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Abstract
This paper analyzes three popular models of nominal price and wage fric-

tions to determine which best �ts post-war U.S. data. We construct a dynamic
stochastic general equilibrium (DSGE) model and use maximum likelihood to
estimate each model�s parameters. Because previous research �nds that the
conduct of monetary policy and the behavior of in�ation changed in the early
1980s, we examine two distinct sample periods. Using a Bayesian, pseudo-odds
measure as a means for comparison, a sticky price and wage model with dy-
namic indexation best �ts the data in the early-sample period, whereas either
a sticky price and wage model with static indexation or a sticky information
model best �ts the data in the late-sample period. Our results suggest that
price- and wage-setting behavior may be sensitive to changes in the monetary
policy regime. If true, the evaluation of alternative monetary policy rules may
be even more complicated than previously believed.
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1 Introduction

1.1 Motivation and Main Results

Economists have recently had considerable success constructing and estimating dy-
namic stochastic general equilibrium (DSGE) models that are competitive with vector
autoregressive (VAR) models in their ability to match macroeconomic data.1 Because
they are grounded in utility and pro�t maximization, DSGE models are potentially
robust to changes in the conduct of policy, which is a feature that makes them at-
tractive to policy analysts. This robustness assumes that the utility and pro�t max-
imization problems underlying the DSGE model are correctly speci�ed [Del Negro
et al. (2007)]. In this paper, we present evidence that the price- and wage-setting
assumptions embedded in many DSGE models that are used for macroeconomic pol-
icy analysis are too restrictive. Speci�cally, the data suggest that past changes in
the economic and policy environment have led to shifts in price- and wage-setting
behavior that many DSGE models fail to capture.
DSGE models require a mix of nominal and real rigidities in order to generate

realistic impulse responses and autocorrelations.2 Although the presence of real fric-
tions is fairly noncontroversial, the existence and speci�c form of nominal frictions
has generated much debate. Motivated by the �menu costs�literature, early DSGE
models held prices �xed between discrete price readjustment opportunities. In pursuit
of plausible qualitative and quantitative results, however, many researchers have now
dropped that assumption. Instead, these researchers assume that all prices change
every period, but not every price is reoptimized each period. In a sticky price and
wage framework, prices and wages which are not reoptimized increase automatically
by the steady-state price and wage in�ation rates (static indexation) or by the lagged
price and wage in�ation rates (dynamic indexation), respectively. In the �sticky in-
formation�approach, �rms and households choose price and wage paths in advance
and follow those paths until the next optimization opportunity.
Each of these price-adjustment mechanisms is appealing under certain circum-

stances. Adjusting by a constant default in�ation rate is reasonable in a stable-
in�ation environment; indexing to lagged aggregate in�ation is a plausible strategy
when in�ation movements are unpredictable and highly persistent; while presetting
price and wage paths is appealing when in�ation is volatile but predictable. This line
of reasoning suggests that changes in the conduct of monetary policy and/or changes
to the stochastic processes of exogenous disturbances might alter the method in which
prices and wages are set. DSGE models, however, typically do not allow for shifts
in price- and wage-setting behavior. As a result, these models may be nothing more
than local approximations which are reliable only in a speci�c economic environment.
We examine the robustness of alternative DSGE models by comparing their per-

1See, for example, Smets and Wouters (2003) and Christiano, Eichenbaum, and Evans (2005).
2See Ball and Romer (1990).

2



formance across an early and a late sample period. We break our sample in the
early 1980s because numerous studies �nd that important changes in the conduct
and transmission of monetary policy and in the behavior of in�ation and output oc-
curred during that period. For example, McConnell and Perez-Quiros (2000) identify
1984:Q1 as the beginning of a period of reduced variability in output growth, while
Du¤y and Engle-Warnick (2006) identify 1979:Q3 and 1980:Q3 as the most likely
dates for a major shift in the conduct of monetary policy. Not coincidently, the Fed-
eral Reserve signi�cantly changed its operating procedure in the fall of 1979, and
the Monetary Control Act of 1980 began a phase-out of interest rate ceilings and
other �nancial regulations. As for in�ation, empirical studies �nd its persistence and
variability began to decline in late 1981 or in early 1982 [Piger (2008)]. Based on our
own Quandt-Andrews test results, applied to GDP in�ation, we use 1981:Q3 as the
dividing line between early and late samples in our estimations.3 That date coincides
with the beginning of a recession which many economists believe was deliberately in-
duced to lower in�ation. The summer of 1981 was also when President Reagan �red
striking air-tra¢ c controllers, signaling a new resistance to union wage demands.4

Maximum likelihood is utilized to estimate our DSGEmodels over each subsample.
Three di¤erent DSGE models are considered: a sticky price and wage model with
static indexation, a sticky price and wage model with dynamic indexation, and a
sticky information model. After estimation, we use a Bayesian-motivated, pseudo-
odds measure to judge which model �ts the data best. Early-sample results strongly
favor the sticky price and wage model with dynamic indexation over both the sticky
information and the sticky prices and wages with static indexation models. In the late
sample, however, sticky information and static indexation are competitive with one
another, and dominate dynamic indexation. Thus, a shift in price- and wage-setting
behavior appears occurred in the early 1980s in response to the pronounced changes
in the economic environment at that time. The change is in the direction that one
would expect given the reduced persistence and greater predictability of in�ation in
the late sample.

1.2 Relationship to the Existing Literature

Sticky information models are time consuming to estimate because they contain a
large number of state variables. As a result, only a few studies�notably, Andre,
Lopez-Salido, and Nelson (2005) and Laforte (2007)�compare the empirical perfor-
mance of sticky price and sticky information frictions in an estimated DSGE model.
Our analysis di¤ers from these papers in two key respects. First, we estimate our
models over both early and late sample periods rather than only a late sample pe-

3We also examined a 1979:Q3 breakpoint with similar results.
4The air-tra¢ c controllers�strike began on August 3, 1981. The controllers were �red 48 hours

later.
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riod.5 Splitting the sample allows us to explore the endogeneity of nominal rigidities.
Second, our models include nominal wage rigidities in addition to price rigidities.
Christiano, Eichenbaum, and Evans (2005) argue that including wage rigidities �is
crucial for [a] model�s performance.�The �ndings from both papers, nonetheless, are
generally consistent with our late-sample results. Speci�cally, Andre, Lopez-Salido,
and Nelson (2005) argue that sticky information dominates sticky prices with dy-
namic indexation, while Laforte (2007) �nds that sticky information performs about
as well as sticky prices with static indexation, and that both models do better than
sticky prices with dynamic indexation. One di¤erence with our paper is that our
sticky information and static indexation models are competitive with VAR models in
the late sample, whereas Laforte (2007) �nds that a VAR model �ts the data best.
Other papers that have compared sticky price and sticky information frictions

across multiple estimation periods include Ireland (2001), Kiley (2007), Korenok
(2008), Coibion and Gorodnichenko (2009), Dupor, Kitamura, and Tsuruga (forth-
coming), and Coibion (forthcoming). Dupor, Kitamura, and Tsuruga (forthcoming),
like us, evaluate sticky price and sticky information frictions over early- and late-
sample periods. Their models, however, are partial equilibrium, and they do not
consider dynamic indexation.6 A hybrid model, with both sticky prices and sticky
information, consistently performs best according to these authors.
Like Dupor, Kitamura, and Tsuruga (forthcoming), Korenok (2008), Coibion

and Gorodnichenko (2009), and Coibion (forthcoming) compare a sticky informa-
tion model with a sticky price model with static indexation while ignoring dynamic
indexation. Each presents full-sample and late-sample estimation results, rather than
early-sample and late-sample results.7 Only Coibion and Gorodnichenko (2009) use a
general equilibrium framework. Late-sample results vary depending on the paper. Ko-
renok (2008) and Coibion (forthcoming) determine that the static indexation model
is superior to the sticky information model, whereas Coibion and Gorodnichenko
(2009), like us, �nd that the two models perform similarly.
Kiley (2007) evaluates several di¤erent pricing rules, including sticky informa-

tion and both static and dynamic indexation models, over a 1965-2002 sample and
a 1983-2002 sample. His late-sample results di¤er substantially from our �ndings.
In particular, Kiley (2007) claims that the dynamic indexation model �ts the data
slightly better than either the sticky information model or the static indexation model.
One potential explanation for the di¤erent result is that we estimate a DSGE model,
whereas Kiley (2007) estimates a model comprised of a structural-pricing equation
and three reduced-form equations. Reduced-form models are less vulnerable to mis-

5Andre, Lopez-Salido, and Nelson (2005) and Laforte (2007) estimate their models over 1979:Q3-
2003:Q3 and over 1983:Q1-2003:Q1, respectively.

6The authors detrend in�ation which makes their sticky price component equivalent to our model
with static indexation.

7Korenok (2008) and Coibion and Gorodnichenko (2009) start their late samples in 1983:Q1,
whereas Coibion (forthcoming) starts his sample in 1984:Q1.
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speci�cation than DSGE models, but they are also estimated less e¢ ciently.
Finally, Ireland (2001) estimates a DSGE model with sticky prices over both

early and late sample periods (the sample breakpoint is 1979:Q2). Ireland (2007),
like us, �nds evidence of instability across samples. The instability, however, is in the
household�s discount factor and not in the pricing equation.

1.3 Outline

The remainder of the paper is structured as follows. Section 2 describes our empirical
analysis of the persistence and predictability of in�ation. Section 3 outlines the DSGE
model, including the di¤erent speci�cations of price and wage rigidities. Section 4
discusses our estimation procedure. Section 5 presents the parameter estimates for
each model and the pseudo-odds measure used to assess which model best �ts the
data. Section 6 examines the variance decompositions and impulse response functions
for each model. Finally, Section 7 summarizes our main �ndings and o¤ers suggestions
for future research.

2 The Behavior of In�ation

This section examines the degree of persistence and predictability of in�ation and
whether the observed aggregate in�ation process exhibits a break. Changes in the
behavior of aggregate in�ation and in�ation expectations are important because they
may re�ect changes in how �rms adjust their prices both when given an opportunity
to reoptimize and between such opportunities. To determine the most likely date for
a break in the in�ation process, we use the Quandt-Andrews test. Our results suggest
that a break occurred in the second or third quarter of 1981. Using that breakpoint,
we �nd that in�ation is more persistent and more variable in the early-sample period,
and less persistent and more stable in the late-sample period.

2.1 Approximating the In�ation Process

The price-setting mechanism chosen by �rms may be in�uenced by the behavior of
aggregate in�ation. In a sticky price model with static indexation, �rms increase their
prices at the steady-state in�ation rate between reoptimizations. That arrangement
is most likely to be attractive when in�ation remains fairly constant and any devi-
ations from that constant are not very persistent. Similarly, �rms raise their prices
automatically by last period�s in�ation rate between reoptimizations in a sticky price
model with dynamic indexation. The dynamic indexation approach is presumably
most appealing when the in�ation process approximates a random walk. Our task
now is to compare the empirical performance of these two price-setting speci�cations
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and determine whether their relative performance has shifted. We are not necessarily
concerned with �nding the best characterization of in�ation�s behavior.8

To determine whether the in�ation process is better approximated by a transitory
variation around a constant or by a random walk, we regress the h-period change in
in�ation on the constant steady-state in�ation rate and the h-period lagged in�ation
rate:

�t � �t�h = �1(� � �t�h) + "t, (1)

where � is the steady-state in�ation rate and 0 � �1 � 1. The in�ation process
in (1) is estimated, separately, for in�ation lags ranging from one to four periods.
The in�ation process is more strongly mean reverting when �1 approaches 1, whereas
in�ation is closer to a random walk when �1 approximates 0. The timing of shifts
in �1 is determined using the Quandt-Andrews test.
Results from the Quandt-Andrews test are presented in Panel A of Table 1. That

test shows a clear break in the in�ation relationship at 1981:Q3 for lags of 3 and 4
quarters. The most likely breakpoint at the 2-quarter lag is 1981:Q2, but that test
statistic is not quite signi�cant at the 5% level. Finally, there is no evidence of an
in�ation break in the 1-quarter-lag speci�cation.9

Panel B of Table 1 displays the estimation results for (1) over the pre-1981:Q3
and post-1981:Q2 subsamples, with standard errors for the estimated coe¢ cients in
parentheses. The adjusted R2 statistics range from 5% to 6% in the early sample
and from 19% to 55% in the late sample. Estimates of �1 always di¤er signi�cantly
from both 0 and 1, but are consistently two to three times larger in the late sample
than in the early sample. Those larger estimates for �1 indicate that in�ation is far
less persistent in the late-sample period. That result suggests that the in�ation envi-
ronment may have become more favorable for static indexation, relative to dynamic
indexation, in the late sample.

8Stock and Watson (2007) take an alternative approach by modeling in�ation as the sum of a
permanent and a transitory stochastic component. Although the standard deviation of transitory
innovations remains fairly constant over the entire sample, the magnitude of the permanent innova-
tions �uctuates greatly. Permanent innovations rise rapidly in the late 1960s and early 1970s, remain
high in the early 1980s, and then gradually decline. Davig and Doh (2008) examine potential reasons
why the time-series properties of in�ation changed. Their results suggest that monetary policy was
passive during the 1970s and early 1980s, technology shocks were highly persistent during the late
1970s and early 1980s, and for intervals during the late 1950s and mid 1970s, and that mark-up
shocks became less persistent during portions of the late 1970s and early 1980s. Lansing (2009)
o¤ers a very di¤erent explanation. He shows how the belief that in�ation follows a Stock-Watson
(2007) process can be self reinforcing, and can generate what appears to be time variation in in�ation
variability and persistence.

9Prior to 1982, there is evidence of additional breaks in the in�ation process during the late 1960s
and early 1970s, but no evidence exists for any post-1981 breaks. Overall, the in�ation process is
unstable for much of the pre-1982 sample, but is stable in the post-1981 sample. Piger (2008) reports
similar results.
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2.2 Forecasting Changes in In�ation

In the sticky information framework, �rms preset a price path between each reopti-
mization opportunity. That style of price setting will tend to be more advantageous
than static indexation whenever in�ation movements are large but predictable. The
comparison of sticky information with dynamic indexation is more complex. Sticky
information allows �rms to adjust prices in response to a wide variety of information.
However, the information set is updated infrequently. Dynamic indexation, in con-
trast, restricts that response to a single piece of information (lagged in�ation), but
that information is only 1-period old. Dynamic indexation will tend to be more ap-
pealing when lagged in�ation captures most of the relevant information for forecasting
current in�ation.
Accordingly, we regress the 1-quarter change in in�ation onto the h-quarter lagged

median in�ation forecast from the Survey of Professional Forecasters (SPFt�h(�t))
less the 1-quarter lagged in�ation rate:

�t � �t�1 = �1(SPFt�h(�t)� �t�1) + "t, (2)

for h = 1, 2, 3, and 4.10 An estimate of �1 close to 1 indicates that substantial
information beyond lagged in�ation is helpful in predicting current in�ation. Such a
result would tend to support sticky information. If, on the other hand, �1 is estimated
close to 0, then lagged in�ation approximates current in�ation well, which would be
a more favorable environment for dynamic indexation.
The Quandt-Andrews test is utilized to determine if evidence exists of a shift in

�1. Panel A of Table 2 shows that the Quandt-Andrews test statistics are insignif-
icant at all horizons, which means that there is no statistical evidence of a shift in
�1. Therefore, we have no a priori grounds for suspecting a shift away from an en-
vironment favorable to dynamic indexation and toward an environment favorable to
sticky information, or vice versa.
Panel B of Table 2 displays the estimation results from the pre-1981:Q3 and

post-1981:Q2 samples. Because the Quandt-Andrews test statistics are insigni�cant,
it is not surprising that the estimates for �1 are similar in the two samples. As
h decreases, predicted in�ation provides better information on current in�ation, the
standard errors for �1 decline, and the adjusted R2 statistic rises. With the exception
of h = 4 in the early sample, the hypothesis that �1 = 0 is rejected. These results
suggest that the SPF median in�ation forecast has useful information beyond that of
the 1-quarter lagged in�ation rate. Finally, the 1-quarter lag of in�ation has marginal
predictive power beyond the SPF forecast even at the shortest horizons, suggesting
that the SPF forecasts are ine¢ cient.
Table 3 presents the summary statistics for the SPF median in�ation forecasts

at various horizons over both sample periods. These statistics reveal that expected

10The estimates for (2) are based on a shorter sample period because the Survey of Professional
Forecasters�data on expected in�ation begins in 1968:Q4.
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in�ation is lower and is much less variable in the late sample than in the early sample.
The average expected in�ation rate also is nearly constant across horizons in the late-
sample period. Expected in�ation averages a 3:0% annualized rate at a 1-quarter
forecast horizon, which is similar to the 3:3% expected in�ation rate at a 4-quarter
horizon. In the early sample, in contrast, longer-term forecasts generally call for
a lower in�ation rate than near-term forecasts. Speci�cally, the average in�ation
forecast is a 6:3% annualized rate at the 1-quarter horizon, versus a 5:5% rate at a
4-quarter horizon. The lower variability and �atter pro�le of in�ation forecasts after
1981 suggest that static indexation might have become more appealing relative to
sticky information.

2.3 Summary and Observations

In�ation movements appear to have become less persistent sometime around the
middle of 1981. Such a reduction in persistence might have encouraged �rms to
utilize static indexation instead of dynamic indexation between price reoptimizations.
In�ation expectations also seem to have become more stable after 1981, which further
supports the argument in favor of a shift toward static indexation.
Other researchers have also documented shifts in the behavior of in�ation and

in�ation expectations. Evans and Wachtel (1993) estimate a Markov-switching model
of the in�ation process and �nd that in�ation follows a random walk between the late
1960s and early 1980s. The innovations to the random walk have a large variance and
this, combined with regime uncertainty, produces high in�ation-forecast uncertainty.
The combination of high in�ation persistence and forecast uncertainty during the
period should favor dynamic indexation. Cogley and Sargent (2005) analyze in�ation
dynamics using a VAR model estimated with time-varying coe¢ cients and stochastic
volatilities. They �nd that core in�ation trends upward between the early 1960s
and 1980, falls sharply in 1981, and remains low and reasonably stable thereafter.
In�ation persistence follows a similar pattern. Therefore, both smaller disturbances
to exogenous variables and a shift in the conduct of monetary policy contribute to the
change in in�ation�s behavior in the 1980s. Finally, Piger (2008) considers Bayesian
Model Averaging across a wide variety of speci�cations of the in�ation process. He
�nds evidence of a sharp fall in in�ation persistence and in�ation uncertainty at the
beginning of 1982.
In summary, some combination of changes in monetary policy and changes in ex-

ogenous shock processes signi�cantly transformed the behavior of aggregate in�ation
sometime in the early 1980s. That shift potentially altered pricing incentives at the
�rm level. To investigate this possibility, we estimate our DSGE models over distinct
early and late samples.
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3 The Models

We use a conventional dynamic stochastic general equilibrium (DSGE) model in which
households set wages in a monopolistically competitive labor market and �rms set
prices in a monopolistically competitive goods market. Nominal rigidities, however,
slow the adjustment of wages and prices. This section outlines the three alternative
types of nominal wage and price rigidities which we will empirically evaluate. In
particular, we consider a sticky price and sticky wage model with static indexation, a
sticky price and sticky wage model with dynamic indexation, and a sticky information
model of price and wage setting. The models include exogenous processes representing
an aggregate demand shock, a technology shock, and a monetary policy shock and
are estimated with data on output, in�ation, and the nominal interest rate.

3.1 Households

The household sector comprises a continuum of households, h 2 [0; 1], which are mo-
nopolistically competitive suppliers of labor. Speci�cally, household h is an in�nitely-
lived agent who prefers to purchase consumption goods, ct, and hold real money
balances, Mt=Pt, but dislikes working, nh;t. The preferences of household h are rep-
resented by the following expected utility function:

U = Et

" 1X
j=0

�jat+j

 
ln(ct+j � bct+j�1) + �M ln

�
Mt+j

Pt+j

�
� �n

n1+�h;t+j � 1
1 + �

!#
, (3)

where Et is the expectational operator at time t, � is the personal discount factor
with a value between 0 and 1, b is the internal habit persistence in consumption
parameter and is also between 0 and 1, �M and �n are the nonnegative parameters on
real money balances and labor supply, respectively, and � is the inverse of the labor
supply elasticity with respect to the real wage. The preference variable, at, represents
an aggregate demand shock which evolves in the following manner:

ln(at) = �a ln(at�1) + "a;t,

where �1 < �a < 1 and "a;t is normally distributed with a standard deviation of
�a.11 Although household h has pricing power in the labor market, nominal wage
frictions prevent it from either optimally setting a new wage every period or updating
the information used to set that wage. Nominal wage frictions also cause the labor
supply and the wage rate to di¤er among households. To maintain the tractability
of the model, we assume that households participate in a state-contingent securities
market guaranteeing each household the same income, so that all of the households
make identical decisions on their remaining choice variables.12

11McCallum and Nelson (1999) argue that at resembles a shock to the IS curve in a traditional
IS/LM model.
12Erceg, Henderson, and Levin (2000) and Christiano, Eichenbaum, and Evans (2005) use the

same modeling technique.
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Household h begins each period with its nominal money balances, Mt�1, carried
over from last period and the principle plus interest on its current bond holdings,
Rt�1Bt�1, where Rt is the gross nominal interest rate between periods t and t+1 and
Bt is the nominal bond holdings. Labor earnings, Wh;tnh;t, and capital rental income,
Ptqtkt, are received by household h during period t, where Wh;t is the nominal wage
rate earned by household h, qt is the real rental rate of capital, Pt is the price level,
and kt is the capital stock. Additionally, household h receives dividends, Dt, from
its ownership interest in the �rms, a transfer, Tt, from the monetary authority, and a
payment, Ah;t, from its participation in the state-contingent securities market. Those
assets are utilized to purchase consumption and investment goods and to �nance end-
of-period money and bond holdings. The �ow of funds for household h is described
by the following budget constraint:

Pt(ct + it) +Mt +Bt =Mt�1 +Rt�1Bt�1 +Wh;tnh;t + Ptqtkt +Dt + Tt + Ah;t. (4)

Investment purchases, it, in (4) are converted into capital according to the equation:

kt+1 � kt = '(it=kt)kt � �kt, (5)

where � is the depreciation rate. The functional form '(�) in (5) represents the capital
adjustment costs associated with the conversion of investment to capital. Because
the resources lost in the conversion, it � '(it=kt)kt, are assumed to be increasing
and convex, the functional form '(�) is increasing and concave with respect to the
steady-state, investment-to-capital ratio, i=k (i.e., '0(�) > 0, '00(�) < 0).
Household h is a monopolistically competitive supplier of di¤erentiated labor ser-

vices, nh;t, to the �rms. The labor services provided by all of the households are
combined according to Dixit and Stiglitz�s (1977) aggregation technique to calculate
total aggregate labor hours, nt:

nt =

�Z 1

0

nh;t
(�W�1)=�W dh

��W =(�W�1)
,

where ��W is the wage elasticity of demand for nh;t. The demand by �rms for
household h�s labor services is a decreasing function of household h�s relative wage:

nh;t =

�
Wh;t

Wt

���W
nt, (6)

where Wt is interpreted as the aggregate nominal wage:

Wt =

�Z 1

0

Wh;t
1��W dh

�1=(1��W )
.
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3.1.1 Nominal Wage Frictions

We examine the e¤ects of three popular models of wage setting: sticky wages with sta-
tic indexation, sticky wages with dynamic indexation, and sticky information wages.
In both of the sticky wage speci�cations, household h is provided periodically with an
opportunity to negotiate a new nominal wage contract. The di¤erence between static
and dynamic indexation is in how household h�s nominal wage adjusts in the absence
of an opportunity to renegotiate. In the static indexation speci�cation, households,
who are unable to renegotiate, raise their nominal wage by the steady-state in�a-
tion rate, whereas in the dynamic indexation speci�cation, households increase their
nominal wage by last period�s in�ation rate.13 Finally, the sticky information friction
enables household h to select a new nominal wage every period, but the information
used to set that wage updates infrequently.
Sticky Wages with Static Indexation: This friction, as in Erceg, Henderson,

and Levin (2000), assumes that households set their wage according to a Calvo (1983)
model of random adjustment. Speci�cally, a household has a probability of �W that
it will receive an opportunity to optimally reset its nominal wage. If that opportunity
is absent, then that household�s wage automatically rises by the steady-state in�ation
rate, �. A household which has an opportunity to optimally reset its nominal wage
selects a nominal wage, W �

t , that maximizes the present value of its current and
expected future utility, (3), subject to its budget constraint, (4), the �rms�demand for
its labor, (6), and the probability, (1��W )j, that another wage-resetting opportunity
will not occur in the subsequent j periods. The solution to household h�s wage-setting
problem yields the following �rst-order condition:

Et

" 1X
j=0

�j(1� �w)
j

�
�jW0;t

Pt+j
� "w
"w � 1

��Un(h);t+j
Uc;t+j

��
nh;t+j

#
= 0, (7)

where Uc;t is the marginal utility of consumption and Un(h);t is the marginal utility
of labor for household h. On the right-hand side of (7), the value �Un(h);t=Uc;t is
interpreted as the marginal rate of substitution of consumption for labor and "w=("w�
1) is the steady state mark-up of the real wage over the marginal rate of substitution.
The absence of an h in the marginal utility of consumption re�ects the fact that
the state-contingent securities market equalizes consumption (but not labor) among
households.
Sticky Wages with Dynamic Indexation: The sticky wage speci�cation with

dynamic indexation, like that of Christiano, Eichenbaum, and Evans (2005), is sim-
ilar to the model with static indexation, except that the nominal wage for nonad-
justing households automatically rises by last period�s in�ation rate. Speci�cally, the
probability that a household can negotiate a new nominal wage is �w, whereas the

13Eichenbaum and Fisher (2007) introduce the terminology �static� and �dynamic� indexation
to describe the automatic adjustment of wages or prices which cannot be reoptimized in a given
period.
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probability that its wage increases by last period�s in�ation rate, �t�1, is (1 � �w).
The �rst-order condition for the wage-adjusting household with dynamic indexation
is as follows:

Et

" 1X
j=0

�j(1� �w)
j

�
�t+jW0;t

Pt+j
� "w
"w � 1

��Un(h);t+j
Uc;t+j

��
nh;t+j

#
= 0

such that �t = 1 and �t+j = �t+j�1 � �t+j�1 for j � 1.
Sticky Information Wages: The �nal nominal wage friction to be examined is

sticky information as in Koenig (1996, 1999, 2000). In that speci�cation, household
h can set a new nominal wage every period, but the information used to set that
wage updates infrequently. Formally, household h acquires new information with a
probability of �w, whereas it must utilize the information that it obtained j periods
ago with a probability of (1� �w). The objective of household h then is to maximize
its current expected utility, (3), subject to its budget constraint, (4), and the �rms�
demand for its labor, (6), given that its expectations were last updated j periods ago.
Because wages adjust every period but information is sticky, household h�s �rst-order
condition indicates that the optimal nominal wage, Wh;t, is equal to the expected
value from j periods ago of the nominal value of the marginal rate of substitution
multiplied by the steady-state wage mark-up:

Wh;t �
"w

"w � 1
Et�j

�
Pt

��Un(h);t
Uc;t

��
= 0.

3.2 Firms

Firms are entities owned by the households which produce di¤erentiated goods in a
monopolistically competitive market, but encounter price frictions that interfere with
optimal price adjustment. Firm f hires labor, nf;t, at a real wage rate of wt and rents
capital, kf;t, at a real rental rate of qt. Those labor and capital inputs and the level
of technology, Zt, are utilized by �rm f to produce its output, yf;t, according to a
Cobb-Douglas production function:

yf;t = Zt(kf;t)
�(nf;t)

1��, (8)

where 0 � � � 1. The technology variable, Zt, evolves such that

ln(Zt) = �Z ln(Zt�1) + (1� �Z) ln(Z) + "Z;t,

where Z is the steady state value of Zt, �1 < �Z < 1, and "Z;t is normally distributed
with a standard deviation of �Z . As a pro�t-maximizing agent, �rm f minimizes
its production costs subject to (8). The resulting labor and capital factor demands
equal:

 t(1� �)Zt[kf;t=nf;t]
� = wt, (9)
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 t�Zt[nf;t=kf;t]
1�� = qt, (10)

where  t is the Lagrange multiplier from the cost minimization problem and is inter-
preted as the real marginal cost of producing an additional unit of output. The real
marginal cost then can be determined by combining (9) and (10):

 t =
(qt)

�(wt)
1��

Zt(�)�(1� �)1��
.

Because the real wage, real rental rate of capital, and the level of technology are
economy-wide variables, the real marginal cost is the same across all �rms.
Aggregate output, yt, is a Dixit and Stiglitz (1977) continuum of di¤erentiated

goods, yf;t, where f 2 [0; 1] such that

yt =

�Z 1

0

y
("p�1)="p
f;t df

�"p=("p�1)
,

where �"p is the price elasticity of demand for yf;t. Cost minimization by the house-
holds generates the following demand equation for �rm f�s good:

yf;t =

�
Pf;t
Pt

��"p
yt, (11)

where Pf;t is the price for yf;t and Pt is a nonlinear aggregate price index:

Pt =

�Z 1

0

P
1�"p
f;t df

�1=(1�"p)
.

3.2.1 Price Frictions

In much the same way as we examined the households�wage-setting behavior, we
investigate three popular types of price frictions: sticky prices with static indexation,
sticky prices with dynamic indexation, and sticky information prices. Both sticky
price speci�cations assume that a random fraction of �rms can adjust their prices in
any given period. The remaining �rms must increase their prices by the steady-state
in�ation rate in the static indexation speci�cation and by last period�s in�ation rate
in the dynamic indexation speci�cation. In the sticky information case, prices are
�exible, but �rms intermittently update the information used to set those prices.
Sticky Prices with Static Indexation: As in Erceg, Henderson, and Levin

(2000), price-setting behavior follows a Calvo (1983) model of random adjustment.
That is, the probability that a �rm can optimally adjust its price is �P ; otherwise,
its price increases by the steady-state in�ation rate, �. Those �rms which are able
to optimally reset select a price, P0;t, which maximizes its present value of current
and expected future pro�ts subject to its factor demand equations, (9) and (10),
households�demand for its goods, (11), and the probability, (1� �P )

j, that another
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price-adjustment opportunity will not occur in the subsequent j periods. Firm f�s
e¢ ciency condition when it selects a new price is

Et

" 1X
j=0

�j(1� �P )
j�t+j

�
�jP0;t
Pt+j

� "P
"P � 1

 t+j

�
yf;t+j

#
= 0,

where �t represents the households�marginal utility of an additional dollar of pro�ts
(i.e., �t = Uc;t).
Sticky Prices with Dynamic Indexation: Christiano, Eichenbaum, and Evans�

(2005) technique of dynamic indexation in a Calvo (1983) pricing model requires
nonprice-adjusting �rms to raise their prices by last period�s in�ation rate. Formally,
a �rm has the probability �P that it will be able to select a new price and the proba-
bility (1� �P ) that its price rises by last period�s in�ation rate, �t�1. The �rst-order
condition for a price-adjusting �rm in a sticky price speci�cation with dynamic in-
dexation is

Et

" 1X
j=0

�j(1� �P )
j�t+j

�
�t+jP0;t
Pt+j

� "P
"P � 1

 t+j

�
yf;t+j

#
= 0

such that �t = 1 and �t+j = �t+j�1 � �t+j�1 for j � 1.
Sticky Information Prices: Sticky information in price setting, as in Koenig

(1996, 1999), Mankiw and Reis (2002, 2007), and Keen (2007), assumes that all prices
can adjust every period, but that the information used by �rms to set those prices
adjusts infrequently. In particular, �rm f�s information set either updates with a
probability of �P or remains unchanged from j periods ago with a probability of
(1 � �P ). Using its expectations formed j periods ago, �rm f sets a price which
maximizes its expected pro�ts subject to its factor demand equations, (9) and (10),
and households�demand for its goods, (11). Firm f�s �rst-order condition indicates
that it selects a price, Pf;t, based on expectations formed j periods ago of its nominal
marginal cost in period t multiplied by the steady-state price mark-up:

Pf;t �
"P

"P � 1
Et�j [Pt t] = 0.

3.3 Monetary Authority

The monetary authority utilizes a generalized Taylor (1993) nominal interest rate
rule which incorporates both a Clarida, Gali, and Gertler (2000) style smoothing of
the nominal interest rate and an endogenous policy response to the output growth
rate, gyt = yt=yt�1, as in Ireland (2004, 2007) and Coibion and Gorodnichenko (2009).
Speci�cally, the nominal interest rate responds to deviations of the lagged nominal
interest rate, the current in�ation rate, and the current output growth rate from their
respective steady states:

ln(Rt=R) = �R ln(Rt�1=R) + �� ln(�t=�) + �y ln(g
y
t =g

y) + vR;t,
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where the variables without time subscripts are steady-state values, 0 � �R � 1,
�� > 0, and �y > 0. The disturbance term, vR;t, is a transitory monetary policy
shock which follows an autoregressive process:

vR;t = �RvR;t�1 + "R;t,

where �1 < �R < 1 and "R;t is normally distributed with a standard deviation of �R.

4 Equilibrium and Estimation Procedure

The di¤erent styles of nominal wage and price rigidities are incorporated into the
following three DSGE models: a sticky price and sticky wage model with static
indexation, a sticky price and sticky wage model with dynamic indexation, and a
sticky information model of price and wage setting. Each model�s respective equations
from the households, �rms, and monetary authority sectors form a set of equations
describing the systematic equilibrium of that model. Because each model includes a
positive steady-state rate of in�ation, the nominal variables, P �t , Pf;t, Wt, W �

t , Wh;t,
Ah;t, Tt, Mt, Bt, and Dt are divided by Pt to induce stationarity and thus, each
model is able to converge to its nonstochastic steady-state equilibrium.14 The system
of equations for each model is then log-linearized around its nonstochastic steady
state. The rational expectations solution can be obtained for both the sticky price
and sticky wage models by utilizing traditional solution methods, such as Blanchard
and Kahn (1980), King and Watson (1998, 2002), or Sims (2002). As for the sticky
information model, the presence of lagged expectations greatly expands the size of the
model in the traditional solutions framework. That problem often forces researchers
to limit the number of lagged expectations equations and as a result, potentially
changes the dynamics of the model. We circumvent that problem by using Wang
and Wen�s (2006) method of undetermined coe¢ cients to �nd the sticky information
model�s rational expectations solution. The model size in Wang and Wen�s (2006)
solution framework, however, expands proportionally with the number of exogenous
disturbances, which exponentially increases the time it takes to generate a solution.
Given that constraint, we limit the number of exogenous disturbances in our models
to three.
The rational expectations solution for each model is transformed into the following

state space system:
st=Mst�1+"t, (12)

Yt= �st, (13)

where Yt is a vector of observed variables, st is a vector of observed and unobserved
variables, "t is a vector of innovations, and M and � are matrices containing the

14In spite of the di¤erences in the three forms of nominal rigidities, all of the models converge to
the same steady state.
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underlying parameters of the model. Each variable included in the vectors st and Yt

is speci�ed as that variable�s logarithmic deviation from its steady state. Output, the
in�ation rate, and the nominal interest rate are the observed variables in Yt, while
"t comprises the three exogenous shocks, "a;t, "Z;t, and "R;t. The number of observed
variables in Yt is set equal to the number of disturbances in "t to eliminate the
need for any measurement error in (13).15 Finally, our speci�cation of the exogenous
shocks results in "t being normally distributed with a diagonal covariance matrix
E["t"

0
t] = 
.

The state-space representation of the model solution, (12) and (13), is conve-
nient for calculating the likelihood function via the Kalman �lter. The Kalman �lter
generates the optimal linear projections of the observed variables, Ytjt�1, from (13)
based on �Yt�1 � (Yt�1; :::;Y1). The assumption that "t and the initial state s1 are
Gaussian means that the distribution of Yt conditional on �Yt�1 can be speci�ed as
follows:

Ytj�Yt�1 � N(�stjt�1;�
0Ptjt�1�),

where Ptjt�1 = E[(st � stjt�1)(st � stjt�1)0]. That result enables us to generate the
sample log-likelihood function conditional on s1:

L(�) =
TX
t=2

log fYtj�Yt�1
(Ytj�Yt�1;�), (14)

where � is a vector of the parameters contained in�,M, and 
.16 Those parameters
then are estimated by numerically maximizing (14) with respect to �.
Our model is estimated using U.S. data on output, in�ation, and the nominal

interest rate from 1954:Q3-2006:Q4. Output is expressed in per capita terms by
dividing the chain-weight measure of gross domestic product by the civilian, nonin-
stitutional population, age 16 and over. To eliminate the long-run growth component,
the output series is linearly detrended by its average quarterly growth rate over the
estimated sample period.17 The in�ation rate is calculated as the rate of change in
the gross domestic product implicit price de�ator. Finally, the e¤ective federal funds
rate is our measure of the nominal interest rate.
15Any model with more observed variables than innovations requires the addition of error terms

to (13) to prevent the covariance matrix of the data from being singular.
16See Hamilton (1994, Ch. 13) for a detailed description of the Kalman �lter.
17The average quarterly growth rate of output is 0:0046146 for the models estimated over the

1954:Q3-1981:Q2 sample period and is 0:0045898 for the models estimated over the 1981:Q3-2006:Q4
sample period.
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5 Estimation Results and Performance Compar-
isons

5.1 Estimating the Models

The absence of information on investment, capital, employment, and wages means
that some parameters remain either unidenti�ed or weakly identi�ed. Those para-
meters then need to be set prior to estimating the model. Speci�cally, the lack of
investment and capital data makes it di¢ cult to estimate capital�s share of output, �,
the depreciation rate, �, and the size of the capital adjustment costs. Capital�s share
of output is assumed to be 0:33, whereas the depreciation rate is set to a quarterly
rate of 2:5%. Our rational expectations solution method does not require an exact
functional form for the capital adjustment costs, '(it=kt). Instead, we only need
to specify parameter values for ', '0, and '00. We set ' equal to the steady-state
investment-to-capital ratio, i=k, and '0 equal to 1, so that the average and marginal
capital adjustment costs around the steady state are zero. To be consistent with
Chirinko�s (1993) empirical estimates, the remaining capital adjustment costs para-
meter '00 is parameterized so that the elasticity of the investment-to-capital ratio
with respect to Tobin�s q, [�(i=k)'00='0]�1, equals 1.
In a similar way, the absence of labor market data compels us to calibrate certain

parameters in the utility function. The elasticity of the labor supply with respect to
the real wage, 1=�, is parameterized to Christiano and Eichenbaum�s (1992) estimate
of 5, whereas the preference parameter �n is set so that steady-state labor equals 0:2.
It is unnecessary, however, to specify or estimate a value for the preference parame-
ter �M , because it only enters the money demand equation, which is easily dropped
from our model. We initially assume that households do not exhibit habit persis-
tence in consumption (b = 0), but later in the paper we discuss how including habit
persistence impacts our results. Finally, the lack of wage data makes identifying the
price mark-up, the wage mark-up, and the probability of nominal wage reoptimiza-
tion di¢ cult. We set both the price elasticity of demand, �P , and the wage elasticity
of labor demand, �W , to 6, which is consistent with Erceg, Henderson, and Levin�s
(2000) assumption that price and wage mark-ups average 20%. The probability that
household h can optimally adjust its nominal wage, �w, is set to 0:25, which implies
that household h, on average, optimally resets its nominal wage once a year.
All three of our models are estimated via maximum likelihood over an early-

sample period (1954:Q3-1981:Q2) and a late-sample period (1981:Q3-2006:Q4). As
mentioned earlier, it is not uncommon for models to be estimated either over a split
sample or over a sample that begins in the late 1970s or early 1980s. Late sample start
dates have ranged from 1979:Q3 (when the Fed started manipulating non-borrowed
reserves, with an eye toward achieving money-growth targets) to 1983:Q1 (when the
Fed began adjusting borrowed reserves in response to changes in in�ation and slack)
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to 1984:Q1 (the start of the �Great Moderation�in real GDP growth).18

Within each sample period, we follow Ireland�s (2004, 2007) practice of �xing the
parameter values of Z, �, and � to insure that the steady-state values of output, the
in�ation rate, and the nominal interest rate match their respective average values in
the data. Ireland (2004) argues that such an approach �guards against the possibility
that otherwise, the estimated model will attempt to account for systematic deviations
of the observed variables from their steady-state levels by overstating the persistence
of the exogenous shocks.�As a result, we set z = 1041:72, � = 1:0108, and � = 0:9972
in the early sample and z = 1494:68, � = 1:0069, and � = 0:9921 in the late sample.
The remaining ten parameters: �p, �R, ��, �y, �Z , �a, �R, �Z , �a, and �R are
estimated for our models over both sample periods.19

Tables 4-6 display the maximum-likelihood parameter estimates and standard
errors for our three structural models.20 The estimated coe¢ cients of the sticky price
and wage model with static indexation, as shown in Table 4, are broadly similar across
sample periods, with a few exceptions. The variances of the technology, aggregate
demand, and monetary policy shocks are estimated to be substantially higher in the
early sample than in the late sample, which is consistent with Cogley and Sargent
(2005). Preference shocks are slightly more persistent in the early sample, whereas
technology shocks are somewhat less persistent. Prices are also estimated to be
reoptimized, on average, approximately once every 10 quarters in the early sample,
compared to roughly once every 4 quarters in the late sample.
Parameter estimates for the sticky price and wage model with dynamic indexa-

tion are presented in Table 5. As in the static indexation model, the variances of
the technology, aggregate demand, and monetary policy shocks are higher and the
preference shock exhibits more persistence during the early period. The estimated
frequency with which prices are reoptimized remains essentially the same in both
sample periods. The parameter estimates also suggest that the dynamic indexation
model displays extreme interest-rate smoothing (�R = 1) in the early sample, which is
consistent with Ireland�s (2007) monetary policy rule. One peculiar result in the dy-
namic indexation model is that technology shocks are essentially white noise, whereas
in the static indexation model they are highly persistent.
Table 6 presents the parameter estimates for the sticky information model. The

estimated frequency of price reoptimization is roughly once every 7 quarters, on av-
erage, in both sample periods. Monetary policy seems to be more activist in the
early sample. In fact, the estimated coe¢ cients on in�ation and output growth are
nearly equal, which implies that the Fed was responding to the growth rate of nomi-

18For example, Ireland (2001, 2003) begins his estimation in 1979:Q3, Del Negro et al. (2007) and
Kiley (2007) in 1983:Q1, and Coibion (forthcoming) in 1984:Q1.
19Using similar data, Ireland (2004, 2007) also concentrates primarily on estimating the parameters

associated with the policy rule and the exogenous disturbances in his models.
20The standard errors are calculated by inverting negative one multiplied by the log-likelihood

function�s matrix of second derivatives, and then taking the square root of the diagonal elements of
that inverted matrix.
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nal GDP. Aggregate demand shocks are slightly more persistent and the technology
shocks somewhat less persistent in the early sample than in the late sample. Finally,
the variances of our three exogenous shocks are all larger in the early period, which
is consistent with both the static and dynamic indexation models.

5.2 Performance Comparison

We utilize the Bayesian information criterion (BIC) to compare the �t of our three
estimated models to each other and to VAR models with lags of between 1 and 4
quarters.21 The BIC for model i is calculated by penalizing its log-likelihood value,
L(i), by the number of estimated parameters, NP (i), and the sample size of the data,
T , such that

BIC(i) = L(i)� NP (i)

2
ln(T ).

The BIC statistic then is used to calculate a Bayesian-style, pseudo-odds measure
which generates a data-determined probability of model i:

�(i) =
exp(BIC(i))
zX
j=1

exp(BIC(j))

,

where z is the number of models examined. As the value of �(i) rises, the likelihood
that the data is generated by model i rather than one of the alternative models
increases.
Table 7 displays the BIC and pseudo-odds measure for the three structural models

and the four VAR models.22 Panels A and B present results for the early-sample
period and the late-sample period, respectively. The �rst pseudo-odds calculation
compares the static indexation and sticky information models, whereas the second
comparison also includes the VAR models. All three structural models are compared
in the third calculation, while the entire set of models are simultaneously compared
in the fourth computation.
The results from our pseudo-odds measure di¤er greatly across our two sample

periods. In the early sample, the sticky information model clearly �ts the data better
than the static indexation model and all of the VAR models. When the dynamic
indexation model is included, however, virtually all of the pseudo-odds weight shifts
to that model. In the late sample, the pseudo-odds weights for the static indexation
and the sticky information models are roughly 3/5 and 2/5, respectively. That result
suggests that the data slightly prefer the static indexation model in the late sample.
When the VAR models are included, the static indexation model tracks the data

21Brock, Durlauf, and West (2003) and Kiley (2007) also utilize the BIC for model comparison in
a non-Bayesian framework.
22The VAR model used is Xt = A(L)Xt�1 + et, where Xt = [yt; �t; Rt]T .
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slightly better than the best-�tting VARmodel, whereas the sticky information model
performs slightly worse. Those results do not change when the dynamic indexation
model is included in the analysis.
Our �ndings from the pseudo-odds measure are broadly consistent with the results

reported in Tables 1 and 3. That is, aggregate in�ation is much less persistent after
1981:Q2, which suggests that the in�ation environment in our late sample might be
more favorable to static indexation, relative to dynamic indexation. We also �nd that
the SPF in�ation expectations are more stable in the late sample than in the early
sample. That result implies that static indexation might be relatively more appealing
than sticky information in the late-sample period.

5.3 Robustness Check

This section brie�y describes the robustness of the results reported in Table 7 to
our wage-setting and habit-persistence assumptions. Speci�cally, we consider the
impact of both �exible wages (�w = 1) and internal habit persistence in consumption
(b = 0:25 and b = 0:95) on our three structural models.23 Without presenting all of
the details, we note that relaxing our wage-setting and habit-persistence assumptions
does not change our main results. That is, the dynamic indexation model �ts the data
best in the early sample, whereas the static indexation models �ts best in the late
sample. Our structural models, in most cases, perform slightly better with nominal
wage rigidities, as opposed to �exible wages, but that result is usually statistically
insigni�cant. This �nding is consistent with our conjecture that �w is weakly identi�ed
given that our observed variables are output, in�ation, and the nominal interest rate.
As for the degree of habit persistence, we �nd that the data prefer speci�cations with
little or no habit persistence (b = 0:25 or b = 0). The lack of data on consumption,
however, makes it di¢ cult to precisely identify the degree of habit persistence.

6 Empirical Implications

6.1 Variance Decompositions

Tables 8, 9, and 10 show the forecast-error variance decompositions for output, in�a-
tion, and the nominal interest rate for each of our three estimated structural models
over each sample period. The decomposition is conducted at horizons of 1, 4, 8, 12,
20, and 40 quarters, and in the limit as the forecast horizon approaches in�nity. Note
that the columns may not sum to 100 due to rounding errors.
The results from the variance decompositions are quite similar across the models.

Monetary policy shocks have their largest impact on output in the short and medium
runs, whereas technology and aggregate demand shocks have their largest impact on

23Ireland (2007) estimates the habit persistence parameter close to the lower value, whereas Andre,
Lopez-Salido, and Nelson (2005) and Coibion and Gorodnichenko (2009) assume the higher value.
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output at medium and long horizons. Generally, technology shocks are more impor-
tant at business-cycle frequencies in the late sample than in the early sample, whereas
monetary policy shocks are more important at those frequencies in the early sample
than in the late sample. These results suggest that improved control of monetary
policy contributed relatively more to the �Great Moderation�than did the reduction
in the variance of technology shocks.
Aggregate demand shocks have a much di¤erent e¤ect on output variability in the

early sample than in the late sample. First, they account for a much smaller fraction
of output variation, on average, in the late sample than in the early sample. Second,
they tend to have their greatest impact at shorter horizons in the late sample than
they do in the early sample.
Technology and aggregate demand shocks�not monetary policy shocks�are respon-

sible for most of the variation in in�ation and the nominal interest rate. This result
holds across models, across sample periods, and across time horizons. For in�ation,
technology shocks are generally the biggest single source of variation. At medium and
long horizons, though, aggregate demand shocks are often important, too. Finally,
variations in the nominal interest rate are dominated by the aggregate demand shock
at all horizons. Monetary policy shocks generally have little impact beyond the �rst
few quarters.

6.2 Impulse Response Functions

Figures 1 and 2 show how output, in�ation, and the nominal interest rate respond
to monetary policy, technology, and aggregate demand shocks in our models. Figure
1 shows impulse response functions based on early-sample model estimates, while
Figure 2 shows impulse responses based on late-sample estimates. The output and
in�ation charts show percent deviations from steady-state values. The interest-rate
charts show arithmetic deviations from steady-state values, measured in basis points.
To begin, a positive technology shock produces an immediate decline in in�ation

and a positive, hump-shaped output response in all three models and in both sample
periods. Since in�ation falls but the real interest rate rises, the response of the
nominal interest rate is ambiguous. In the early-sample period, the lower in�ation
rate usually dominates so that the nominal interest rate falls. The higher real interest
rate, however, dominates in the late-sample period, which pushes up the nominal
interest rate.
The response to an aggregate demand shock is similar across sample periods.

Speci�cally, a positive aggregate demand shock increases current consumption at
the expense of savings. That decline in savings raises both the nominal and real
interest rates. The increased consumption demand initially pushes up output. Output
eventually declines, however, because the resources diverted away from investment
lower the capital stock, reducing the economy�s productive capacity. The increased
demand for goods also puts upward pressure on the in�ation rate. In�ation follows
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a hump-shaped path in the dynamic indexation and sticky information models, but
peaks on impact in the static indexation model.
Our models�predicted responses to a stimulative monetary policy shock exhibit

several di¢ culties that are common in the DSGE literature. For example, all of the
models fail to produce the hump-shaped output response observed in the data, and
only the dynamic indexation model can generate an in�ation response that peaks
several periods after the shock.24 These di¢ culties can be mitigated by introducing a
richer set of real rigidities and learning into the models.25 As for the nominal interest
rate, it falls on impact, but its response in subsequent periods varies from model
to model. With static indexation, output declines rapidly after its initial upward
jump so that the monetary authority keeps the nominal interest rate low. Output
remains elevated for longer in the dynamic indexation model, which puts upward
pressure on in�ation. The monetary authority reacts to the high and rising in�ation
by promptly raising the nominal interest rate. In the sticky information model, the
nominal interest rate response depends on the sample period. The increase in in�ation
is large enough in the early sample period to push up the nominal interest rate with
a one-period lag. That jump in in�ation, however, is more modest in the late sample
period so that the nominal interest rate declines.

7 Summary and Suggestions for Future Research

None of the models with nominal frictions that we examine�sticky prices and wages
with static indexation, sticky prices and wages with dynamic indexation, or sticky-
information prices and wages�performs consistently well over the entire post-World-
War-II period. During an early sample, when aggregate in�ation was both persistent
and highly variable, the dynamic indexation model performs substantially better than
the alternatives. In a late sample, the static indexation model and the sticky infor-
mation model perform about equally well, and both �t the data better than the
dynamic indexation model. Our results highlight the possibility that some popular
models of price and wage adjustment are not �structural,�because they do not en-
dogenously respond to economic and policy changes. Macroeconomic analyses based
on such models then ought to be considered as approximations which are valid only
in relatively stable economic and policy environments.
Future research might proceed in two directions. One approach is to examine

how a �rm�s preferred price-setting behavior varies in response to changes in the
economic environment and the conduct of policy, while assuming that other �rms
also are optimally setting their prices. That is, carefully model the endogeneity of
nominal frictions so that we can examine the circumstances under which one pricing

24See Altig et al. (2005) for documentation of these patterns.
25Christiano, Eichenbaum, and Evans (2005) develop a model with a rich set of real rigidities

which can generate a hump-shaped output response, whereas Keen (forthcoming) demonstrates
that incorporating learning into the model assists in producing a hump-shaped in�ation response.
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speci�cation is likely to be preferred to the alternatives. In this vein, Cogley and
Sbordone (2008) show that if the permanent component of in�ation is identi�able,
then price reoptimizing �rms will systematically put greater weight on future eco-
nomic conditions as trend in�ation rises. Consequently, the coe¢ cients in the New
Keynesian Phillips curve vary endogenously with trend in�ation.26 Once Cogley and
Sbordone (2008) take into account these shifting weights, they �nd no evidence of
dynamic indexation in the data: Firms appear to hold their prices constant between
reoptimizations. Cogley and Sbordone (2008) do not examine the subsample stability
of their results.
The second avenue for future research is to develop a model of nominal frictions

that is �exible enough to perform well over a wide range of circumstances. For exam-
ple, Ireland (2007) estimates a DSGE model in which �rms can index to a weighted
average of lagged in�ation and the monetary authority�s time-varying target in�ation
rate. His empirical results indicate that �rms completely index to the in�ation rate
target and place zero weight on lagged in�ation.27 Thus, �rms may be even more
sophisticated in their pricing than is allowed for by the static indexation, dynamic
indexation, and sticky information models.

26See, also, Coibion and Gorodnichenko (2008), who examine the interaction between trend in�a-
tion, the degree to which price-reoptimization is forward looking, and the possible indeterminacy of
monetary policy.
27Along the lines of Ireland (2007), Davig and Doh (2008) specify a price rule which enables an

endogenous response to shifts in monetary policy. Davig and Doh (2008) assume that prices are in-
dexed to trend in�ation between reoptimizations, and that monetary policy switches between dovish
and hawkish regimes. Firms then have to account for potential regime changes when optimizing
their prices.
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Table 1: Estimating the In�ation Process

Panel A: Quandt-Andrews Test

h Trim Most Likely Break Max F-Statistic P-Value
1 25% 1968:Q3 7:184 0:203
2 25% 1981:Q2 10:575 0:053
3 25% 1981:Q3 11:351 0:038
4 25% 1981:Q3 15:529 0:006

Panel B: Estimation Results

1969:Q3-1981:Q2 1981:Q3-2006:Q4
h �1 (1� �1) Adj. R2 S. E. �1 (1� �1) Adj. R2 S. E.
1 0:150 0:850 0:065 1:606 0:316 0:684 0:188 0:880

(0:052) (0:052) (0:064) (0:064)
2 0:159 0:841 0:062 1:717 0:422 0:578 0:345 0:907

(0:057) (0:057) (0:057) (0:057)
3 0:187 0:813 0:067 1:905 0:469 0:531 0:483 0:863

(0:065) (0:065) (0:048) (0:048)
4 0:171 0:829 0:056 1:872 0:483 0:517 0:549 0:830

(0:064) (0:064) (0:043) (0:043)
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Table 2: Estimating the Predictive Power of Expected In�ation

Panel A: Quandt-Andrews Test

h Trim Most Likely Break Max F-Statistic P-Value
1 25% 1985:Q3 1:414 0:818
2 25% 1979:Q1 1:354 0:835
3 25% 1990:Q1 1:771 0:716
4 25% 1987:Q1 2:636 0:505

Panel B: Estimation Results

1969:Q3-1981:Q2 1981:Q3-2006:Q4
h �1 (1� �1) Adj. R2 S. E. �1 (1� �1) Adj. R2 S. E.
1 0:695 0:305 0:352 1:470 0:622 0:378 0:266 0:837

(0:137) (0:137) (0:102) (0:102)
2 0:372 0:628 0:135 1:698 0:421 0:579 0:195 0:877

(0:137) (0:137) (0:084) (0:084)
3 0:252 0:748 0:102 1:730 0:309 0:691 0:126 0:913

(0:108) (0:108) (0:080) (0:080)
4 0:192 0:808 0:069 1:779 0:229 0:771 0:091 0:932

(0:103) (0:103) (0:071) (0:071)

Table 3: Summary Statistics for SPFt(�t+h)
(annualized rate)

1968:Q4-1981:Q2 1981:Q3-2006:Q4
h Mean Median Stnd. Dev. Mean Median Stnd. Dev.
1 6:280 6:235 2:298 2:976 2:660 1:345
2 5:887 5:960 2:193 3:065 2:570 1:373
3 5:625 5:880 2:027 3:178 2:875 1:317
4 5:544 5:850 1:901 3:263 2:935 1:353
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Table 4: Maximum Likelihood Estimates and Standard Errors
Sticky Price & Wage Model (Static Indexation)

1954:Q3-1981:Q2 1981:Q3-2006:Q4
Parameter Estimate Standard Error Estimate Standard Error

�p 0:1026 0:0269 0:2512 0:0727
�R 0:8373 0:0786 0:8440 0:0349
�� 0:5981 0:1261 0:6280 0:1062
�y 0:4730 0:1065 0:3798 0:0762
�Z 0:8332 0:0664 0:9732 0:0409
�a 0:9670 0:0144 0:9056 0:0199
�R �0:0868 0:0621 �0:1408 0:0670
�Z 0:0595 0:0311 0:0084 0:0026
�a 0:0770 0:0336 0:0195 0:0037
�R 0:0052 0:0011 0:0025 0:0004

Table 5: Maximum Likelihood Estimates and Standard Errors
Sticky Price & Wage Model (Dynamic Indexation)

1954:Q3-1981:Q2 1981:Q3-2006:Q4
Parameter Estimate Standard Error Estimate Standard Error

�p 0:0593 0:0113 0:0559 0:0128
�R 1:0000 0:1040 0:8904 0:0387
�� 0:3833 0:1310 0:5137 0:1139
�y 0:6250 0:1487 0:5123 0:1066
�Z �0:1533 0:0554 �0:0702 0:0673
�a 0:9830 0:0112 0:9021 0:0201
�R �0:1260 0:0621 �0:1393 0:0685
�Z 0:7821 0:2744 0:4794 0:1924
�a 0:1459 0:0848 0:0188 0:0034
�R 0:0064 0:0015 0:0031 0:0006
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Table 6: Maximum Likelihood Estimates and Standard Errors
Sticky Information Model

1954:Q3-1981:Q2 1981:Q3-2006:Q4
Parameter Estimate Standard Error Estimate Standard Error

�p 0:1368 0:0539 0:1432 0:0555
�R 0:9153 0:0854 0:8759 0:0357
�� 0:7048 0:0589 0:5908 0:0557
�y 0:7611 0:0568 0:4328 0:0669
�Z 0:8990 0:0317 0:9694 0:0381
�a 0:9726 0:0079 0:9237 0:0047
�R �0:0903 0:0464 �0:1398 0:0792
�Z 0:0181 0:0066 0:0106 0:0038
�a 0:0971 0:0231 0:0239 0:0032
�R 0:0080 0:0008 0:0027 0:0003
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Table 7: Model Comparison

Panel A: 1954:Q3-1981:Q2
Log- Pseudo-odds measure

likelihood BIC (1) (2) (3) (4)
Sticky Price & Wage (Static) 1; 072:72 1; 049:31 0:02 0:02 0:00 0:00
Sticky Price & Wage (Dynamic) 1; 081:40 1; 057:99 � � 0:99 0:99
Sticky Information 1; 076:68 1; 053:27 0:98 0:97 0:01 0:01

VAR, N equals 4 1; 094:36 989:86 � 0:00 � 0:00
VAR, N equals 3 1; 097:66 1; 013:89 � 0:00 � 0:00
VAR, N equals 2 1; 095:79 1; 032:83 � 0:00 � 0:00
VAR, N equals 1 1; 091:19 1; 049:13 � 0:02 � 0:00

Panel B: 1981:Q3-2006:Q4
Log- Pseudo-odds measure

likelihood BIC (1) (2) (3) (4)
Sticky Price & Wage (Static) 1; 174:53 1; 151:41 0:61 0:38 0:61 0:38
Sticky Price & Wage (Dynamic) 1; 169:09 1; 145:96 � � 0:00 0:00
Sticky Information 1; 174:10 1; 150:98 0:39 0:25 0:39 0:25

VAR, N equals 4 1; 238:45 1; 135:29 � 0:00 � 0:00
VAR, N equals 3 1; 234:04 1; 151:33 � 0:35 � 0:35
VAR, N equals 2 1; 210:13 1; 147:96 � 0:01 � 0:01
VAR, N equals 1 1; 186:71 1; 145:17 � 0:00 � 0:00
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Table 8: Forecast Error Variance Decompositions
Sticky Price & Wage Model (Static Indexation)

1954:Q3-1981:Q2
Output Decompositions

Quarters Ahead 1 4 8 12 20 40 1
Monetary policy 70.2 42.2 26.9 21.1 16.7 12.4 8.0
Technology 18.1 53.0 70.5 74.8 71.6 55.6 36.2
Aggregate demand 11.8 4.8 2.6 4.1 11.6 32.1 55.8

In�ation Rate Decompositions
Quarters Ahead 1 4 8 12 20 40 1
Monetary policy 4.3 6.4 7.8 7.9 7.5 7.2 7.2
Technology 83.2 72.3 62.3 58.4 56.3 55.0 54.7
Aggregate demand 12.5 21.3 30.0 33.8 36.2 37.8 38.1

Nominal Interest Rate Decompositions
Quarters Ahead 1 4 8 12 20 40 1
Monetary policy 4.0 1.4 0.8 0.7 0.5 0.4 0.4
Technology 0.1 0.1 0.4 0.5 0.5 0.4 0.4
Aggregate demand 96.0 98.5 98.8 98.8 99.0 99.2 99.3

1981:Q3-2006:Q4
Output Decompositions

Quarters Ahead 1 4 8 12 20 40 1
Monetary policy 40.0 16.6 8.5 5.8 3.9 2.6 2.0
Technology 44.6 78.0 89.0 92.1 93.9 95.0 95.5
Aggregate demand 15.4 5.4 2.5 2.1 2.2 2.4 2.5

In�ation Rate Decompositions
Quarters Ahead 1 4 8 12 20 40 1
Monetary policy 11.0 13.1 13.8 13.8 13.7 13.7 13.6
Technology 76.2 68.4 64.9 64.3 64.3 64.4 64.6
Aggregate demand 12.9 18.5 21.4 22.0 22.0 21.9 21.9

Nominal Interest Rate Decompositions
Quarters Ahead 1 4 8 12 20 40 1
Monetary policy 12.2 5.5 3.9 3.4 3.1 3.0 3.0
Technology 6.9 3.3 2.4 2.2 2.3 2.5 2.8
Aggregate demand 80.9 91.3 93.8 94.4 94.6 94.5 94.2
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Table 9: Forecast Error Variance Decompositions
Sticky Price & Wage Model (Dynamic Indexation)

1954:Q3-1981:Q2
Output Decompositions

Quarters Ahead 1 4 8 12 20 40 1
Monetary policy 83.9 75.7 60.3 45.7 23.7 8.5 2.8
Technology 2.5 14.1 33.9 43.5 31.7 11.4 3.8
Aggregate demand 13.6 10.3 5.8 10.8 44.6 80.1 93.4

In�ation Rate Decompositions
Quarters Ahead 1 4 8 12 20 40 1
Monetary policy 0.4 4.2 11.6 15.6 15.8 15.4 14.9
Technology 98.7 86.9 61.6 45.3 40.6 41.8 40.7
Aggregate demand 0.8 8.9 26.8 39.1 43.7 42.9 44.4

Nominal Interest Rate Decompositions
Quarters Ahead 1 4 8 12 20 40 1
Monetary policy 0.4 1.8 2.3 2.3 1.9 1.6 1.3
Technology 1.3 2.5 1.3 1.4 2.0 1.8 1.5
Aggregate demand 98.3 95.7 96.4 96.3 96.1 96.7 97.2

1981:Q3-2006:Q4
Output Decompositions

Quarters Ahead 1 4 8 12 20 40 1
Monetary policy 66.0 44.0 27.9 21.1 18.1 17.7 17.4
Technology 13.7 41.9 64.0 73.1 75.4 72.8 72.2
Aggregate demand 20.3 14.1 8.2 5.8 6.6 9.5 10.4

In�ation Rate Decompositions
Quarters Ahead 1 4 8 12 20 40 1
Monetary policy 0.2 2.2 7.3 11.0 10.9 10.7 10.7
Technology 99.6 96.3 87.3 80.7 80.9 81.1 81.1
Aggregate demand 0.2 1.6 5.4 8.3 8.2 8.2 8.2

Nominal Interest Rate Decompositions
Quarters Ahead 1 4 8 12 20 40 1
Monetary policy 2.5 0.9 0.6 0.6 0.5 0.5 0.5
Technology 0.9 0.4 0.4 0.4 0.4 0.4 0.4
Aggregate demand 96.6 98.7 99.0 99.0 99.1 99.1 99.1
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Table 10: Forecast Error Variance Decompositions
Sticky Information Model

1954:Q3-1981:Q2
Output Decompositions

Quarters Ahead 1 4 8 12 20 40 1
Monetary policy 82.7 62.8 45.4 34.1 21.6 10.8 4.9
Technology 9.0 33.3 47.8 47.9 37.5 20.5 9.3
Aggregate demand 8.3 3.9 6.8 18.0 41.0 68.7 85.8

In�ation Rate Decompositions
Quarters Ahead 1 4 8 12 20 40 1
Monetary policy 5.3 12.6 16.0 16.1 15.6 15.4 15.3
Technology 92.8 69.3 52.9 49.4 48.6 48.6 48.3
Aggregate demand 1.9 18.1 31.2 34.6 35.8 36.0 36.4

Nominal Interest Rate Decompositions
Quarters Ahead 1 4 8 12 20 40 1
Monetary policy 1.4 0.5 0.3 0.2 0.2 0.1 0.1
Technology 0.5 0.2 0.1 0.1 0.1 0.1 0.1
Aggregate demand 98.1 99.3 99.6 99.7 99.8 99.8 99.8

1981:Q3-2006:Q4
Output Decompositions

Quarters Ahead 1 4 8 12 20 40 1
Monetary policy 51.7 27.7 15.4 10.5 6.6 4.3 3.3
Technology 27.2 62.1 79.8 86.1 90.2 92.3 92.7
Aggregate demand 21.1 10.2 4.8 3.4 3.1 3.5 4.0

In�ation Rate Decompositions
Quarters Ahead 1 4 8 12 20 40 1
Monetary policy 4.6 6.5 10.6 10.9 10.9 10.8 10.7
Technology 92.5 80.3 73.1 71.5 71.2 71.5 71.7
Aggregate demand 2.9 11.2 16.4 17.6 17.9 17.7 17.6

Nominal Interest Rate Decompositions
Quarters Ahead 1 4 8 12 20 40 1
Monetary policy 7.1 2.9 2.0 1.7 1.5 1.4 1.4
Technology 2.9 1.5 1.0 0.8 0.8 1.0 1.1
Aggregate demand 90.0 95.7 97.0 97.5 97.7 97.6 97.5
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Figure 1: Impulse Responses, 1954:Q3-1981:Q2

0 5 10 15 20
-0.4

-0.2

0.0

0.2

0.4
Inflation Rate

pe
rc

en
t

0 5 10 15 20
-30

-20

-10

0

10

20
Nominal Interest Rate

Technology Shock

ba
si

s 
po

in
ts

0 5 10 15 20
-1.5

-1.0

-0.5

0.0

0.5
Output

pe
rc

en
t

0 5 10 15 20
0.00

0.05

0.10

0.15

0.20
Inflation Rate

pe
rc

en
t

0 5 10 15 20
0

20

40

60

80

100

120
Nominal Interest Rate

Aggregate Demand Shock

ba
si

s 
po

in
ts

Sticky Price & Wage (Static) Sticky Price & Wage (Dynamic) Sticky Information



0 5 10 15 20
-0.2

0.0

0.2

0.4

0.6
Output

pe
rc

en
t

0 5 10 15 20
0.00

0.02

0.04

0.06

0.08
Inflation Rate

pe
rc

en
t

0 5 10 15 20
-25

-20

-15

-10

-5

0

5
Nominal Interest Rate

Monetary Policy Shock

ba
si

s 
po

in
ts

0 5 10 15 20
0.0

0.2

0.4

0.6

0.8
Output

pe
rc

en
t

Figure 2: Impulse Responses, 1981:Q3-2006:Q4
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