϕα)− ς

η

(1−ϕ2)α
gt

)

Substitute pt, ct from (7′) and (8′) into (11′) and (12′) :

gt = Et (at+1 − γct+1 + nt+1)− λt = (1− γ) Et (at+1 + nt+1)− λt

gt = χ (at − γct − δnt − λt) = χ ((1− γ) at − (γ + δ) nt)− χλt

Substitute λt from above:(
1 + η

πκ
π+κ

(1−ϕα)− ς
η

(1−ϕ2)α

)
gt + η κ−πκ

κ+π
nt = (1− γ) Et (at+1 + nt+1)(

1
χ

+ η
πκ

π+κ
(1−ϕα)− ς

η

(1−ϕ2)α

)
gt + η κ−πκ

κ+π
nt = (1− γ) at − (γ + δ) nt

We can get rid of gt and get a single forward-looking equation in nt :

gt =
(1−γ)at−(γ+δ)nt−η κ−πκ

κ+π
nt(

1
χ

+η
πκ

π+κ (1−ϕα)− ς
η

(1−ϕ2)α

) denote % =
1+η

πκ
π+κ (1−ϕα)− ς

η
(1−ϕ2)α

1
χ

+η
πκ

π+κ (1−ϕα)− ς
η

(1−ϕ2)α

%
(
(1− γ) at − (γ + δ) nt − η κ−πκ

κ+π
nt

)
+ η κ−πκ

κ+π
nt = (1− γ) Et (at+1 + nt+1)

Guess solution: nt = τat

Then applying the expectations operator yields: Etat+1 = ρat

Therefore, nt is a jump variable Etnt+1 = Etτat+1 = τρat = ρnt

Solve for τ :

%
(
(1− γ)− (γ + δ) τ − η κ−πκ

κ+π
τ
)

= (1− γ) ρ (1 + τ)− η κ−πκ
κ+π

τ

nt

at
= τ =

(1−γ)(1− ρ
%)

γ+δ+(1−γ)ρ 1
%
+(1− 1

%)η
κ(1−π)

κ+π

≈ 1−γ
γ+δ

In what follows the approximation is for π → 0, η = 0. Substitute to get:
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gt

nt
=

ρ(1+δ)+η(ρ−1)
κ(1−π)

κ+π(
1+η

πκ
π+κ (1−ϕα)− ς

η
(1−ϕ2)α

)
(1− ρ

%)
≈ ρ (1 + δ)

ut

at
= −

(
1−π
π+κ

+ π
π+κ

(1−ϕα)
(1−ϕ2)α

gt

nt

)
nt

at
≈ − 1

κ
1−γ
γ+δ

vt

at
=

(
− 1−π

π+κ
+

(
1

1−ϕα
− π

π+κ

)
1−ϕα

(1−ϕ2)α
gt

nt

)
nt

at
≈ − 1

κ

(
1− κρ(1+δ)

(1−ϕ2)α

)
1−γ
γ+δ

mt

at
=

(
− 1−π

π+κ
+

(
1−α
1−ϕα

− π
π+κ

)
1−ϕα

(1−ϕ2)α
gt

nt

)
nt

at
≈ − 1

κ

(
1− (1−α)κρ(1+δ)

(1−ϕ2)α

)
1−γ
γ+δ

xt

at
=

(
− 1−π

π+κ
+

(
1− π

π+κ

)
1−ϕα

(1−ϕ2)α
gt

nt

)
nt

at
≈ − 1

κ

(
1− (1−ϕα)κρ(1+δ)

(1−ϕ2)α

)
1−γ
γ+δ

vt

ut
= 1− κ(1+sΛ)+sΛ

(1−ϕ2)α
nt
gt

+sΛ(1−ϕα)
≈ 1− κρ(1+δ)

(1−ϕ2)α

Job destruction (on impact):
st

at
= 1−s

s
jt−nt

at
= −1−s

s
nt

at
≈ −1−s

s
1−γ
γ+δ
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Moments of the Data
std 1.54 13.0 14.4 12.5 7.7 8.2 0.87 1.07
corr Y U V JD JC JF W Y/N
GDP -0.81 0.81 -0.64 0.26 0.77 0.19 0.49
U -0.95 0.43 0.01 -0.93 -0.10 -0.02
V -0.49 0.05 0.92 0.16 0.08
JD -0.59 -0.44 -0.25 -0.53
JC 0.08 0.08 0.36
JF 0.09 0.02
W 0.43

Model Generated Moments
std 0.83 9.2 13.5 10.1 3.9 8.1 0.21 0.55
corr Y U V JD JC JF W Y/N
GDP -0.99 0.99 -0.37 -0.98 0.99 0.99 0.99
U -0.98 0.36 0.99 -0.99 -0.99 -0.99
V -0.38 -0.97 0.99 0.98 0.99
JD 0.24 -0.38 -0.38 -0.40
JC -0.98 -0.97 -0.98
JF 0.99 0.99
JF 0.99

Table 5. Moments of the Data vs Model
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Figure 5. Fit of Pro�ts, Job Destruction and Job Creation.

Figure 6. Fit of Unemployment, Vacancies and the Job Finding Rate.
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Figure 7. Fit of Productivity, Wages and Output.
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Figure 8. Comparison of Creation and Destruction for Manufacturing
and All Sectors.
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Figure 9. Comparison of Prior and Posterior Distributions.


