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This online theory supplement has three sections. First section provides the main lemmas
needed for the proofs of Theorems 1-3 in Appendix A of the paper. Second section contains
the complementary lemmas needed for the proofs of the main lemmas in the previous section.
Third section explains the algorithms used for implementing Lasso, Adaptive Lasso and
Cross-validation.

Notations: Generic finite positive constants are denoted by C; for i = 1,2,--- and c.
They can take different values in different instances. ||A|l2, [[A||lr, ||A|lw and ||A]]; denote
the spectral, Frobenius, row, and column norms of matrix A, respectively. \;(A) denote the
it eigenvalue of a square matrix A. ||x|| denote the £, norm of vector x. If { f,,}°°, is any real
sequence and {g, }°° ; is a sequence of positive real numbers, then f,, = O(g,), if there exists a
positive constant Cy and ng such that |f,|/g, < Co for all n > ng. f,, = o(gn) if f./g, — 0 as
n — oo. If {f,}22, and {g,}52 , are both positive sequences of real numbers, then f,, = ©(g,)
if there exist no > 1 and positive constants Cy and Cy, such that inf, >, (f./gn) > Co and
SUD,, >y (fn/9n) < Ch. respectively. If { f,}52, is a sequence of random variables and {g,, }5>,
is a sequence of positive real numbers, then f, = O,(g,), if for any € > 0, there exists a

positive constant B. and n. such that Pr (| f,| > ¢g.B:) < ¢ for all n > n..

Main Lemmas

Lemma S.1 Let y; be a target variable generated by equation (1), z; = (214, 221, -+ 5 Zmt)’ be
the m x 1 wvector of conditioning covariates in DGP(1) and x; be a covariate in the active

set Sny = {1, Tat, -+ , TN} Under Assumptions 1, 3, and 4 we have
E [ytIz‘t - E(ytxz‘tﬂft—l] =0,
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fori=1,2,--- N,
E[yzer — B(ys2e)| Fi-1] = 0,
fort=1,2,--- . m, and
E [y; — E(y)|Fi1] = 0.
Proof. Note that y; can be written as
Yi = Zyay + X By + up = > ey derze + Z?:l B + ug,

where X+ = (T14, Tor, -+, Tge)', and By = (B, Lo, -+, Biy)’- Moreover, By Assumption 4,

ag 18 independent of x;» and zpy for all 7, ¢/, and t'. Hence, for i = 1,2,--- , N, we have
B(ywa Fi1) = D00, E(aét|-E—1)E(zétxit|ﬂ—1)+2§:1 BB, Fo1) B Fro1) Y B(uaie| Fio1 ).

By Assumption 1, we have E(azx|F;—1) = B(ay), B(zazi| Fi1) = B(zazi), B(8; | Fi1) =
E(8,,), B(ajru|Fi1) = B(zjixi), and B(uxi| Fio1) = B(ugzy). Therefore,

Byl Fi1) = Y imy Blan)B(zaxi) + Z?Zl B(8;)B(7jewi) + Buri) = B(yizit).-
Similarly, we can show that for £ =1,2,--- ,m,

E(yrzal Fi1) = 35— Blae Fi1)E(zerza| Fi1) + Z?:l BE(Be| Fe—1)B(@jezer| Fi1) + Blupze| Fi-1)
= Z?:l E(ag)B(ze2e) + 25:1 E(ﬂjt)E(mjtZét) + E(uizer) = B(yezer).

Also to establish the last result, we can write y; as y; = q;6; + us, where q; = (2, %}, )’

and &, = (a}, 3;)’. We have,

E(y; | Fio1) = B( 6| Fim1)B(quqy| Fio1)E(8:| Fio1) + B(uf| Fio1) + 2B (07| Fr—1)E(quue Fi—1)
= E((SDE(%Q;)E(&J + E(U?) + 2E(5£) E(Qt“t) = E(?J?)

Lemma S.2 Let y; be a target variable generated by equation (1). Under Assumptions 2-4,

for any value of o > 0, there exist some positive constants Cy and Cy such that
sup Pr(|y,| > ) < Cyexp(Cra*’?)
t
Proof. Note that

lyel < 320 laeezer] + 325118 el + .
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Therefore,

Pr(ly:| > a) < Pr(3_L [asze| + Z?:1|Bjtxjt| + |w| > ),

and by Lemma S.10 for any 0 < m; < 1,7 =1,2,--- ;k+m + 1, with Zk+m+1 =1, we

can further write

Pr(jy| > a) <370, Pr(lagze| > mea) + Z?Zl Pr(|B,,2j| > mja) + Pr(|ug] > Tpymy1cr).

Moreover, by Lemma S.11, we have

Pr(|agze| > mea) < Prl|ze| > (ma)l/z] + Pr{|ag| > (ma)lﬂ]
Pr(|8,mj > mjer) < Prllag| > (m0)?] + Pr(|8,] > (mia)'?],
and hence

Pr(|y,| > a) < 377, Pr{lzal > (mea)3 + 3000, Prlag| > (mea) 2]+
St Prllag] > (mje) V2 4 8 Pr(|By] > (m0) V2] + Pr(|uy| > mrgac),

Therefore, under Assumptions 2-4, we can conclude that for any value of o > 0, there

exist some positive constants Cy and C such that

sup Pr(|y;| > ) < Cyexp(Cra®/?).
t

[
Lemma S.3 Let x;; be a covariate in the active set, Sy = {x1, T, -+ , TNt} and z; =
(21t, 296, -+ 2me)” be the m x 1 wvector of conditioning covariates in the DGP, given by (1).

Define the projection regression of x; on z; as
-/ ~
Tit = P2t + Ty,

where P, = (Yy,---,4,.) is the m x 1 vector of projection coefficients which is equal to
(TS Bzez)) [T S B(zyxi)]. Under Assumptions 1, 2, and 4, there exist some
finite positive constants Cy, Cy and Cy such that if 0 < X\ < (s +2)/(s +4), then

Pr(|xM.x, — B(%%,)| > Cr) < exp(—~CoT~'C3) + exp(—C1T%)
and if A > (s +2)/(s+4), then
Pr(|x/M.x; — B(R%;)| > ¢r) < exp(—Coly ™) + exp(—C1T%)
for all i and j, where X; = (T, T, Tir), Xi = (T, Tigy -+ ,xir), and M, = T —

T*IZEA];Z’ with Z = (21,29, -+ ,27) and 3., = T3] (z,2}).
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Proof. By Assumption 1 we have

E [z 200 — B(ze 200 )| Fi—1] = 0.
for 0,0 =1,2,---,m,

E [zixj — B(xyxj)|Fioa] = 0,
fori,j=1,2,--- N, and

E [zgzi — B(zgwiy)| Fio1] = 0,

for{ =1,2,--- ,m,i=1,2,--- , N. Moreover, by Assumption 2, for all 7, ¢, and ¢, x;, and
ze have exponential decaying probability tails. Additionally, by Assumption 4 the number
of pre-selected covariates m is finite. Therefore by Lemma S.27, we can conclude that there

exist sufficiently large positive constants Cy, Cy, and Cy such that if 0 < A < (s+2)/(s+4),
Pr(xM.x, — B(&%,)| > Cz) < exp(—CoT~'C2) + exp(~CiT)

and if A > (s +2)/(s +4)
Pr(|x/M.x; — B(X%,)| > (1) < exp(—Co¢ ) + exp(—C1T?)

for all i and j. m

Lemma S.4 Lety, be a target variable generated by the DGP given by (1), z; = (211, 221, =+ » Zmt)’
be the m x 1 vector of conditioning covariates in DGP(1) and z; be a covariate in the active

set, Sny = {T1, Toy, -+ , TN} Define the projection regression of xy on z; as
! 77 ~
Tip = 2y, p + Tit,

where v,_bijT = (Y7, Upir) is the m x 1 vector of projection coefficients which is equal

-1
to TS0, E(ztzg)] (TS0 B(zy4)]. Additionally define the projection regression of

Yi ON Zy QS

Y = ZQJJ%T + gh

_ -1
where ¥, p = (w1y7T7 e 7¢my7T), is equal to [T_l ZtT=1 E(zz;) [T Zthl E(zwy:)]. Un-
der Assumptions 1- 4, if 0 < A < (s +2)/(s + 4),

Pr(|xM.y — 0;r| > (;) < eXp(—C’OT_ICQT) + exp(—C’lTCQ),
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and if X > (s +2)/(s+4)
’ s/(s+1) Ca
Pr([x;M.y — 01| > ¢7) < exp(—=Co(y ) + exp(—=ChT7),

for alli =1,2,--- ,N; where x; = (z;1,%i2, - ,xir), ¥ = (Y1, Y2, ,yr), Oir = T@i,T =
E( i;s’% 5(7, = (iilaji% e 7jiT)/ ) S’ = (glag% e 7gT),7 Mz =1- T_IZEA];ZIZ,7 7 = (Z17Z2a
zp) and X.. =T 'Y, 27,

Proof. Note that by Assumption 1 and Lemma S.1, for all 7 and ¢, cross products of x;,
zp and y; minus their expected values are martingale difference processes with respect to
filtration F;_;. Moreover, by Assumption 2 and Lemma S.2 , for all 7, ¢, and ¢, x;, 2 and
y; have exponential decaying probability tails. Additionally, by Assumption 4 the number
of pre-selected covariates m is finite. Therefore by Lemma S.27, we can conclude that there
exist sufficiently large positive constants Cy, C;, and C5 such that if 0 < A < (s+2)/(s+4),
then

Pr(|xiM.y — ;7| > (7) < exp(—=CoT~'(F) + exp(—CiT),
and if A > (s +2)/(s +4), then

Pr(|x/M.y — 07| > ¢p) < exp(—Co¢i ® ™) + exp(—C1T®),
foralli=1,2,--- ,N. m

Lemma S.5 Let y; be a target variable generated by equation (1), z; be the m x 1 vec-
tor of conditioning covariates in DGP(1) and x; be a covariate in the active set, Sny =

{14, 224, - ,xNe}. Define the projection regression of y; on q; = (z,,xy)" as
=/
Ye = @, rdt + Mg

_ -1

where ¢; = [T‘l ST E(qtqg)} [T ST B(quy)] is the projection coefficients. Under
Assumptions 1-4, there exist sufficiently large positive constants Cy, C7 and Cy such that if
0<A<(s+2)/(s+4), then

Pr{|n/M, n, — E(nin,)| > (1] < exp(=CoT7'(3) + exp(—CiT?),
and if A > (s +2)/(s+4), then
Pr (M, 1 = B(nimy)| > ¢7] < exp(=Coy ™) + exp(~CiT%),
for alli =1,2,--- | N; where n; = (N1, Min, - »Mir)'s My = Ir — Q(Q'Q)'Q/, and Q =

(q17 q2, 7qT)/-
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Proof. Note that n)M,n, = y'M,y where y = (y1,¥2,--- ,yr)’. By Lemma S.1 we have
E [y — B(yii) | Fia] = 0,

fori=1,2,---, N,
E [yrzee — B(yeze)[Fi-1] = 0,

for {=1,2,---,m, and
E [y; — BE(y;)|Fia] = 0.

Moreover, by Assumption 2 and Lemma S.2, for all 7, ¢, and ¢, x;, 2z, and y; have expo-
nential decaying probability tails. Additionally, by Assumption 4 the number of pre-selected
covariates m is finite. Therefore by Lemma S.27, we can conclude that there exist sufficiently
large positive constants Cy, Cy, and Cy such that if 0 < A < (s +2)/(s+4), then

Pr[|[n/M, m; — B(nin;)| > (7] < exp(=CoT'¢7) + exp(=CiT%),
and if A > (s +2)/(s +4), then

Pr [|niM, 0, — B(n/n,)| > (7] < exp(—Co/“ ™) + exp(~C1T%),
foralli=1,2,--- ,N. m

Lemma S.6 Let y; be a target variable generated by equation (1), z; be the m x 1 vec-
tor of conditioning covariates in DGP(1) and s be a covariate in the active set Sy; =

{14, 224, -+ ,xNe}. Define the projection regression of xy on z; as
! 77 ~
Tip = 2y, p + Tit,

where v,_bijT = (Y17, Upir) is the m x 1 vector of projection coefficients which is equal
to [T' ) B(zz) [T Y1 B(zxy)] . Additionally define the projection regression of

Y ON Zy GS
— ol al, ~
Yt = thy,T + Yt

_ -1
where ’lpy,T = (wly,T7 T wmy,T), is equal to |:T_1 Z;&Tzl E(thg)] [T_l ZtT:1 E(Ztyt)] : L@Stly,
define the projection regression of y; on q; = (z;, xi)' as

=/
Ye = @, rde + Mg

_ -1
where ;= |T7! S E(qtqg)] (TS B(aquye)] is the vector of projection coefficients.
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Consider
T-'x'M.y
B \/Tﬁln;qui\/Tilngin’

ti T

fOT‘ all i = 1727“' 7N7' where X; = (xil7xi2>" : wxiT),: y = (y1>y27' te 7yT),7 n, = (771'17771'2
)t ’niT)/f M, =1- Z(Z/Z)ilzc Z = (Z1>Z2"" 7ZT)/ ’ Mq =1I- Q(QIQ)ilQI; Q =
(d1,92, - ,qr)’. Under Assumptions 1-4, there exist sufficiently large positive constants
Cy, C1 and Cy such that

1
Pr [[tir| > ¢,(N,0)|0:0 = (T )] < exp [~Coci(N,6)] + exp(—CT?), for ¢; > 5

where c,(N, ) is defined by (8), 0;17 = TO;r = B(XY), X = (Ti1, a2, -+, Tir), and § =
(1, T2, -+ Jr). Moreover, if c,(N,8) = o(TY?>7=¢) for any 0 < 9 < 1/2 and a finite

positive constant c, then there exist some finite positive constants Cy and Cy such that,
Pr [|ti,T| > ¢,(N,0)|0; 7 = @(Tl_ﬁi)] > 1 —exp(—=CoT), for 0 <9; < %
Proof. Let 07 = E(T 'n/n,), and 0, = B(T~'X}X;). We have |t; 7| = AirBir, where,

A'T — |T_1/2XiMzY‘

Uﬁi 0%,
and

O'mO'aEi

VT M T XML

Bir

In the first case where 6, 7 = &(T"'~%) for some ¢; > 1/2, by using Lemma S.11 we have

PI‘ [|tz,T| > cp(n, 6)|017T = @(Tl_eiﬂ S Pl" [AzT > Cp(N, 5)/(1 + dT)|9i,T = @(Tl_ei)] +
Pr [BZT > 1+ dT|6)7;7T = @(Tl_q)} y

where dr — 0 as T' — oo. By using Lemma S.13,

Pr |:BZT >1+ dT|9i,T = @(Tl_ei)}
=Pr || Tni 72,
\/T’lnéqu \/Tilxg;Min
T M, n,) (T~ 'x'M,x;
< Pr <|( i qm)(2 X X ) . 1| > dTlei,T — @(Tl—ei)>

2
90,9,

— 1| > dT|‘9i,T = @(Tl_ei)>

=Pr[Mir + Rir + My Rir > dr|b;r = (T )]

where Rir = |(T~'niMyn;)/o; — 1| and M = [(T~'x]M.x;) /0% — 1|. By using Lemmas
S.10 and S.11 , for any values of 0 < 7; < 1 with Z?:1 m; = 1 and a strictly positive constant,
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¢, we have

Pr [BiT >1+drlbir = @(quﬂ
< Pr[Myr > midr|0sr = S(T'9)] + Pr [Rir > madr|0ir = O(T" )] +
Pr [MiT > Bdp|;r = @(Tl_“)} + Pr[Rir > c|b;r = (T )] .

First, consider Pr [M;r > md7|0;7 = &(T'~%)], and note that
Pr [Mir > mdr|fir = ©(T'™7)] = Pr [[x;M.x; - B(XX,)| > Wlaz‘:deTWi,T = o(T™9)].
Therefore, by Lemma S.3, there exist some constants Cy and C; such that,
Pr [./\/liT > midr|0ir = @(Tl_ei)} < exp(—C’OTcl).
Similarly,
Pr [Mr > Zdr|0;r = S(T )] < exp(—=CoT).
Also note that
Pr [Rip > mady|0ir = S(T'%)] = Pr [m;qu —B(nn,)| > w202 Tdr|f;r = @(Tl‘“)] .
Therefore, by Lemma S.5, there exist some constants Cy and C; such that,
Pr [RZ-T > Todr|0;r = @(Tl_ei)} < exp(—=CoT).
Similarly,
Pr[Rir > c|0;r = &(T'%)] < exp(—CoT").
Therefore, we can conclude that there exist some constants Cy and C such that,
Pr [Bir > 1+ drl0;r = (T'9)] < exp(—CoT)
Now consider Pr [A;r > ¢,(N,0)/(1+ dr)|0;7 = ©(T' )], which is equal to
cp(N, 0)

'‘M,y — 0, 0; L
Pr <|X7, y T + ,T| > T1/2 |9i7T — 6(Tl 61)>

O'm_O'fi 1+dT

< Pr ‘X;sz _ 9iT| > On, 0%, T1/2Cp(N, 5) . |9iTH(9iT _ @(Tlfq) .
’ 1 +dT ’ k]

Note that since €; > 1/2 the first term on the right hand side of the inequality dominate the

second one. Moreover, Since c,(N,§) = o(T?) for all values of A > 0, by Lemma S.4, there

S.8



exists a finite positive constant Cy such that

Pr [|x|M.y| > kiT"?¢,(N,6)|0;7 = &(T'~%)] < exp [—Coc2(N,0)] ,

Ini0%;
I+dr °
Given the probability upper bound for A;7 and B;r, we can conclude that there exist

where ki =

some finite positive constants Cy, C; and Cy such that
Pr [[tir| > ¢,(N,6)|0;7 = S(T"%)] < exp [-Coci(N,0)] + exp(—C T).
Let’s consider the next case where ;7 = (T %) for some 0 < 9; < 1/2. We know that
Pr[[tir| > cp(N,8)|0;7 = (T"")] =1 —Pr [tir < ¢p(N,8)|0ir = (T )]
By Lemma S.15,
Pr[|t; 7| < ¢p(N,8)|0;7 = S(T"7)] < Pr [AZ-T < 1+ dpe,(N,0)|0;7 = @(Tl—”i)} +
Pr [BZT <1/\/1+delbir = @(Tl—ﬂi)} .

Since ;7 = ©(T*~?), for some 0 < ¥J; < 1/2 and c,(N, ) = o(T/?79=¢), for any 0 < 9 <
1/2, |0, 7| — 0,02 [(1 + dr)T)Y2c,(N, §) = &(T*%) > 0 and by Lemma S.12, we have

Pr [AiT < /1 +dpey(N,6) |07 = @(TH%‘)]
by [IT—l/Qx;sz — T 00 + T8,

0771: 0z,

< V1+drey(N,6)|0ir = S(T')

< Pr ngsz —Oir| > |0ir| — 0,05, [(1 + dT)T]l/ch(N, N|Oir = @(Tl_ﬁi)] )
Therefore, by Lemma S.4, there exist some finite positive constants Cy and C; such that,
Pr [IXMLY — O,r] > 0:7] — 03,05, [(1+ dr) TV, (N, )67 = ©(T'")] < exp(—CoT),
and therefore

Pr[Ar < VT5 dre (N, 9617 = S(T'")] < exp(~CaT ).

S.9



Now let consider the probability of B;r,

Pr (BiT <1V +drlfir = @(TH%))
_ Py 0n, 0, - 1
B VT M, /T XM.x;  VI+dr
Tl M,n, (T %' M.x;
— Pr <( L q:;)((ﬂ M) ) e = @(T“ﬁ))

N Ti

07 = @(Tlm)>

< Pr(Mir + Rir + MirRir > dr|0; 7 = &(T*7%)),

where Rir = [(T'miM,n;)/o2 — 1| and Mir = [(T~'x;M.x;)/03, — 1|. By using Lemmas
S.10 and S.11 , for any values of 0 < m; < 1 with Z?:l m; = 1 and a positive constant, ¢, we

have

Pr [BiT <1/V1+dr|0ir = @(Tlfﬂi)]
< Pr[Mir > mdr|fir = S(T")] + Pr [Rir > madr|fir = &(T")] +
Pr [Myr > Z3dr|0;r = S(T* )] 4+ Pr [Rir > c|b;r = ©(T )] .

Let’s first consider the Pr [/\/liT > midr|0ir = @(Tl_ﬁ")]. Note that
Pr [Mr > mdr|0ir = ©(T'")] = Pr [xM.x; — E(Viv;)| > m02 Tdr|0;r = (T' )] .
So, by Lemma S.3, we know that there exist some constants Cy and C; such that,
Pr [/\/liT > mdr|0ir = @(Tl_ﬁi)} < eXp(—C’OTcl).
Similarly,
Pr [Mir > %dr|0;r = ©(T"")] < exp(=CoT).
Also note that
Pr[Rir > modr|0;r = @(Tl_ﬂi)} = Pr [ln;qui — E(nimy)| > 7T20-727deT|0i,T = @(Tl_ﬁi)] :
Therefore, by Lemma S.5, there exist some constants Cy and C; such that,
Pr(Rir > madr|6ir # 0) < exp(—Cchl).
Similarly,

Pr(Rir > iz # 0) < exp(=CoT™).

S.10



Therefore, we can conclude that there exist some constants Cy and C; such that,

Pr [BzT < 1/\/ 1+ dT|9i,T = @(Tl_ﬁi)} < GXp(—CoTcl).
So, overall we conclude that
Pr [[tir| > ¢p(N,0)|0:r = (T
=1—"Pr[tir < cy(N,8)|0ir = o(T"")] > 1 — exp(—CoT).

Lemma S.7 Consider the following data generating process (DGP) for y;:

k
Y = intﬁit + Ut fOT’t = ].,2, s ,T. (Sl)
=1

Estimate the following regression
k Ir
Y=Y Tad; T ) Thrjady 1 = b+ S8 + 1, (S.2)
i=1 j=1

by least squares (LS), where q; = (1, Tot, - -+, Tht)', @ = (01, Ooy -+ 5 Op)'s St = (Tpr1t, Thorot,
 Tpaipt), and & = (01,09, -+ ,8,,.). The LS estimator of ~p = (¢',0%) is

Y= (TT'W'W) " (T7'W'y) (S.3)
where W = (w1, Wy, -+, wr)', wy = (q},s}) andy = (y1,v2,--- ,yr). The model error is
=y — Wi (5-4)

Suppose that Ayin [T 'E(W'W)] > ¢ > 0, and lp = ©(T?), where 0 < d < 1. Moreover
suppose that Assumptions 1-4 holds. Now,

(i) If B(B,;,) = B, for all t, then
14r =il = 0, (1) (5.5)
where v = (3, 0;.) and B = (By, By, -+, By)- If Assumption 6 also holds, then
o " » T , 1 Iy
T'7'n= 2 ; (T tzlo-ijt7x0-ijt7ﬁ> +a,r+0p (ﬁ) + 0, (T) . (5.6)

where 0410 = B (zaxj), 0ijis =B [(By — B:) (B — B,)], and 6% 7 = T7'E (u'u).

S.11



(i) If B (w,w}) is time invariant, then
. o d-1
Iz =5l = 0, (17"). (8.7)

where 3 = (B/TJOET)/7 BT = (BlT?BQT7"' 7BkT),7 and BiT = T_lthzl E(By). If
Assumption 6 also holds, then

k
EEDUIR _ N _ 1 [
T-'0'H = Z Z (T 1 Zoijt,zoiﬁﬁ> + a5+ 0, (ﬁ) + 0, (%) . (S.8)

=1 j=1 t=1

where o7y 5 = B [<6it - Bi,T)(Bjt - ﬁj,Tﬂ :

Proof. In the first scenario, where E(3,,) = 3, for all ¢ , we can write (S.1) as
k k k k

0= D Y B B) = Y = B
=1 =1 i=1 i=1

where ry; = x4 (B, — 5;), re = (T4, 726, -+ , 7))’y and 7 is a k X 1 vector of ones. We can

further write the DGP in a following matrix format,
y=QB8+R7 +u, (S.9)

where Q = (q1,92, -+ ,qr)’, R = (r,ro,--+, rp) and u = (ug,us,- -+ ,ur). By substitut-
ing (S.9) into (S.3), we obtain

3 = (17 WW) T (TPWQE) (T WW) T (W R+ (T WW) T (T W)
(S.10)

where W = (Q,S), and S = (sy,8s,--- ,s7)". Since v; = (8,0;,.)', Q8 = QB + S0;, =

W=+, which in turn allows us to write the above result as:
Y = (TTW'W) ™ (T'W'W) 7t (TWW) ™ (T WRr)+ (T "W'W) ™ (T W),
and hence

Y=~ = (TT'W'W) " (TT'W'RT) + (T7'W'W) ' (T7'W'n) . (S.11)
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We can further write

p =y ={ (T WW) T [B (T W'W)] T T (WRT) ~ B(WRT)]} +
{(T7wWw)™ ~ [B(T'W'W)] "'} [T7'B (W'R)]
[E(T7W'W)] T (WRT) - E(WRT }+
{(Tww) ™ = [B(r'WwW)] {1 E (W)} +
{(rww)™ [E TWw)] 1} T-'E (W)

Hence, by the sub-additive property of norms and Lemma S.16, we have

T'WW) ™' — [E(T"'W'W)] ™

157 =7l < T (WRT) — B (WRT))| +

1 -1

TWW) T - [E(TT'W'W)] F||T—1E(W’RT)H+

Trww) (B WW)) |7 (W) - B+

1 -1

TWW) T - [E(TT'W'W)] F||T—1E(W’u)||+

(T
(T
E (0 WwW)] | |7 (WRr) — B(WR)]|| +
(T
(T
[E

(T7'W'W)] —1H2 |7 (W) — B (W) .

Since, by Assumption 3, §,, for i = 1,2,---  k are distributed independently of w, for
t=1,2---,T,

kT T k T
T'E(W'RT) = Z T Z B(wyri) Z T Z E(wi (B — B;))
i=1 t=1 =1 t=1
k T
== Z Til Z E(thzt)E (ﬂzt ﬂz)] =0
i=1 t=1
Also,
T
T7E(Whu)=T") E(wau) =0
t=1

S.13



Hence,

I =il < (0 Wew) = (B ww) W+

[y

(T 'W'w)] -

T'WRT|| +

-1

B (T 'W'W)]

! | T "W'u|| +
P

fay

(T
B
(T7W'w)
[

B (1 WW)] |7 Wl

Since Assumptions 1 and 2 imply that W, and u satisfy condition (i) and (ii) of Lemma
S.19, by Lemmas S.19 and S.20, we have

7wl =op( %).

Similarly,

|77 (W'W) — E(WW))|, =0, ( 57) ,

and since Ir = ©(T?) with 0 < d < 1/2, by Lemma S.21,

I
A
Now consider ||[T"'W’'R 7||. Note that the row j and column i of Iz x p matrix T-'W'R
is equal to 71 Zthl wj;ri. Hence the j™ element of Il x 1 vector T-'W’'RT is equal
T-1 Zle ZtTZI wj;rip. In other words, T-'W'Rr = T! Zle Zthl w;ri;. Therefore, (re-
calling that r; = x4 (8, — 5;))

| ww) - B (rww))

2 2

7 wWiRe|” =

kT k T
T! Z Z(Wtrit) < Z T Z Wi (B — Bi)
i=1 t=1 i=1 t=1

kT T
=72 Z Z Z Wi i (B — B;) (B — B;)

=1 t=1 t'=1

k+ir

kT T
=72 Z Z Z WerWer TiTigr (B — B;) (B — By) -

i=1 t=1 t'/=1 (=1

S.14



Since, by Assumption 1, 3, for ¢ = 1,2,--.  k are distributed independently of w, for

t=1,2,---,T, we can further write,
kT T ktlp
_ 2
E|T'WRr|["<T2Y > "> > B(wswwaaru) B[(By — B:) (B — )]
i=1 t=1 t/=1 (=1
k-t

i=1 t=1 t'=1 (=1

E (wawezarir )| X B [(By — B;) (Biw — Bl

k

T T
T2 ( + Lr) supi g |B (wewe i )| Z Z Z B (B3 — Bi) (Bar — Bi)]l

i=1 t=1 t'=1

Since W satisfy condition (i) of Lemma S.19, we have sup, ¢, , [BE(weuwe zivi )| < C < oo.

Also, note that for any ¢’ < t,

) [(ﬁzt - 61) (Bit’ - 51)] =E [(ﬁit’ - Bi) E (@t - 5z‘|]:t—1)] )

and by Assumption 1, E (8, — 5;|/Fi—1) = 0. Therefore,
T T T
ZZ‘EKﬁzt_ﬁz)(ﬁzt’_ﬁz>]|:Z‘ [ |+QZZ|E B;) (B — B:)]
t=1 t'=1 t=1 t=2 t'=
T
=D _[B[(B: = 87| = O(T)
t=1

Since, by Assumption 3, k is also a finite fixed integer, we conclude that
Iy
E|T7'WRr|* =0 (=
rwre = o (1)),

and hence, by Lemma S.20,

|7 "WR+|| = 0, ( %T) |

So, we can conclude that

A . Iy
152 =il = 0p< 7) ,

as required.
In the next step, consider the mean square error of the model, T~ #j-f),. By substituting

y from (S.9) into equation (S.4) for the model error, we have

=y — W4 =QB8+R7 +u—- WH,.
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Since QB = W~k where v = (3, 0;,.)'; we can further write

N=Rr+u—-W(#H

—7)-
Therefore,
7' =T R +u—W(5p —77)] [RT +u =W (57 —77)]
T (Rr +uw) R +w) + T [W (3 — )] [W (5 — 1) -
2T W (7 —v7)] (RT +u)

=T (rR'R7 +uu) + 2T '7'R'u + (
24 — 3 [T

By substituting for 4,

=) (Tﬁlwlw) Yz — 1) —
(WRT + W'u)] .
— ~k from (S.11), we get

T'H7=T"("RR 7 +uu)+ 2T '7R'u+

[T~ (WRr + Whu)] (T7'W'W) ™

[T (WRT + Wu)| —
2 [T (WR T+ W) (T7'WW) ™' [T (WRT + Wu)]
=T '(7'R'R7 +u'u) + 27 'R/
[T~ (W'Rr + W)] (T'*W'W) " [T (W'RT + W'u)] .
we can further write

T'9H=T"E(T'RRr+uu)+T H{[rRR 7 -E(r'R'R7)| + [uu - E (u'u)]} +
2T '+'Ru — [T (W'RT + Wu)]' [B(T"'W'W)] ™ [T (WRT + Wu)] -
[ (WRr + W] { (T W'W) ™

~ B wWw)] T [T (WRT + W]
Therefore,

T'9'H) - T'E(r'R'RT + u'u) <

TH7PR R —E(T'R'R7)| + T [u'u—E (uu)] +
2T 'r'R'u + || T "W’ ( 2\ [E(TWw)]
1wlw)71

. (S.12)
-EEww) |
E (7"R'R7)|. Note that

T T / k k ko ok
'RRT =171 (Z rtrg) T = Z T'ry) (vj7) = Z (Z n-t> (Z rjt) = Z Z Z Tl jt.
=1 =1 =1 \i=1 '

i=1 j=1 t=1

|7 W' (R )| (7

First, consider 7! [T'R'RT —

S.16



Recalling that r; = x4 (5, — ;), and hence,

T [7'RR7T — E(rR'R7)] = i > (T—l ET: am> :
where
aije = it (By — Bi) By — B;) — B (waw) B [(By — B) (B — B5)] -
Now consider E (Tfl ZtT:l aij7t>2 and note that
T 2 T
E (leaij,t) =T ZZE aZ,) +2T~ ZZE ijij)
t=1

t=2 t'=
T

=Y 2 ZZE B (a1l Fir)].

t=2 t'=

But, by Assumptions 1, 3, and 6,

E (aije| Fi1) = B (zuzj| Fir) B [(By — B:) By — Bi) | Fier] — B (zaa) B (B — B:) (B — B;)]
= E (zirzje) B [(5% - Bi)(ﬁjt - 5]‘)} — E (zy2)) B [(Bit - Bi)(ﬁjt - 53‘)} = 0.

Therefore,

and by Lemma S.20 we conclude that

T
1
1Y 0y, =0 <_)
17,t D
= vT

Since by Assumption 3, k is a finite fixed integer, we can further conclude that

T [*RR7r —E(rRR7)| =) > ( Zaw t) -0, (%) : (S.13)

=1 j5=1

Now, consider, T-!7/R'u. Note that

T T
T 'Ru=T"17 <Z rtut> =71 ZT’rtut T ZZT”W Z ( Zﬂt%&) )
—1

t=1 t=1 =1 =1

S.17



We have
T 2 T
E (T_l Z T,-tut) = T_2 Z E tut + 2T_ Z Z E mrlt/utut/
t=1 t=2 t'=

Since r;; = xu(By — B;), and B, for i = 1,2,---  k are distributed independently of z;,

j=1,2,--- N, and u, for all ¢t and s, we can further write for any ¢’ < ¢
E (rariwuiuy) = B (zpwwpuy) B [(B; — 8;)(Biw — 5)]
= E (zawziwur) BE{(By — B;)E[(8; — By)| Fi-1]}-

But, by Assumption 1, E[(5;, — 5;)|Fi-1] = 0 and thus E (ryripusupy) = 0 for any ¢ < t.

Therefore,

T 2
1
E(lemut> =T E(rju]) = (?)
t=1

t=1

—1 T
T it

fixed integer, we conclude that

TIHRu:§:< }:mm>:,«§%) (5.14)

=1

=0, (\/LT) Since, by Assumption 3, k is a finite

By substituting (S.13) and (S.14) into (S.12), and noting that | 7-*W’ (R7 + u)||* = O, (Ir/T),
Huhwvwm*-{Eapwv“mrlF:c%m¢¢fxmmzhwwu—muww]:oAVVTL
we conclude that

k T
P _ _ 1 Ir
TR =) <T IZWW) +Gur+ 0y ( \/T) +0, ( T> :

=1 j5=1 t=1

where 01, = E (zy25), 0ies = B [(By — B8;)(B;: — B;)], and oo =T'E(u'u).
In the second scenario, where E (w,w}) is time invariant, we can write (S.1) as

k k
Y = Z TuBir + Z it (B — Bir) +ur = Z TuBir + Z hie +w = QB + i + uy,
i=1 i=1

where h;; = i (Bl-t — BZ-T), and hy = (hyg, hot, - -+, hge)’. We can further write the DGP in a

following matrix format,

y=QB8+Hr+u

S.18



where H = (hy, hy,---  hy). Now, by using the similar lines of arguments as in the first

scenario, we get
Y =5 = (T7'W'W) ™ (TT'WHT) + (T7'W'W) ™ (T7'W' u).

Notice that

E T T k T
TR (WHT) = Z 71 Z E( = Z {T 1 Z E[w,z:(3 T)]}
z:l L t;l i=1 7 t=1
=Y |77 Bwiwa)E(By, — Bir)
1:1 L t=1 . _ .
- Z E<thit)T71 Z B(B; — Bir)| = 0.
i=1 L t=1 ]

Hence, we can further use the similar lines of arguments as in the first scenario and conclude

that

-1 -1

b=l < ww) = wew)) e+

-1

W+

-1 -1

CTWW) = [B(TTWW)] ([T W |+

-1

(T
B (77" W'W)]
(T
[

B (T ww)] | 7wl

We know that

el o, (5 ).

-1

and

-1

| ww) ™ - B (T W W)

=0 (r)

Now consider [|[T-*W'H 7||. By using the similar lines of arguments as in the first scenario,

we have

k ktly T T
HT’WV’H‘I'H2 <T7? Z Z Z Z wpwe Ty (By — B:i) (Ba — B;) -
i—1 (=1 t=1 ¢

=1
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Since, by Assumption 3, 3, for ¢ = 1,2,--.  k are distributed independently of w, for

t=1,2,---,T, we can further write,

k  k+lp

BT *WHT|* < T~ ZZZZE wawurati) B[ (By — B;) (Buw — B;)]

i=1 /(=1 t=1 t'=1
k k+ip

=T ZZZE wétxzt [ BZ)Q] +
T2 Z Z Z ZE (wétw&'ﬂfit%t') E [(5@ - B’L) (ﬁit’ - Bz)] .

i=1 (=1 t=1 t'#t

Since, by Assumption 1, B [wywe; — B(wewe)|Fi—1] =0 for all £, ¢ and t =1,2,--- , T, we
have for any ¢’ £t

E (wﬁtwﬁt’ajitxit’) =k (wétxit) E (w&'ﬂfit') .

Therefore,

Z ZE (wéthtfl'itl“it') E [(5it - Bz) (@'t’ - B@)}

t=1 t'#t
T
= Z ZE (weewie) B (wep i) B [(ﬁzt - Bz) (52‘15' - Bz)] :
t= £t

Since E (w;w}) is time invariant, we can further write

Z Z E (werwep xypxiy) E [(ﬂzt - BZ) (ﬂit’ o Bl)]

t=1 t'#£t
T —
w&%t Z Z i zt’ - 51)] .
=1 t'#t

Note that, by Assumption 1, for any ¢’ # ¢, E [(8;, — 5;) (Biv — B:)] = [E(By) — Bi] [E(Biw) — Bi]-

Therefore

Z Z E (wgtwetfﬂlitl’it') E [(ﬁzt - Bz) (ﬁz‘t’ - BZ)}

t=1 t'#£t

wétiﬂzt Z Z E (ﬁit’) - /Bz:| .
t=1 t/#t
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We can further write,

Z ZE (Werwer TirTip ) B [(5it - Bz) (Bz’t’ a BZ)}

t=1 /£t
= [E (weaxi)] {Z Y BBy - B [EBw) — B8] =D [EB,) - 51]2}
= [E (wazi)] {Z [E(8i) — Bi] {Z [E (i) — ;] } -
[E (wﬁtmzt)]Q [E (Bie) — /Bz] ?

But, Ele [E (Bir) — BJ = 0, and therefore,

Z Z E (wﬁtwﬁt’xitxit’) E [(ﬁ,t - Bz) (ﬁit/ - Bz)] == [E (wétmit>}2 Z [E (ﬁzt) - Bz] ’ :

t=1 t/#t t=1
So,
E|T'*WHT|

p pHr T

<77 Z Z Z {E (wias) B [(Bit - Bi) 2] — [B (waz))? [E(Ba) — 51]2}

i=1 (=1 t=1

of3)

and hence, by Lemma S.20,

|T-"W'HT|| =0, (@) :

So, we conclude that

R o /1
”'YT _'YTH =0, < %) .

Lastly, consider the model mean square error for the second scenario. Following the same

lines of argument as in the first scenario, we can write,
T'HfH —T'E(rHHT +u'u) <
T'[vH Hr — E(r'HHT)] + 7T ' [uu - E (u'u)] +
_ S.15
27 U H | T W (Hr )| [B (T ww) ]| (8:15)
2

1

|7 w BT+ w) P |[(7 WW) T B (7 WW)]

F
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First, consider 77! [f'"H'H7 — E (7’"H’'H7)]. Note that

T T T k k k k T
THHT =7/ (Z hthg> =) (7'r) => (Z hit) (Z hﬁ> =D D) hahg
t=1 t=1 t=1

i=1 j=1 i=1 j=1 t=1

Recalling that h;; = 24(3, — B;7), and hence,

k
T '[+HHT — E (rHHT)] Z Z (Tl Z bij,t) ;

=1 ]:1 t=1

where
biji = T ji(By — BiT)(ﬁjt - BjT) —E(zuzj) E [(511 - BiT)(ﬁjt - BjT)} :

2
Now consider E (T -1 ZtT:1 bij7t> and note that

T 2
E <T1 > bij,t) =72
t=1

T 2

Mﬂ

E zyt +2T ZZE ’L]tbljt/

1 t=2 t'=

E (b7,) + 27 ZZE bijr B (bije| Fi1)]

1 t=2 t'=

t

Me

-
Il

But, by Assumptions 1, 3, and 6,
E (bije| Fie1) = B (zaxj| For) B [(ﬁit - BiT)(ﬁjt - Bﬂ)lﬂ—l} —E(zuz;) B [(ﬁit - BiT)(ﬁjt - BjT)}
=E (xitxjt) E [(ﬂit - BiT)(Bjt - BjT)} — E (zy2)) B [(Bit - BiT)(ﬁjt - BjT)} = 0.
Therefore,

T 2 T
(1Y)~ Ym0 -0(3),
t=1

t=1

and by Lemma S.20 we conclude that

~0,()

Since by Assumption 3, k is a finite fixed integer, we can further conclude that

T-'[THHT - E(rHHT)] = Z Z <T—1 Z bij7t> =0, (%) . (S.16)

i=1 j=1

T

T by

t=1
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Now, consider, 7-!7'H'u. Note that

T
T '7Hu=T"7 (Z htut) T ZT hyu;, =T~ Zthut Z ( thut) .

t=1 t=1 =1 =1

We have
T 2 T T
E (Tl Z hitut) =T 2 Z E tut —|— T72 Z Z E (hithiﬂutut/) .
t=1 t=1 t=1 t'#t

Since hy = xit(8; — Bir), and B, for i = 1,2,---  k are distributed independently of x;,,
j=1,2,---, N, and u, for all ¢ and s, we can further write for any ¢ # t

E (hithipuuy) = B (zyuwapuy) B (B — Bir) (B — Bir)]

But, by Assumption 1, E |z u; — E(zyu)|F—1] = 0 and we also have E(zju;) = 0 for
1=1,2,---,k and thus for any ¢’ # ¢t we have

E (l’itutfl’it/ut') = (%’tut) E ($it'ut') = 0.
Therefore,
T 2 1
BT hyw | =72 E[(hyw)? :0(—).
( z) > e (] =0 (5

Hence, by Lemma S.20, ’T’l ST hauy

fixed integer, we conclude that

T '7'Hu = Z ( thut> =0, <%) . (S.17)

=1

=0, <%> Since, by Assumption 3, k is a finite

By substituting (S.16) and (S.17) into (S.15), and noting that |7-'W’ (Hr + u)||” = O,(lr/T),
H(T*W’W)_l —ECWW) Y| = 0,(lr/VT), and T ' — E (w'u)] = 0,(1/vT),

F
we conclude that

k
—1ala - : g : lT
TR = ) (T IZOiﬁ,w%t,ﬁ> 70+ 0y (ﬁ) O (T> 7

i=1 j=1 t=1

where o7, 5 = B [(Bie — Bi,T)(ﬁjt - Bj,T)} Bir =T7" Zt 1 E(By), and 07, 7 = T7'E (u'u).
n
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Complementary Lemmas

Lemma S.8 Let z; be a martingale difference process with respect to Ff | = 0(zi_1, 242, ),

and suppose that there exist some finite positive constants Cy and Cy, and s > 0 such that

sup Pr(|z:| > a) < Cyexp(—Cha®),  for all a > 0.
¢

Let also 0%, = B(2}|F7 ) and 627 = T~* 3 0%. Suppose that (; = &(T*), for some
0<A<(s+1)/(s+2). Then for any 7 in the range 0 < m < 1, we have,
—(1—7 22
Pr (|ZtT:1 2| > CT> < exp [gTQTCT] :
if A> (s+1)/(s+2), then for some finite positive constant Cs,

Pr (|ZtT:1 2| > CT) < exp (_C2CST/(S+1)> :

Proof. The results follow from Lemma A3 of Chudik et al. (2018) Online Theory Supple-

ment. W

Lemma S.9 Let

cy(n,8) = &1 (1 . %) , (S.18)

where ®71(.) is the inverse of standard mnormal distribution function, p (0 < p < 1) s the
nominal size of a test, and f(n,d) = cn® for some positive constants § and c. Moreover,
leta>0and 0 <b< 1. Then (I) cp(n,d) = O [ 5ln(n)] and (II) n®exp [—bci(n, )] =
@(na—%é)'

Proof. The results follow from Lemma 3 of Bailey et al. (2019) Supplementary Appendix

A =
Lemma S.10 Let z;, fori =1,2,--- ,n, be random variables. Then for any constants ;,
fori=1,2--- n, satisfying 0 < m; <1 and Y, m =1, we have

Pr(3 i lwi| > Co) < 320 Pr(las| > miCh),
where Cy is a finite positive constant.

Proof. The result follows from Lemma A1l of Chudik et al. (2018) Online Theory Supple-

ment. W

Lemma S.11 Let x, y and z be random wvariables. Then for any finite positive constants
Cy, C1, and Cs, we have

Pr([z[ > [y| > Co) < Pr(lz| > Co/Ch) + Pr(ly| > C1),

S.24



and

Pr(lz| x |y[ > |2] > Co) < Pr(|z| > Co/(C1Ch)) + Pr(jy| > C1) + Pr(|z] > Cy).

Proof. The results follow from Lemma A1l of Chudik et al. (2018) Online Theory Supple-

ment. W

Lemma S.12 Let x be a random variable. Then for some finite constants B, and C', with
|B| > C >0, we have

Pr(|z + B| < C) < Pr(|z| > | B| - C).

Proof. The results follow from Lemma A12 of Chudik et al. (2018) Online Theory Supple-

ment. ®

Lemma S.13 Let xr to be a random variable. Then for a deterministic sequence, ar > 0,

with ap — 0 as T' — o0, there exists Ty > 0 such that for all T > Ty we have

1
Pr ( \/—x_T - 1’ > aT> < Pr(Jzr — 1| < ar).

Proof. The results follow from Lemma A13 of Chudik et al. (2018) Online Theory Supple-

ment. W

Lemma S.14 Consider random variables x; and z; with the exponentially bounded probabil-

ity tail distributions such that
sup Pr(|zy] > a) < Cyexp(—Cra’™), for all a > 0,
sup Pr(|z:| > a) < Cyexp(—Cra™), for all o > 0,
where Cy, and C are some finite positive constants, s, > 0, and s, > 0 . Then
sup Pr(|zz] > a) < Coexp(—Cia®/?), for all o > 0,
where s = min{s,, s, }.
Proof. By using Lemma S.11, for all « > 0,
Pr(|zz| > a) < Pr(|z] > o'?) + Pr(|z| > o'/?)
So,
sup Pr(|xiz] > ) < sup Pr(|z| > o*/?) + sup Pr(|z| > ol/?)

< Cyexp(—Cha*/?) + Cyexp(—Cra’=/?)
< Cyexp(—Cra®?)
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where s = min{s,,s.}. m

Lemma S.15 Let x, y and z be random variables. Then for some finite positive constants

Cy, and C, we have
Pr(|lz| x [y| < Co) < Pr(|z| < Co/Ch) + Pr(ly| < Ch),

Proof. Define events 2 = {|z| x |y| < Co}, B = {|z] < Cy/C1} and € = {|y| < C;}. Then
2 € B UC. Therefore, Pr(2A) < Pr(B U ). But Pr(B U €) < Pr(MB) + Pr(€) and hence
Pr(A) < Pr(B)+Pr(¢). m

Lemma S.16 Let A and B be n X p and p X m matrices respectively, then
|AB|r < [[AllrBl2, and |AB[|r < [|A[[2[|B]|F. (5.19)

Proof. ||AB|% = tr(ABB’A’) = tr[A(BB’)A’], and by result (12) of Liitkepohl (1996,
p.44),

tr [A(BB)A'] < Auax(BB)tr(AA) = [|A||%[|BII3,

where Ay (BB’) is the largest eigenvalue of BB'. Therefore, ||[AB|r < ||A|£||B]2, as

required. Similarly,

|AB||% = tr(B'A’AB) = t1[B'(A’A)B] < Anax(A’A)tr(B'B) = || A[[3]|BJ[%,
and hence

[ABlr < [|A]2[[B #.
|

Lemma S.17 Let A = (aij)nxm where sup;; |a;| < C < oo, then

|All, = O (vVnm) . (S.20)
Proof. This result follows, since [|All, < \/[[A]l L I|All;, [[All, = O(m) and ||A|; = O(n).

]
Lemma S.18 Consider two N x N nonsingular matrices A and B such that
B~ [l2[|A = Bl < 1.

Then

IBBIA - Blr
— [|B72[[A — Bl|£

ATt =B p < 1
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Proof. By Lemma S.16,
AT =B lr = [[AT(B - A)B7 [ < [ATY2]|B — All£[|B~]

Note that

AT ]z = AT =BT + B < [[AT' =BTl + B2
<A =B+ B2,

and therefore,

AT =B7r < (JA™ = B7r+ B2 B — All#[B~".
Hence,

AT =B7|r(1 — [B7Y2[B — Allr) < BT3B — Al .

Since |B7Y||2||B — A||r < 1, we can further write,

IB3IA ~ Bl
T~ [B1.[A =B

AT =B <
n

Lemma S.19 Let X and Y be T' x N, and T' x N, matrices of observations on random
variables x; and yj;, fori=1,2,--- Ny, j=1,2,--- Ny andt =1,2,--- T, respectively.

Denote
wijr = TuYjr — B(zay;e), for alli,j andt.
Suppose that
(i) sup; ;B 2" < C, sup; ;& ;| < C, and
(ii) supy; |0, Yhoy Blwgavya)| = O(T).
Then,

E|T XY -BXY).=0 (%) . (S.21)

Proof. The results follow from Lemma A18 of Chudik et al. (2018) Online Theory Supple-

ment. W

Lemma S.20 Let X = (xi)rxn, and Y = (yij)rxn, be matrices of random variables,

respectively. Suppose that,
BT XY - EXY)]|: = O(ar), (S.22)
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where ar > 0. Then
|77 XY — E(X'Y)]|, = O,(\/ar). (S.23)

Proof. For any B > 0, by the Markov’s inequality

E (7' XY - EX'Y)]|;

Pr (|77 XY — B(X'Y)]|,. > Byar) < o

Since B || T~ [X'Y — E(X'Y)] H; = O(ar), there exist C' and Ty such that for all 7' > Tj
BT XY - EXY)]|% < Car.
Hence, for any € > 0, there exist B, = \/g and T, = Ty, such that for all T" > T,
Pr (|77 XY —E(X'Y)]||, > B-v/ar) <e.
Therefore,
|77 (XY — EXY)||, = O, (var)
|

Lemma S.21 Let X1 be a positive definite matrixz and S be its corresponding estimator.

Suppose that Ayin (X7) > ¢ > 0, and

B||Sr - = 1 — O(ar) (S.24)

where ap > 0, and ar = o(1). Then

o750

— O,(var) (.25)

F

Proof. Let Ap = {}}2;1||2H2T—ETHF< 1}, Br = {HEA];I—Z;IHF >B\/@} and

TR N
Dr = H Tl E— > B./ar ¢ where B > 0 is an arbitrary constant. If Ar holds,
’ {(1—||2T1||2||ET—ET||F) ! Y ’

by Lemma S.18,

=7

~=],
=],

~—1 1

L R [ >
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Hence Br N Ar C Dp. Therefore
=211,
(1= 1=,

A Byor
= Pr (HET—ETHF > H2T1||2<H2T1H2+Bﬁ>)

By the Markov’s inequality, we can further conclude that

ﬁ]T—ETH
F

PI"(BT N .AT) < Pr > > B\/@

5|
F

o 2
E ET_ET 271 2 271 _|_B ., 9
Pr(BrnAz) < F oo ” T H2 (H T 2||2 o/ _T) |
ar B
A 2
Since by assumption E |37 — 37| = O(ar), there exist C and Ty > 0 such that for all
F

T > Ty,
. 2
B(Sr— | <Cor
F
Therefore, for all T' > Ty,

=2, (I37]l, + Bvar)
B2

2

PI(BT N .AT) <

Moreover,

Pr(Af) = Pr (||,

. A 1
Sr-%q|| >1)=Pr (HET -S| 2= ) .
F D>
By the Markov’s inequality, we can further write
. 2
Pr(A7) < ||Z7'; < B[S - 24|
and hence, for all T' > Ty,
c —11|2
Pr(A7) < C||=71; ar-
Note that
Pr(Br) = Pr (Br N Ar) + Pr(Br|A%) Pr(A7),
and since Pr(Br N Ar) < Pr(Dr) and Pr(Br|A%) < 1, we have

Pr(Br) < Pr(Br N Ar) + Pr(A7).
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Therefore, for all T' > Ty,

—1112 -1 2
o) < CIEF LR, 5

Now, for a given € > 0, we are interested to find B, > 0 and 7. > 0 such that for all 7" > T,

pr(|E -2 )57 ar

Pr (Hi;l -3

> BE\/CLT> <e.
F

To do so, we first find a value of B such that

=l (15", + Bvar)”
B2

+C||= o ar =

By multiplying both sides of the above equality by B? and bringing all the equations to the

left hand side we have
(e - 20|z 3 ar) B2 =20 |57y varB - C | =7, = 0.

By solving the above quadratic equation of B we have

20 |71} var 40 |25 3« — 402 |5 |[S ar
2 (= —20||=7|[; or)

-1 5
_ HZT ||2 <\/@:I: z/ CHE;IHE - aT)

B* =

I
Notice that ar — 0 as T" — oo, therefore for large enough 7" we have both W 2ar
and m — ar being greater than zero for all 7' > T™*. Now, by setting 7. = max{7T™, Ty}
and
=1, (@chz )
B, = > 0,

———— — 2ar
o=z

we achieve our goal that for all T > T,

Pr (Hﬁ:;l >

> Bm/aT) <e.
F

Remark 7 By using Lemma S.18 we achieve the probability convergence order for Hﬁ;l — 2;1
that is sharper than the one shown in the proof Lemma A21 of Chudik et al. (2018) (see
equations (B.103) and (B.105) of Chudik et al. (2018) Online Theory Supplement).
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Lemma S.22 Let z;; be a random variable fort=1,2,--- /N, and j =1,2,--- |N. Then,
for any dr > 0,
Pr(N"2 0, S [l > dr) < N2sup;; Pr(|zy] > dr)
Proof. We know that N=2 3 | Zjvzl |2ij] < sup; ; |2i5]. Therefore,
Pr(N=23Y % |2i] > dr) < Pr(sup, |2 > dr)
N N
< Pr(Ul, UL, (J2i] > dr)] < 3500, 3052 Prlzi| > dr)
< N?sup; ; Pr(|z;| > dr).
]
Lemma S.23 Let 3 be an estimator of a N x N symmetric invertible matriz 3. Suppose

that there exits a finite positive constant Cy, such that

sup Pr(|6i; — 05| > dr) < exp(—CoTd3), for any dr > 0,
i\j
where 0;; and 6;; are the elements of ¥ and 3 respectively. Then, for any by > 0,
T2, } )
N2 SH3(IZ7 2 + br)?

T
N? —Cy— .
e"p( °N2||zl||§)

Pr(||ﬁ3_1 — X7 YF > br) < N?exp [—CO

Proof. Let Ay = {|=7 2| £—Z||r <1} and By = {||ZA]_1 — %7 Y|F > br}, and note that
by Lemma S.18 if Ay holds we have

DRI
1— |27 2% = 2|r

1

1= —=r <

Hence
I=EIZ - 2|F

N SPI — = >bT
(1—||§3 Hall % = Zlr >

. by
=Pr || -2 > —— - }
1= (1= |2 + br)

1/2
j-il ZN (645 — Uij)2> . Therefore,

N N 1/2 .
Gu—00)) >
(le T 1= (=2 + br)

PI(BN|.AN) S Pr
J=1
N N b2
= Pr (5—@.._0-1.4)2> — 7:
[;; L T IETBUET e+ br)?
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By Lemma S.22; we can further write,

b2
Pr(By|Ax) < N?su Pr{&i<—ai-2> T }
(Bl) < N B0 = o) ST + b
br
= N?su Pr{&i-—ai< > }
wp P10 = ol > s =L + o)
Tb2
< N?exp {—C’ — r }
"N THR(I= s + br)?

Furthermore,

Pr(Ay) = Pr(| =73 — Z|r > 1)
=Pr([% - 3F > [IZ71]57)

N N 1/2
= Pr (Z Z(@'j - Uij>2> > HE_lHEl

i=1 j—=1
:N N

= Pr D (6i—0i) > 1=
i1 j=1

< N?sup Pr |:<&i’ —0y)? > ;_]
ij T T N2 =T

1
< N2?2supPr ||6;; — 04| > ———
- . P |:|O-J O-J‘ NHE—1H2:|

T
< N? —(Cy———
= eXp[ "N 2—1”%}

Note that
Pr(By) = Pr(By|Ay) Pr(An) + Pr(By|Ay) Pr(Ay),

and since Pr(Ay) and Pr(By|.AS ) are less than equal to one, we have
Pr(By) < Pr(By|Ax) + Pr(A%).

Therefore,

Th? T
Pr(Byr) < N2exp |~ Co g UL |+ wrexp o |
N E TR+ br)? NS

Lemma S.24 Let 3 be an estimator of a N x N symmetric invertible matriz 3. Suppose

that there exits a finite positive constant Cy, such that

sup Pl"(’OA'zJ — Uij| > dT) < exp [—Co(TdT)S/SJFﬂ , fO’f’ any dr > O,
i,
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where 0;; and 6;; are the elements of X and 3 respectively. Then, for any by > 0,

o Tby)5/512
Pr(|S — 7Y p > by) §N2exp[ Co (Tbr) ]

Ns/s+2|| S5/ P2 (|| B72 5 + by)s/s+2

N2 o Ts/s+2
exp | —Cp .
N2

Proof. The proof is similar to the proof of Lemma S.23. =

Lemma S.25 Let {zy}l, fori = 1,2,--- N and {z;;}1_, for j = 1,2,--- ,m be time-
series processes. Also let Fjj = 0(vi, Tig1,---) fori=1,2,--- N, F5, = 0(2js, 241, ")
forj =12, m, Ff = U\ F}, Ff = U, Fr, and F, = F} U Ff. Define the projection

regression of xy on zy = (211, 2o, *+ 5 Zmy) QS
/
Tip = 2,9, 7 + Vit

where WY, p = (Y11, Voips s Ymir)' 18 the m X 1 vector of projection coefficients which is

equal to [T* Zlem(ztz;)] [T E(zxi)]. Suppose, Elzywi — B(wuzi)|Foa] =0
for all i,i" = 1,2,--- | N, Elzjizje — E(zjezj)|Fica] = 0 for all j,j' = 1,2,--- ,m, and
Elzjixi — E(zjxu)|Fio1]) =0 for all j =1,2,--- ,;m and for alli=1,2,--- ,N . Then

E [vuviy — B(vyv) | Fi_1] = 0,
forall j,77=1,2,--- /N,
E[vizi — B(vizi) | Fioa] = 0,
foralli=1,2,--- N andj=1,2,--- . m, and
T3 Bvaz) =0,
foralli=1,2,--- N andj=1,2,--- ,m.

Proof.

B(vivi| Fio1) = Bz Fio1) — B(zazg| Foor) s r—
B(zinzy|Fi-1)¥; r + ¥, 7 B(2e2| Fir 1)y 1
= B(zywi) — (xitzt)"/)i/,T - E(xi’tzt)¢i,T+
VY, 7 B(2:2) Yy 1+ = B(vivins).

E(Vitzjt|ft71) = E(xitzjt|f.tfl) - E<Z:52jt|-,'ttfl)¢i,T
= E(mitzjt) — E(Z;zjt)'lb@T = E(Vitzit).
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T 23:1 B(viz) =T Zle E(ziz:) — ‘P;_Tl 25:1 E(z:z})]
=T 3 B(wuz) — T, B(zaz) = 0.
n
Lemma S.26 Let {z;}]_, fori=1,2,--- ,N and {z;}{_; forj =1,2,--- ,m be time-series

processes. Define the projection regression of xy on zy = (211, 22t, - -+ » Zmst)’ aS

!/
Tit = 2,0+ Vit

where Y, 7 = (Vi Vo s Vi) 98 the m x 1 vector of projection coefficients which
-1

is equal to [T‘l ST E (ztz;)] [T B(zxy)]. Suppose that only a finite number of

elements in v, 1 is different from zero for alli =1,2,--- | N and there exist sufficiently large

positive constants Cy and C1, and s > 0 such that
(i) sup;, Pr(|z| > a) < Coexp(—Cira®), for all a >0, and
(ii) sup; , Pr(|zy| > o) < Coexp(—Cha?), for all a > 0.

Then, there exist sufficiently large positive constants Cy and Cy, and s > 0 such that

sup Pr(|vi| > ) < Coexp(—Chra®), for all a> 0.

it
Proof. Without loss of generality assume that the first finite ¢ elements of v, ;- are different

from zero and write
T = Zﬁzl wji,Tth + v
Now, note that
Pr(|val > @) < Pr (Jaul + Xy [i07l > ).
and hence by Lemma S.10, for any 0 < m; <1, 5 =1,2,--- £+ 1 we have,

Pr(lvi| > ) < Zﬁ:l Pr ([t r2jel > mj) + Pr(Jzg| > 7410)
¢ _
= Zj:l Pr (|th| > |7/’ji,T| 1773‘04) + Pr (|zi| > moy100)

< Usup;, Pr(|z;| > |7 'n*a) + sup;, Pr (x| > 7*a) .

where o7 = sup; j{1;; 7} and 7* = infjc1 5 .. ¢11{m;}. Therefore, by the exponential decaying

probability tail assumptions for z;; and z;; we have
Pr(|vy| > a) < €Chexp(—Cra’) + Coexp(—Chra’),
and hence there exist sufficiently large positive constants Cy and C , and s > 0 such that

sup Pr(jvy| > a) < Coexp(—Cha?®), for all a > 0.
it
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Lemma S.27 Let {xy}Ll, fori = 1,2,--- /N and {24}, for ¢ = 1,2,--- m be time-

series processes and m = S(T). Also let F& = o(xiy, w541, ) fori=1,2,--- N, Fj =
o (20, 2041, ) for € =1,2,--+ m, F¥ = UN,F& F7f=Ur F;, and Fy = FFUF?. Define
the projection regression of x; on zy = (211, 221, ** » Zmt) QS

!/
Tip = 2y p + Vit

where WY, p = (Y11, Vosps -+ s Ymir)' 18 the m X 1 vector of projection coefficients which is
-1

equal to [T‘l ZleE(ztz;)} (71 ZtT:1 E(zzy)]. Suppose, Blryx; — B(ryxi)|Fii] = 0

foralli,j=1,2,--- N, Blzuze—E(zuze)| Fio1]) =0 forall 0,0 =1,2,--- ,m, and B[zpxy—

E(zgzi)|Fioa] =0 for all € =1,2,--- ,m and for alli = 1,2,--- | N. Additionally, assume

that only a finite number of elements in 1, r is different from zero for all i = 1,2,--- | N

and there exist sufficiently large positive constants Cy and Cy, and s > 0 such that
(i) sup,; Pr(|ze| > o) < Coexp(—Chra®), for all a >0, and
(ii) sup;, Pr(|zy| > a) < Coexp(—Cia®), for all a> 0.

Then, there exist some finite positive constants Cy, Cy and Cs such that if d < A <
(s +2)/(s +4),

Pr(|x/M.x; — B(Viv;)| > (7) < exp(—CoT(3) + exp(—C1T?)

and if A > (s +2)/(s+4)
! C_ 1. _ s/(s+1) . Ca
Pr([xM.x; — B(viv;)| > () < exp(=Coly ) + exp(=CiT™)

fO’l" all 27] = 172a T 7N7 where V; = (Vi17yi2a e 7l/iT),7 X; = (wilaxiQa e 7xiT)/7 and Mz =
I- T*IZEA]:Z' with Z = (21,22, -+ ,z7) and 3., = T 1 (z,2}).

Proof.
Pr [IX{M.x; — B(vjv;)| > G = Pr [V/M.v; = Bvw;)| > ¢
= Pr |y, — Bj,) - TWZS 2y, ~ T WS, - N2yl > ¢

where 3., = BE[T~' Y/, (z2,)]. By Lemma S.10, we can further write

Pr[[x;M.x; — B(viv;)| > (7]
< Pr(|viv; — E(viv;)| > mip] + Pr(\T*1V;Z22_21Z'Vj\ > molp)+
Pr [|T*1u;2(2;j — 2 NZw,|) > mly| -
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where 0 < m; < 1 and Zle m; = 1. By Lemma S.16,
Pr(|T™WiZ3 2y > ma(r) < Pr([viZ| plIZ2 |21 Z'vsl|r > m2(T),
and again by Lemma S.11, we have

Pr(| T W22 Z'v;| > maly)
< Pr(|WiZ||p > | 2225 Pm PGl TY?) + Pr(|| Zyyl| e > 2215 2my PGP TY?).

Similarly, we can show that

-1

Pr(TWZ( £, - S )Zv;| > 73y
~—1 _
< Pr([WZl|r|5.) — S rIZville > 75 T)
<Pr([E.. — 2 r > 07'C) + Pr([VZ] s > 7Y 26Y2T2)

+ Pr(|Z'v; | p > 7% 1)

where dr = &(T) with 0 < o < .
Note that Pr(||Z'vi||r > ¢) = Pr(|Z'vi|% > ) = Pr[>0 (O vizu)? > 2], where ¢

is a positive constant. So, by Lemma S.10, we have
Pr(||Z'vil|r > ¢) < 320, Pr{(3 -, vieza)® > m™' ¢

Hence, Pr(|Z'vi|r > ¢) < S0, Pr(| o1, viezu| > m~'/%c). Also, by Lemma S.25 we have

Zle E(vizi) = 0 and hence we can further write
Pr([|Z'vi||lr > ¢) < 37, Pr{] Zthl[VitZ& — B(virzer)]| > m~"?c}.

Note that ||3.'||2 is equal to the largest eigenvalue of 3! and it is a finite positive constant.

So, there exists a positive constant C' > 0 such that,

Pr(|x;M.x; — E(viv;)| > (r)
< Pr{| o, i — B(viv,))]| > CT}+
Sy Pr{| S iz — B(vizal| > CTY2 2424
S Pr{| S Wiz — B(vjizal| > CTYA24/2) 4
S Pr{| o iz — B(vizal| > CTY?0/2=di2)
> i Pr{] Zthl[VjtZZt — B(vji20)| > CTV>/2-02 )4
Pr(|S2) - 57 > 07'¢r)

z

Let

m T
kri (hd) =Y Pr{|> [viza — Bvaza| > CTV2HP742) for h = ), a,

/=1 t=1
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and i = 1,2,..., N. By Lemmas S.14, S.25, and S.26, we have v;,v; — E(vyv;) and vz —

E(vizi) are martingale difference processes with exponentially bounded probability tail,
5
Lemma S.8, we know that either

So, depending on the value of exponentially bounded probability tail parameter, from

kri(h,d) < mexp [— S) (Th_d)]
or
ki (hyd) < mexp [— © (Ts(1/2+h/2—d/2)/(s+2))] 7

for h = A\, a. Also, depending on the value of exponentially bounded probability tail para-

meter, from Lemmas S.23 and S.24 we have,

Pr(Hi_l — 3 Ml > 07'¢r) < mPexp {_CO e, ] +
zZZ zz T T) > — — —
m?|| S 133152 2+ 07 ¢r)?

T
m? exp (—C’o—) ,

m?[| 23

or

S . (To7Cp)"/s+?
Pr([32,. — S p > 071¢s) < mPexp | —Cp r +
e me/s+2|| SIS 4 671 C)o /o

) Ts/s+2
m° ex —C .
P\ e s

Therefore,

~—1 _ B
Pr(HEzz - Zz;HF > 5T1€T)

< mexp[— S (Tmax{172d+2(A—a),172d+>\7a,172d})}+
mexp[—© (T 1],

or,

~—1 _ _
Pr(szz - Z:zzluF > 5T1€T>

< mexp[— =) (Ts(max{l—d+)\—a,1—d})/(s+2))]+
mexp[— o (Ts(l—d)/(s+2))]'

Setting d < 1/2, a = 1/2, and A > d, we have all the terms going to zero as T' — oo and

there exist some finite positive constants C; and C5 such that

kri (A, d) < exp (—C’lTCQ) , ki (o, d) < exp (—C’lTCQ) ,
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and

Pr(|S2 — B2 > 07'¢r) < exp(~CiT).
Hence, if d < XA < (s +2)/(s +4),

Pr([x;M.x; — E(vjv;)| > (7) < exp(=CoT~'(F) + exp(=CiT),
and if A > (s +2)/(s +4),

Pr(|x,M.x; — B(t}v;)] > (7) < exp(—CoC ") + exp(—C1T),

where Cy, C; and Cs are some finite positive constants. m

Lasso, Adaptive Lasso and Cross-validation algorithms

This section explains how Lasso, K-fold cross-validation and Adaptive Lasso are implemented

in this paper. Let y = (y1,%2, - ,yr) be a T x 1 vector of target variable, and let Z =

(21,22, -+ ,2z7) be a T x m matrix of conditioning covariates where {z;, : t = 1,2,--- T}
are m X 1 vectors and let X = (x1,Xa,--- ,x7) be a T'x N matrix of covariates in the active
set where {x; :t =1,2,--- ,T} are N x 1 vectors.

Lasso Procedure

1. Construct the filtered variables y = M.,y and X = M.X = (X10, X20, ---; XNo), Where
Mz = IT — Z(Z’Z)_1Z’, and iio = (fi‘ﬂ, i’ig, oo ;i'iT),-

2. Normalize each covariate X;o = (Ti1, Tin, -+ , Tir) by its by norm, such that

Sk

X, = Xio/||Xio|2,

where ||.||a denotes the ly norm of a vector. The corresponding matriz of normalized

covariates in the active set is now denoted by X*.

3. For a given value of ¢ > 0, find 7, (#) = [11.(¢), Y22 (#), - -+, Vna ()] such that
7:(p) = angmin { 1§ — X313 + el |
where ||.||1 denotes the {1 norm of a vector.

4. Divide 47, () fori=1,2,--- N by ly norm of the X;, to match the original scale of

X0, namely set

Yie(P) = Vin (@) /1Ko |2,
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A~ ~

where Y, (©) = [Y12(©), Yoz (©), -+, vz ()] denotes the vector of scaled coefficients.

5. Compute,(¢) = [F1:(9): Y2:(90), -+ Fmz ()] by 4. () = (Z'Z) 7 Z'8(p) where &(p) =
y — X9, ()
For a given set of values of ¢’s, say {¢; : j = 1,2,--- , h}, the optimal value of ¢ is chosen
by K-fold cross-validation as described below.

K-fold Cross-validation

1. Create a T x 1 vector w = (1,2,--- /K, 1,2,--- | K,---) where K is the number of
folds.

2. Let w* = (wi,ws, - ,w;) be a T x 1 vector generated by randomly permuting the

elements of w.

3. Group observations into K folds such that

g ={t:te{1,2,--- T} and w; =k} fork=1,2,--- | K.

4. For a given value of ; and each fold k € {1,2,--- | K},

(a) Remove the observations related to fold k from the set of all observations.
(b) Given the value of ¢;, use the remaining observations to estimate the coefficients
of the model.

(c) Use the estimated coefficients to compute predicted values of the target variable
for the observations in fold k and hence compute mean square forecast error of
fold k denoted by MSFE(p;).

5. Compute the average mean square forecast error for a given value of ¢; by

MSFE(p;) = Y  MSFE(¢;)/K.

k=1
6. Repeat steps 1 to 5 for all values of {@; :j =1,2,---, h}.

7. Select p; with the lowest corresponding average mean square forecast error as the op-

timal value of .

In this study, following Friedman et al. (2010), we consider a sequence of 100 values of
¢’s decreasing from ¢, .. to ¢, on log scale where ¢, .. = max;—15.. x {|ZtT:1 jjtgm} and
Omin = 0.001¢, ... We use 10-fold cross-validation (K = 10) to find the optimal value of ¢.

Denote 4, = 9,(p,,) where ¢, is the optimal value of ¢ obtained by the K-fold cross-

validation. Given 4,, we implement Adaptive Lasso as described below.
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Adaptive Lasso Procedure

1. Let S = {i : 1 € {1,2,--- N} and ¥,, # 0} and Xs be the T x s set of covari-
ates in the active set with 7, # 0 (from the Lasso step) where s = |S|. Addition-
ally, denote the corresponding s x 1 wvector of non-zero Lasso coefficients by 4, s =
(Y1280 Vo507 Vsws)'-

Ak Ak

2. For a given value of 1 > 0, find 323(1@ = [5:%3(1#), O9p5(1), -+ ;040 5(¥)]" such that

a*

8,.5() = argmin {[I§ — Xsdiag(3,,5)8%slI3 + w18l }
z,S

where diag(9, ) is an s X s diagonal matriz with its diagonal elements given by the

corresponding elements of ¥, s-

3. Post multiply 3; s(¥) by diag(¥,s) to match the original scale of Xs, such that

A Ak

5%8(@@) = diag(ﬁ’x,s)‘sx,s(@/})

The coefficients of the covariates in the active set that belong to S¢ are set equal to
zero. In other words, ijgc(@b) =0 for all ¢ > 0.

~ A

4. Compute 0. (1) = [612(1), 022 (), -+, Ona ()] by 8.(1h) = (Z'Z) 1 Z'8(1p) where (1)) =
Yy — Xs0,,s(1).

As in the Lasso step, the optimal value 1) is set using 10-fold cross-validation as described

before.'?

0To implement Lasso, Adaptive Lasso and 10-fold cross-validation we take advantage of glmnet package
(Matlab version) available at http://web.stanford.edu/ hastie/glmnet_matlab/
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