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1 Introduction

The COVID-19 pandemic has already claimed many lives and is causing an unprecedented and

widespread disruption to the world economy. China responded to the initial outbreak with dra-

conian social distancing policies which are shown to be effective in containing the epidemic, but at

the cost of large short term losses in employment and output. Other countries have responded more

timidly, either by deliberate choice, as in the United States, or due to implementation constraints,

as in some European countries. The purpose of this paper is to evaluate the impact of alternative

mitigation or containment policies on both the epidemic and the so-called recession curves, and to

empirically compare their implementation across countries.

Most importantly we consider both government-mandated social distancing policies, and vol-

untary self-isolation, and endogenize the fraction of the population that remain exposed to the

virus within a standard Susceptible-Infected-Recovered model (SIR). Specifically, we distinguish

between individuals exposed to COVID-19 and those isolated from the epidemic. We decompose

the population, P , into two categories: those who are exposed to COVID-19 in the sense that they

can contract the virus because they are not isolated and they have not been infected yet, PE ; and

the rest, PI , that are isolated and therefore taken out of harm’s way. We denote the strength of the

mitigation policy by 1− λ, where λ is the proportion of population that is exposed to COVID-19,

defined as λ = PE/P . Initially we focus on the relatively simple case where λ is set at the outset

of the spread of the epidemic, close to what we believe China did after the start of the epidemic

in Wuhan. We also consider a variation of the SIR model where λ changes due to the voluntary

decision to isolate at the micro level. Using a simple decision model we show that the proportion of

the population that self-isolates rises with the probability of contracting the disease. We approxi-

mate this probability with the number of active cases and show (by simulation) that the effect of

self-isolation occurs as the epidemic nears its peak, and is relatively unimportant during the early

or late stages of the epidemic. A coordinated social policy is required from the early outset of the

epidemic to flatten the epidemic curve.

We then model the short-term impact of the epidemic on employment. This permits an eval-
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uation of the costs and benefits of alternative societal decisions on the degree and the nature of

government-mandated containment policies by considering alternative values of λ in conjunction

with an employment loss elasticity, α, that allows a given social distancing policy to have different

employment consequences. In the extreme case where the incidence of social distancing is uniform

across all individuals and sectors, a fall in λ results in a proportionate fall in employment, and

α = 1. But by enabling individuals to isolate and to work from home, together with wide spread

targeted testing for the virus plus the use of protective clothing and equipment, it is possible to

mitigate somewhat the economic costs of social distancing policies. We simulate the employment

loss for alternative values of λ and α and find that, for suffi ciently low values of λ required to man-

age the peak of hospitalization and death from COIVD-19, the economic costs could be substantial

even with smart social distancing policies. We also simulate the duration of the epidemic to be

around 120 days, with a sizeable part of the employment loss occurring close to the peak of the

epidemic.

Whilst there is ample medical and biological evidence on the key parameters of the SIR model,

namely the basic reproduction rate, R0, and the recovery rate, γ, to our knowledge there are no

direct estimates of λ. A recent report from the Imperial College COIVD-19 Response Team uses

a Bayesian hierarchical model to infer the impact of social distancing policies implemented across

11 European countries, see Flaxman et al. (2020). They use the number of observed deaths to

infer the number of infections and do not make use of confirmed infections that are subject to

significant measurement errors due to limited testing. Whilst acknowledging the measurement

problems, in this paper we provide estimates of γ and λ using daily data on confirmed, recovered

and death cases from the Johns Hopkins University (JHU) hub.1 Using a discretized version of our

modified SIR model we derive reduced form regressions in confirmed recoveries and the number of

active cases that allow for systematic and random measurement errors. We show that γ can be

identified assuming that confirmed infected and recovery cases are subject to a similar degree of

mis-measurement. We also show that, for a given value of R0, the social distancing parameter, λ,

can be identified up to a fraction which is determined by the scale of mis-measurement of reported

1Available at https://github.com/CSSEGISandData/COVID-19/tree/master/csse_covid_19_data.
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active cases. We calibrate this fraction using the data from the Diamond Princess cruise ship

reported by Moriarty et al. (2020).

We first use daily data on Chinese provinces with complete history of the course of the epidemic.

The estimates of the recovery rates are very similar across the Chinese provinces and lie in the range

of 0.033 (for Beijing) and 0.066 (for Hebei). We also find that the random measurement in the

underlying data is relatively unimportant for the estimation of γ. The mean estimate of γ across the

Chinese provinces is around 0.046 which corresponds to around 22 days from infection to recovery

(or death). This estimate is substantially larger than the 14 days typically assumed in designing

quarantine policies. Setting γ = 0.046 and R0, we then proceed to estimate λ (up to the scaling

fraction). We find that for Chinese provinces λ is very small even if we allow for a significant under-

recording of infected and recovered cases. We find that, with the exception of Hubei province (the

epicenter of the epidemic), the share of exposed population across other provinces was less than 1

individuals per 100,000! This is an astonishingly low rate and is consistent with dramatically falling

estimates of the effective reproduction rate at the onset of the epidemic in China. In contrast, the

estimates of λ which we have obtained for European countries are significantly higher even when

compared to the relatively high exposure rates for Hubei, with a substantial heterogeneity across

countries. In particular, we estimate exposure rates for Italy and Spain to be almost five times the

rate estimated for Hubei.

To summarize, our theoretical analysis shows that voluntary social distancing is likely to be ef-

fective only when the epidemic begins to approach its peak, and mandated social distancing to flatten

the curve is required from the early phases of the epidemic. Our estimates show that in order to

flatten the epidemic curve very strict mandatory policies are necessary, as in the case of the Chinese

provinces excluding the Hubei epicenter show. Unfortunately, our estimates suggest that, despite

the time-lag in the contagion from China to other countries, an inadequate and uncoordinated policy

response resulted in exposure rates outside of China that are multiples of those documented at the

epicenter of the epidemic in Hubei.

Related Literature

The characteristics and the economic consequences of the COVID-19 outbreak, and of policies
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to contain its spread, are the subject of a fast growing body of research. Scientific evidence based

on more accurate data at the local level has begun to document the rate of transmission and

incubation periods. The literature has also begun to document the role of mitigation policies in

reducing transmission, and the rate of asymptomatic transmission.

Kucharski et al. (2020) estimate that, in China, the effective reproductive rate Rt fell from

2.35 one week before travel restrictions were imposed on Jan 23, 2020, to 1.05 one week after travel

restrictions. They use a SIR model and estimate it to forecast the epidemic in China, extending

the model to explicitly account for infections arriving and departing via flights. Using data from

Wuhan, Wang et al. (2020) report a baseline reproductive rate of 3.86, that fell to 0.32 after the

vast lock-down intervention. They also find a high rate of asymptomatic transmission.

Work on the economic impact of the epidemic is just starting, as the data are only partially

available. Atkeson (2020) explores the trade-off between the severity and timing of suppression

of the disease, for example through social distancing, and the progression of the disease in the

population in simulations of a SIR model like ours with exposed and not exposed population, but

does not provide estimates and does not focus on the share of the exposed population, nor does he

provides estimates of the model parameters.

Berger, Herkenhoff, and Mongey (2020) show that testing at a higher rate in conjunction with

targeted quarantine policies can reduce both the economic impact of the COIVD-19 and peak

symptomatic infections. As noted above, by selectively applying social distancing policies (with

different α parameters) it is also possible to reduce both the economic impact of the epidemic and

the peak symptomatic infections. Related to this, using data on the Spanish flue, Correia, Luck,

and Verner (2020) find that cities that intervened earlier and more aggressively do not perform

worse and, if anything, grow faster after the pandemic is over. These findings thus indicate that

containment policies not only lower mortality, they also mitigate the adverse long term economic

consequences of a pandemic.

Fang, Wang, and Yang (2020) analysis of Chinese efforts to contain the COIVD-19 outbreak

measures the effectiveness of the lock-down of Wuhan and enhanced social distancing policies in

other cities. They produce evidence for all Chinese provinces and show that these policies con-
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tributed significantly to reducing the total number of infections outside of Wuhan.

Stock (2020) focuses on measurement error and explores the benefits of randomly testing the

general population to determine the asymptomatic infection rate.

Eichenbaum, Rebelo, and Trabandt (2020) discuss the trade off between the economic costs of

containment policies – which could include a recession – and the number of lives saved in a model

in which agents optimize and the probability of infection is endogenous. Barro, Ursua, and Weng

(2020) estimate death rates and output losses based on 43 countries during the 1918-1920 Spanish

flu. They find a very high death rate, with 39 million deaths, or 2.0 percent of world population,

implying 150 million deaths when applied to current population. According to their estimates, the

Spanish flue resulted in economic declines for GDP and consumption in the typical country of 6

and 8 percent, respectively.

Linton (2020) uses a reduced form quadratic time trend model in log of new cases and new

deaths to predict the peak of COIVD-19 for a large number of countries.

As far as we are aware, no study has modelled the difference between government-mandated

and self-imposed isolation and their implication for the flattening of the economic and pandemic

curves that we consider in this paper.

The rest of the paper is organized as follows. Section 2 sets out the modified SIR model with

social distancing. Section 3 analyzes the distinction between mandatory and voluntary isolation.

Section 4 discusses the trade off between containing the epidemic and the employment losses that

depend on the share of exposed population. Section 5 sets out the econometric and measurement

models and reports the estimation results. Section 6 concludes.

2 A Discrete-time SIR Model with Mitigation Policy

There are many approaches to modelling the spread of epidemics. The basic mathematical model

used by many researchers is the susceptible-infective-removed (SIR) model advanced by Kermack

and McKendrick (1927). This model, and its various extensions, has been the subject of a vast

number of studies, and has been used extensively over the past few months to investigate the spread
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of COVID-19. A comprehensive treatment is provided by Diekmann and Heesterbeek (2000) with

further contributions by Metz (1978), Satsuma et al. (2004), Harko et al. (2014), Salje et al.

(2016), amongst many others.

The basic SIR model considers a given population of fixed size P , composed of three distinct

groups, those individuals in period t who have not yet contracted the disease and are therefore

susceptible, denoted by St; the ‘removed’ individuals who can no longer contract the disease,

consisting of recovered and deceased, denoted by Rt; and those who remain infected at time t and

denoted by It. Thus

P = St + It +Rt. (1)

As it stands, this is an accounting identity, and it is therefore suffi cient to model St and It and

obtain Rt as the remainder. The SIR model is typically cast in a set of differential equations, which

we discretize and write as the following difference equations (for t = 1, 2, ..., T )

St+1 − St = −βstIt, (2)

It+1 − It = (βst − γ)It, (3)

Rt+1 −Rt = γIt, (4)

where β and γ are the key parameters of the epidemic. β is the rate of transmission and γ is

the recovery rate. In this model it is assumed that an infected individual in period t causes βst

secondary infections, where st = St/P is the share of susceptible individuals in the total population.

The time profile of It critically depends on the basic reproduction number, defined as the expected

number of secondary cases produced by a single infected individual in a completely susceptible

population, denoted by R0 = β/γ. The parameter β is determined by the biology of the virus, and

is assumed to be constant over time and homogeneous across countries and regions. The recovery

rate, γ, can also be written as γ = 1/d, where d denotes the number of days to recover or die

from the infection. We assume that γ is constant over time, but allow it to vary across countries

and regions, reflecting the differences in the capacity of the local health care systems to treat the

infected population.
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The epidemic begins with non-zero initial values I1 > 0 and S1 > 0, and without any mitigation

policies in place it will spread widely if R0 > 1, ending up infecting a large fraction of the population

if R0 is appreciably above unity. We show below that the steady state value of this proportion is

given by π0 = (R0 − 1)/R0. In the case of COVID-19, a number of different estimates have been

suggested in the literature, placing R0 somewhere in the range of 2.4 to 3.9.2

In the simulations, and the empirical analysis to follow, we adopt a central estimate and set

R0 = 3. As we shall see the SIR model predicts that in the absence of social distancing as much

as 2/3 of the population could eventually become infected before the epidemic runs its course—

the so-called herd immunity solution to the epidemic. Such an outcome will involve unbearable

strain on national health care systems and a significant loss of life, and has initiated unparalleled

mitigation policies first by China and South Korea, and more recently by Europe, US and many

other countries. Such interventions, which broadly speaking we refer to as "social distancing",

include case isolation, banning of mass gatherings, closures of schools and universities, and even

local and national lock-downs.

To investigate the economic implications of such policies we first modify the SIR model by

decomposing the total population, P into two categories, those who are exposed to COVID-19 in

the sense that they could catch the virus (they have not been infected yet), PE , and the rest, PI ,

who are isolated and therefore taken out of harm’s way. We denote the strength of the mitigation

policy by 1− λ, where λ is the proportion of population that is exposed to COVID-19, defined as

λ = PE/P . In practice, λ will be time-varying and most likely there will be feedbacks from the

progress of the epidemic to the coverage of the intervention policies. Here we consider the relatively

simple case where λ is set at the outset of the spread of the epidemics, close to what we believe

China did after the start of the epidemic in Wuhan.

In the presence of the social distancing intervention characterized by λ, the equations of the

2Using data from Wuhan, Wang et al. (2020) report a pre-intervention reproductive rate of 3.86. Kucharski et al.
(2020) estimate that, in China, the reproductive rate was 2.35 one week before travel restrictions were imposed on
Jan 23, 2020. Ferguson et al. (2020) made baseline assumption of R0 = 2.4 based on the fits to early growth-rate of
epidemic in Wuhan (and also examined values of 2.0 and 2.6) based on fits to the early growth-rate of the epidemic
in Wuhan by Li et al. (2020) and Riou and Althaus (2020).
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SIR model now become (noting that the population exposed to the virus is now PE):

St+1 − St = −β
(
St
PE

)
It,

It+1 − It =

[
β

(
St
PE

)
− γ
]
It,

λP = St + It +Rt.

Dividing both sides of the above equation by P and using the fractions st = St/P , it = It/P and

rt = Rt/P , we have

st+1 − st = −
(
β

λ

)
stit, (5)

it+1 − it =

[(
β

λ

)
st − γ

]
it, (6)

and

λ = st + it + rt. (7)

Given β, the fraction of total exposed population, λ, determines the effective transmission rate,

θ = β/λ. When λ = 1, the whole population is exposed, and the effective transmission rate

coincides with the biological one, β.

The system equations (5) and (6) can be solved by iterating forward from some non-zero initial

values, with i1 a small fraction and s1 = λ − i1, since at the start of the epidemic we can safely

assume that r1 = 0. Iterating (6) forward from i1 > 0, and for given values of s1, s2, ...st we have

(where we have replaced θ = β/λ = γ (R0/λ))

it+1 =

(
t∏

τ=1

ρτ

)
i1, (8)

where ρτ = 1+γ [(R0/λ) sτ − 1]. Initially, where few are infected and sτ is close to λ, ρτ > 1 and the

number of infected individuals rises exponentially fast so long as R0 > 1. But as the disease spreads

and recovered and/or deceased are removed, at some point in time t = t∗, sτ starts to fall for τ > t∗

such that ρτ < 1 from τ > t∗, and eventually limt→∞
(∏t

τ=1 ρτ
)
= 0. Hence, limt→∞(it) = i∗ = 0.
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Further, limt→∞ (it+1/it) = 1, and from (6) we have limt→∞st = s∗ = λ (γ/β) = λ/R0, and using

the identity λ = s∗ + r∗, we finally obtain the following expression for the total number of infected

cases as a fraction of the population (c∗):

c∗ = r∗ = λ− λ/R0 =
λ(R0 − 1)

R0
. (9)

The choice of λ also has important implications for the steepness and and the peak of the

epidemic curve, and can be used to flatten the trajectory of it. To this end, and also for the

purpose of estimating λ using data realizations from completed epidemics, we first eliminate st

from the equation for it noting from (6) and (5) that

st+1
st

= 1− θit and
it+1
it

= 1− γ + θst. (10)

Since θ > 0, solving for st, we have st = θ
(
it+1
it
− 1 + γ

)
, and hence

st+1
st

=

(
it+2
it+1
− 1 + γ

)
(
it+1
it
− 1 + γ

) = 1− θit,
which yields the following second-order non-linear difference equation in it

it+1 = i2t /it−1 + θ
[
itit−1 (1− γ)− i2t

]
, t = 1, 2, ..., T, (11)

with the initial values i1 and i2 = (1− γ + θs1) i1, where s1 = λ − i1. Realizations on it, for

t = 1, 2, ..., T , can also be used to estimate γ and θ from the above non-linear autoregression,

but it is important to note that β and λ cannot be separately identified without further a priori

knowledge. In the empirical analysis that follows we set R0 a priori and estimate λ from γR0/θ, as

β = γR0 and θ = β/λ.

As an illustration in Figure 1 we show the time profile of it(λ) using the parameter values R0 = 3

and γ = 1/d = 1/14 and the initial values i1(λ) = λ/1000, and i2(λ) = [1− γ + (γR0/λ) s1 (λ)] i1(λ),

where s1(λ) = λ − i1. Consider the following social distancing coeffi cients, λ = 1, 0.75, and 0.50.
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The time profiles of the infected (as the fraction of population) peak after 52 days and does not

seem to depend much on the choice of λ. But the choice of λ is clearly important for flattening the

curve and reduces the peak of infected from 31 percent when λ = 1, to 23 per cent for λ = 0.75,

and to 15 per cent for λ = 0.50.

Figure 1: Simulated values of it(λ) for different social distancing coeffi cients: λ = 1 (blue), 0.75

(red), and 0.5 (green)

3 A voluntary model of social isolation: case of time-varying λ

So far we have assumed that λ, the proportion of population that can be infected is fixed and

set exogenously by central authorities. In practice, the degree of social distancing also depends

on the extent to which individuals follow the rules, which could depend on the fear of contracting

the disease and most likely will depend on the number of those who are already infected, and

an individual’s perception of the severity of the epidemic and its rate of spread. Even central

authorities can be slow to respond when the number of active cases is small and they might delay

or start with a low level of social distancing and then begin to raise it as the number of infected

cases start to increase rapidly. In the context of our modified SIR model we can allow for such

time variations in λ by relating the extent of social isolation in day t, measured by 1− λt, to the

probability of contracting the disease.
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More formally, consider an individual j from a fixed population of size P in the day t from the

start of an epidemic, and suppose the individual in question is faced with the voluntary decision of

whether to isolate or not. Under self-isolation the individual incurs the loss of wages net of transfers,

amounting to (1 − τ j)wj , plus the inconvenience cost, aj , of being isolated. For those individuals

who can work from home τ j is likely to be 1 or very close to it. But for many workers who are

furloughed or become unemployed, τ j is likely to be close to zero, unless they are compensated by

transfers from the government. On the other hand, if the individual decides not to self-isolate then

he/she receives the uncertain pay-off of (1−djt)wj−djtφj , where djt is an indicator which takes the

value of unity if the individual contracts the disease and zero otherwise. φj represents the cost of

contracting the disease and is expected to be quite high. We are ruling out the possibility of death

as an outcome. In this setting the individual decides to self-isolate if the sure loss of self-isolating

is less than the expected loss of not self-isolating, namely if

(1− τ j)wj + aj < E
[
djtφj − (1− djt)wj |It−1

]
, (12)

where It−1 is the publicly available information that includes it−1, the proportion of population be-

ing infected in day t−1. We assume that the probability of anyone contracting the disease is uniform

across the population and this is correctly perceived to be given by πt−1. Hence E (djt |It−1 ) = πt−1,

and the condition for self-isolating can be written as

(2− τ j)wj + aj < πt−1(wj + φj),

or as
2− τ j + (aj/wj)
1 +

(
φj/wj

) = µj < πt−1. (13)

Since πt−1 ≤ 1, then for individual i to self-isolate we must have µj < 1, (note that µj ≥ 0, with

µj = 0 when φj →∞) or if

φj/wj > aj/wj + (1− τ j). (14)

Namely, if the relative cost of contracting the disease, φj/wj is higher than the inconvenience cost
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of self-isolating plus the proportion of wages being lost due to self-isolation. Also, an individual

is more likely to self-isolate voluntarily if the wage loss, measured by τ j , is low thus providing an

additional theoretical argument in favor of compensating some workers for the loss of their wages,

not only to maintain aggregate demand but to encourage a larger fraction of the population to

self-isolate.

The above formulation also captures the differential incentive to self-isolate across different age

groups and sectors of economic activity. Given that the epidemic affects the young and the old

differently, with the old being more at risk as compared to the young, then φold > φyoung, and

the old are more likely to self-isolate. Similarly, low-wage earners are more likely to self-isolate as

compared to high-wage earners with the same preferences (φj and αj), and facing the same transfer

rates, τ j . But the reverse outcome could occur if low-wage earner face a higher rate of transfer

as compared to the high-wage earners. These and many other micro predictions of the theory can

be tested. But here we are interested in the aggregate outcomes, in particular the fraction of the

population that voluntarily self-isolates.

Denote the fraction of the population in day t who are self-isolating voluntarily by vt(P ) and

using (13) note that

vt(P ) = P−1
P∑
j=1

I
(
µj < πt−1

)
.

Suppose now that condition (14) is met and 0 ≤ µj < 1. Further suppose that the differences in

µj across j can be represented by a continuous distribution function, Fµ(.). Then assuming that

µj are independently distributed across j, by the standard law of large numbers we have

vt = limP→∞([vt(P )] = Pr
(
µj < πt−1

)
= Fµ (πt−1) . (15)

In practice, although P is fixed, it is nevertheless suffi ciently large (in millions) and the above result

holds, almost surely.3

In the case where a fixed fraction, 1− λ, of the population are placed under compulsory social
3This limiting result holds even if µj are cross correlated so long as the degree of cross correlation across µj is

suffi ciently weak.
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distancing, and the remaining λ fraction of population decides to self-isolate voluntarily, the overall

fraction of the population that isolates either compulsory or voluntarily is given by

1− λt = (1− λ) + λFµ (πt−1) ,

which yields the following expression for the fraction of population in day t that is not self-isolating

λt = λ [1− Fµ (πt−1)] . (16)

Assuming that µj is distributed uniformly over 0 ≤ µj < 1, we have λt = λ(1 − πt−1). Other

distributions, such as Beta distribution can also be considered. But, as to be expected, it is clear

that λt is inversely related to πt−1. The higher the probability of contracting the disease the lower

the fraction of the population that will be exposed to the disease.

In order to integrate the possibility of time variations in λ to the SIR model, we need to provide

an approximate model for πt−1, noting that πt−1 is not the true probability of contracting the disease

(which itself depends on λt in a circular manner), but the subjective (or perceived) probability by

individuals. As a simple, yet plausible approximation, we suppose that πt−1 = κit−1, where κ > 0,

and κ supt(it) < 1, and write the modified SIR model as

st+1 − st = −
(
β

λt

)
stit, (17)

it+1 − it =

[(
β

λt

)
st − γ

]
it, (18)

λt = λ(1− κit−1), (19)

which can be solved iteratively from the initial values i1 and s1. This formulation clearly reduces

to the time-invariant case when κ = 0. Since it−1 ≥ 0, then λt ≤ λ and the proportion of the

population who are in harm’s way declines as the epidemic spreads, and rises towards λ, as the

epidemic starts to wane. Following a similar line of reasoning as before, it is easily established that

i∗ = limt→∞(it) = 0, and λ∗ = limt→∞λt = λ, with the rest of the results for the case of fixed λ

holding in the limit.
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Figure 2 below shows the simulated values of λt from iterating equations (17), (18) and (19)

forward with parameters R0 = 3, γ = 1/14, λ = 0.5 and κ = 1.5. The differences in the time profiles

of it without feedback effects (λ = 0.5, and κ = 0) and the ones with feedback effects (λ = 0.5,

and κ = 1.5) are shown in Figure 3. As can be seen, by relating λt to vary inversely with it−1,

it is possible to flatten the peak of infected cases curve, and reduce the adverse public health and

economic implications of the epidemic. But voluntary social distancing starts to have an effect only

once the epidemic is already widely spread, and some coordinated social policy is clearly needed

from the out-set, and before the epidemic begins to spread widely.

Figure 2: Simulated values of λt in the case of the SIR model with parameters

R0 = 3, γ = 1/14, λ = 0.5 and κ = 1.5.

Figure 3: Time profiles of it with a fixed λ = 0.5 and time-varying lambda with κ = 0 (blue) and

κ = 1.5 (red)

14



4 The Economic Cost of Mitigating Epidemics

The choice of λ plays a critical role in establishing a balance between the height of the infection

and the associated economic costs. The reduction in λ can be achieved through social distancing.

There is a clear trade off between the adverse effects of reducing λ on the employment rate and its

positive impact on reducing the fraction of the population infected, it(λ), and hence removed from

the work force. There is also the further trade off between the employment rate and the death rate

due to the spread of the epidemic for different choices of λ. However, we do not model the death

rate or take into account its economic or social cost.

Since the duration of the epidemic is expected to be relatively short, 3 to 4 months at most, it

is reasonable to assume that the immediate economic impact of the epidemic will be on the rate

of employment. In the absence of the epidemic, we assume that the rate of employment in day t is

given by et = Et/P where Et is the counterfactual level of employment during day t, and P is the

population taken as given. For the US economy the current value of et is around 60%, which we

take to be the counterfactual employment rate.

Consider now the rate of employment during the spread of the epidemic, t = 1, 2, ..., T , under

the social distancing policy λ (0 < λ ≤ 1). The effect of the epidemic on the employment level is

two-fold. First it reduces the number in employment directly by f(λ), where f(1) = 1, and f(λ)

is an increasing function of λ, with f ′′(λ) ≤ 0, for λ in the range 0 < λ ≤ 1. In the extreme

scenario where the incidence of social distancing is uniform across all individuals and all sectors of

the economy, we have f(λ) = λ. But in practice the fall in employment is likely to be less than

proportional since some who work from home are less affected by social distancing as compared

to those who are fired because of down-sizing and firm closures. It is also possible to mitigate the

negative employment effects of social distancing by focussing on sectors of the economy that are

less affected by social distancing, by embarking on intensive and targeted testing, contract tracing,

and by more extensive use of protective clothing and equipment. To capture such effects we set

f(λ) = 1− (1−λ)α, with α ≥ 1. As required f(1) = 1, and f ′(λ) = α(1−λ)a−1 > 0. We refer to α

as the elasticity of employment loss with respect to the degree of social distancing, λ. The direct
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employment effect of social distancing will be less adverse for values of a > 1. In what follows, in

addition to the baseline value of α = 1, we also consider α = 2, under which a reduction of λ from

1 to 1/2, for example, reduces the employment rate by 1/4 as compared to 1/2 if we set α = 1.

In addition to this direct effect, the employment level also falls directly due to the number of

infected individuals, It(λ), which also depends on λ. Recall that It(λ) is increasing in λ. There

will be more infected individuals the higher the level of exposure to the virus. Overall, the rate of

employment during the spread of the epidemic is given by

et(λ) = f(λ)et − it(λ). (20)

The associated employment loss is then

`t(λ) = et − et(λ) = [1− f(λ)] et + it(λ), for t = 1, 2, ..., T. (21)

This relationship represents a trade off between the opposing effects of high and low exposures to

the epidemic on the rate of employment. In the event of a high exposure the first term of (21) will

be small relative to the second term, and when exposure is low the direct employment loss is much

higher than the indirect loss due to the spread of infection. It is also important to bear in mind

that employment losses can vary considerably over the course of the epidemic.

Figures 4 shows the time profile of the simulated values of employment losses, `t(λ), for selected

values of λ = 0.5, 0.25 and 0.1, with α = 1. We focus on exposure rates of 50% and less, since

our estimates of λ to be discussed tend to be rather small. The losses are computed with daily

employment rates set to et = 0.6, which is approximately equal to the mean ratio of employment

to population in the US during the last quarter of 2019. As before, the simulated values for it(λ)

are obtained using the SIR model with the parameters R0 = 3, γ = 1/d = 1/14, and the initial

values i1(λ) = λ/1000, and i2(λ) = [1− γ + (γR0/λ) s1 (λ)] i1(λ), where s1(λ) = λ− i1(λ).

As to be expected, employment losses mount up as the rate of exposure to the disease is reduced

from 50% to 25% and right down to 10%. It is also evident from Figure 4 that with the flattening of

the infection curve, as λ is reduced, employment losses stabilize and remain high for the duration
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of the epidemic. However, as noted earlier, the extent of the losses from reducing λ very much

depends on α. As can be seen from Figure 4, when a = 1 the losses can be quite substantial, as

everyone who is isolated has a full charge on the economy. When a = 2, the adverse effects of

social distancing are somewhat mitigated, but could still be considerable for values of λ below 25%.

See Figure 5 which shows the simulated employment losses for a = 1 (blue) and a = 2 (red) with

λ = 0.25.

Figure 4: Simulated employment losses for α = 1 and the values of λ = 0.5 (blue), 0.25 (red)

and 0.10 (green)

Figure 5: Simulated employment losses for λ = 0.25 and the values of employment loss elasticity,

a = 1 (blue) and a = 2 (red)
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A summary of average simulated employment losses for different values of λ and α is provided

in Table 1. In this table we also give estimates for λ = 1 (case of no social distancing) and

λ = 0.75 representing a moderate degree of social distancing. We also computed the simulated

losses allowing for voluntary social distancing, but the results in Table 1 were not much affected.

The results confirm that average losses over the duration of the epidemic (simulated to be 120

days) can be significant, but can be somewhat mitigated by working from home and by enabling

a select group of workers to take part in productive activities under medical supervision (through

regular testing for the disease) and by providing the necessary protective equipment for their own

and other people’s safety.

Table 1: Simulated average employment loss (in per cent per annum) due to epidemic under

different social distancing (λ) and economic impact (α) scenarios

Employment loss elasticity Social distancing coeffi cient (λ)

α 1.0 0.75 0.50 0.25 0.10

1.0 3.6 7.7 11.8 15.9 18.4

1.5 3.6 5.2 8.9 13.9 17.4

2.0 3.6 4.0 6.8 12.2 16.6

Notes: This table reports results of a simulation of the epidemic under different social distancing (λ) and economic impact (α)

scenarios. The epidemic is simulated using SIR model with R0 = 3 and γ = 1/14. λ is the fraction of the population exposed

to the virus. α determines the economic cost of the isolation measures, as defined by (1− λ)a. The losses are given in per cent
per annum over 120 days which is the simulated length of the epidemic.

The calibration of λ is a complicated undertaking and could differ across economies. In the case

of the U.S., it is possible to estimate λ from the recently stated aims by US administration to limit

the number of fatalities due to the COIVD-19 to less than 200, 000. Assuming a death rate of 1%,this

requires limiting the cumulative number of infected cases to C∗ = 200, 000/0.01 = 20, 000, 000. For

a given λ and the reproduction ratio of R0 = 3, we have C∗/PUS = 2λ/3, which gives the estimate

λUS = (20/320)(3/2) = 0.094, assuming a US population of 320 million. The implied value of λUS
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would need to be even lower if a higher death rate is assumed, as the current US data suggests.4

With λUS at 10%, the employment loss over the duration of the epidemic (estimated to be around

120 days), could be as much as 18.4% at an annual rate when α = 1, but gets reduced to 16.6 per

cent per annum when α = 2.

5 Fitting the modified SIR model to the data: estimation of re-

moval and exposure rates

Whilst calibration can be helpful in counterfactual analysis, it is also desirable to obtain estimates

of λ from realized outcomes. This is fortunately possible using data on COIVD-19 from Chinese

provinces over the period January to March 2020. We also report estimates for a selected number

of countries, but these estimates should be considered as preliminary since at the time of writing

many of these epidemics are still unfolding. The attraction of using data from Chinese provinces is

two-fold. First we have complete daily time series data that cover the full duration of the epidemics

with slightly different start dates. Second, we can investigate the differences in parameter estimates

(particularly λ) for the Hubei Province, the epicenter of the epidemic in China, as compared to the

estimates for other provinces.

Our focus is on estimating the removal rate, γ, and the social distancing coeffi cient, λ. We

base our estimation on equations (4) and the solution for it given by (11). However, it is widely

acknowledged that in the absence of large scale testing and given the asymptomatic nature of the

disease in the case of many infected individuals, the recorded numbers of infected and recovered

cases of COIVD-19 most definitely underestimate the true numbers of such cases. Before proceeding

therefore we need to address this challenge.

5.1 Adjusting for under-reporting and other measurement errors

To allow for under-recording of infected cases, and other related measurement errors, we distinguish

between the true and reported (confirmed) measures. We denote the true measures of infected and

4At the time of writing the death rate of COIVD-19 in the U.S. is around 4% using reported number confirmed
cases. But as argued below, due to under reporting of infected cases the true death rate is likely to be around 2%.
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recovered cases by C̃t and R̃t, respectively, and denote the corresponding reported statistics by Ct

and Rt. Let πt be the ratio of confirmed to true cases, and suppose that

πt = πevt−0.5σ
2
, (22)

where π (0 < π < 1) is a fixed fraction, and vt is IIDN(0, σ2). The assumption that πt follows a

log-normal distribution is made for convenience and can be relaxed, and ensures that E(πt) = π.

It is also worth noting that V ar (πt) = π2(eσ
2 − 1). The inverse of π measures of the degree

of under-reporting and is referred to as the multiplication factor (MF) in the literature—see, for

example, Gibbons et al. (2014). It is also reasonable to expect that the same fraction, πt applies

to recovered cases. Under these assumptions we have

Ct = πtC̃t = πevt−0.5σ
2
C̃t, and Rt = πtR̃t = πevt−0.5σ

2
R̃t, (23)

which also yield

It = Ct −Rt = πevt−0.5σ
2
Ĩt, (24)

where It and Ĩt are the reported and the true number of active cases, namely the number of

individuals that remain infected in day t.

The theoretical equations (4) and (11) are derived in terms of the true measures, ı̃t = Ĩt/P ,

and r̃t = R̃t/P , but for estimation purposes they need to be cast in terms of the reported statistics,

namely it = It/P and rt = Rt/P . Using (23) and (24) in the equation for the recovery rate, (4),

we have

rt+1 = evt+1−vt (rt + γit) ,

which yields the following estimating equation

rt+1 = ρ rt + (γρ) it + εt+1, (25)

where ρ = eσ
2
, and under the assumption that vt are IIDN(0, σ2), it follows that E (εt+1 |rt, it ) = 0.
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It is interesting to note that the MF, 1/π, does not enter the equation for rt+1, and both of the

unknown parameters, σ2 and γ can be estimated from the OLS regression of rt on rt−1 and it.

Similarly, using (24) to replace the true values ı̃t in (11) we obtain

it+1 =
(
i2t /it−1

)
ρ3 +

(
ρ2γR0
πλ

)[
itit−1 (1− γ)− ρi2t

]
+ ξt+1, (26)

where ρ = eσ
2
, E

(
ξt+1 |it, it−1

)
= 0. For a given value of ρ, γ and R0 the above non-linear

regression can be used to provide estimates of πλ. Thus, to estimate λ we need to make an

assumption regarding, π, which we address below.

5.2 Estimates of recovery and social distancing rates

We allow recovery rates, γj , to differ across Chinese provinces reflecting possible differences in their

demographics and the availability of medical facilities. Let γj be the recovery rate in province j,

and consider the regressions5

rj,t+1 = ρj rjt +
(
γjρj

)
ijt + εj,t+1, for j = 1, 2, ..., N, (27)

where rjt and ijt are measured as

rjt = (REjt +Djt)/Pj , and Ijt = Cjt −REjt −Djt,

in which Cjt, REjt and Djt are daily time series data obtained from Johns Hopkins University

Carnivorous Resource Center, corresponding to the cumulative number of confirmed, recovered

and deceased cases for province/country j, respectively.6

5Here the recovery rate includes both the recovered and the deceased, and strictly speaking should be referred to
as the removal rate. But in line with the literature we use "recovery rate" in place of the "removal rate".

6Available at https://github.com/CSSEGISandData/COVID-19/tree/master/csse_covid_19_data. Cjt is the
number of confirmed cases taken from file time_series_covid19_confirmed_global.csv, REjt is the number of recov-
ered taken from file time_series_covid19_recovered_global.csv, and Djt is the number of deceased taken from file
time_series_covid19_deaths_global.csv.
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5.2.1 Estimates for Chinese provinces

The estimates of γj for 21 Chinese provinces are summarized in Table 2.
7 As noted above, the

estimation of γ does not depend on under-recording of infected cases, but could depend on the

random component of the measurement equations (23) and (24). The extent of this type of mis-

measurement is given by the estimates of σj which we also report in Table 2. Recall that σ2j = ln(ρj),

and ρj , for j = 1, 2, ..., 21 are identified from regressions, (27). As can be seen, the estimates of

recovery rates, γj , do not differ much across the provinces and lie in the range of 0.033 (for Beijing)

and 0.066 (for Hebei), with the mean across all the provinces given by γ̂MG = 0.046, with a

standard error of 0.17%.8 The random measurement errors are also relatively unimportant, with

the estimates of σj falling within the range (0.06 − 0.10) across the 21 provinces.9 The mean

estimate, γ̂MG = 0.046, corresponds to around 22 days on average from infection to recovery or

death, with the rather narrow 95% confidence interval of 20 to 23 days. Hubei and Beijing have

the lowest recovery rates, and Hebei, Hunan and Guinzhu provinces the highest. These estimates

are all longer than the 14 days typically assumed in designing quarantine policies and, as we shall

see, this has important implications for the estimates of the social distancing coeffi cient, λ.10

Next, we report estimates of λj by running the non-linear regressions in (26) for each province

separately. We consider two choices for ρ and γ, namely the province-specific estimates, ρ̂j , γ̂j ,

reported in Table 2, and the pooled estimate, ρ̂j = 1.0072, γ̂MG = 0.046. Regarding the choice

of R0, we consider 2.5 and 3, which are in the range of values reported in the recent report from

Imperial College, Ferguson et al. (2020). But we only report the results for R0 = 3, to save space.

The estimates of λ for other values of R0 differ only in scale and can be easily obtained if desired.

7We dropped those provinces where the number of active cases did not exceed 100 during the period up to the
end of February. This leaves 21 provinces: Hubei, Guangdong, Henan, Zhejiang, Hunan, Anhui, Jiangxi, Shandong,
Jiangsu, Chongqing, Sichuan, Heilongjiang, Beijing, Shanghai, Hebei, Fujian, Guangxi, Shaanxi, Yunnan, Hainan,
and Guizhou.

8The standard errors for the mean group estimator, γ̂MG = n−1
∑n
j=1 γ̂j , is computed using the formula given in

Pesaran and Smith (1995), and as shown in Chudik and Pesaran (2019), they are robust to weak cross correlations
across the provinces.

9 It is indeed reassuring to note that all the 21 estimates of ρj , computed from separate regressions, are all larger

than 1, and yield reasonable estimates for the standard error of the measurement errors, defined by σj =
√
ln(ρj).

10The medical evidence documented in Ferguson et al. (2020) implies a value for γ in the range 0.048 to 0.071,
with our empirical evidence suggesting that values at the lower end of this range might be more appropriate.
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Note from equation (26) that using time series data on it, we are only able to identify πλ/R0, and

other data sources must be used to set R0 and π.

Finally, we calibrate the proportion of under reporting, π, or its inverse, 1/MF , using the

data from the Diamond Princess cruise ship reported in Morbidity and Mortality Weekly Report,

Moriarty et al. (2020). This case could be viewed as quasi-experimental. It is reported that out

of 3,711 passengers and crew 712 had positive test results for SARS-Cov-2, with only 381 being

symptomatic with the remaining 311 asymptomatic at the time of testing. Since all of those on

board are tested, it is reasonable to assume that the true number of infected individuals is C̃ = 712,

and in the absence of complete testing the confirmed number of symptomatic cases C = 381, since

those without any symptoms would have been overlooked in the absence of complete testing. These

statistics suggest π̂ = C/C̃ = 381/712 = 0.535 or MF = 1.9, which we round to MF = 2. This

estimate is preliminary but seems plausible when we consider the death rate reported for China

and the death rate on Diamond Princess. It is widely recognized that the death rate of COIVD-19

based on confirmed infected cases could be grossly over-estimated, again due to under testing, and

under estimation of C̃. It is therefore interesting to see if we can obtain a death rate for China

which becomes closer to the death rate observed on Diamond Princess of 1.3%, if we adjust upward

the number of confirmed cases by MF = 2. Based on confirmed cases and the number of deaths

in China (at the time of writing) the crude death rate is dChina = C/D = 3, 335/81, 865 = 4.07%.

But assuming that D = D̃, and setting MF = 2, the true death rate in China reduces to

d̃China =
D̃

C̃
=
D

C
.
C

C̃
= 2.03%.

This is still somewhat larger than the death rate of 1.3% reported for Diamond Princess, but could

still be close to the truth, noting that on average access to medical facilities for the passengers

and crews on Diamond Princess might be better as compared to China where most of the fatalities

occurred at the epicenter of the epidemic in Hubei province without much warning or preparation

at the start of the epidemic. In view of these results we set π = 0.5 and compute province-specific

estimates of λj with R0 = 3 by running the regressions.11

11The death rate of COIVD-19 in other countries where the epidemic is still at its early stages is likely to be further
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Estimates of λj (per 100,000 of population) for Chinese provinces are reported in Table 3 using

the full sample and a subsample. Initially, we focus on the full sample estimates. The left panel

of Table 3 gives the results when the province-specific estimates of ρj and γj are used, whilst

the right panel reports the estimates of λj based on the pooled estimates of ρ and γ, namely

ρ̂j = ρ̂MG = 1.0072, and γj = γ̂MG = 0.046. The reason for including the pooled estimates is

to investigate the robustness of the exposure rates, λj , to the choice of the recovery rate and the

extent of measurement errors. As it turns out, both sets of estimates are quite close, with the

ones based on the pooled estimates slightly larger. The largest difference between the two sets

of estimates is obtained for Hubei province (the epicenter of the epidemic), namely 16.31 (1.76)

when we use province-specific estimates of ρj and γj , and 23.74 (2.74), when we use the pooled

estimates (ρ̂MG and γ̂MG).
12 Despite this difference, both estimates of λ for Hubei province have a

high degree of precision and are statistically highly significant, with their 95% confidence interval

overlapping. What is striking is the large difference between the estimates for Hubei and the rest of

the Chinese provinces. Outside the epicenter the estimates of λ are much smaller in magnitude and

range between 0.09 and 0.87, irrespective of whether we use province-specific or pooled estimates of

ρ and γ. In fact the mean group estimates of λ across these provinces (excluding Hubei) are almost

the same, namely 0.393 (0.05), and 0.389 (0.05), respectively. Thus on average the exposure rate in

Hubei is estimated to be some 40−60 times higher than the average exposure rate of the provinces

outside of the epicenter. This makes sense, since it is likely that it took the Chinese authorities

some time before they managed to put into effect very stringent social distancing polices that were

required to reduce λ substantially across China. Looking at the estimates of the province-specific

exposure rates outside Hubei, we also see a remarkably low degree of heterogeneity consistent with

a firm and homogenous imposition of social distancing policies, following what had been learned at

the epicenter of the epidemic.

As can be seen from Figure 6, the regressions for ijt fit reasonably well and trace the epidemic

curves accurately for all 21 Chinese provinces that we consider. Here, it is also notable that the time

to the peak of the epidemic curve is about 4 weeks for most provinces, and the time to completion is

biased upward due to the long delay (4 weeks or more) between infection and death.
12The figures in brackets are standard errors of the estimates.
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around 8 weeks. It is clear that epidemic curves this flat could not have materialized if it were not

for the very stringent social distancing policies implemented by the Chinese authorities, as reflected

in the very low estimates of λj that we obtain, particularly once we consider provinces outside of

the epicenter of the epidemic.

Thus far, we have focussed on Chinese data since they represent completed epidemic cycles

across all 21 provinces. In contrast, at the time of writing, the peak of the epidemic has not been

reached for other countries, where the first reported cases came a few weeks after China. So we

now turn our attention to other countries, considering only those countries for which we have a

suffi cient history for a reliable estimation of λ. Before proceeding, for an accurate comparison with

China, we report estimates of γ and λ for the same 22 Chinese provinces over a subsample ending

on 20th of February (covering the initial stages of the epidemic before reaching its peak). For this

subsample the estimates of γ (and ρ) are summarized in Table 4, which are directly comparable to

the full-sample estimates in Table 2. As can be seen, for γ we obtain much smaller estimates when

we use the subsample as compared to the full sample, with a mean estimate of 0.018 compared to

the full-sample estimate of 0.046, possibly reflecting the fact that before the peak of the epidemic

the data do not capture the recoveries and deaths that will materialize in the following three weeks.

It is therefore reasonable to expect that removal rates in other countries will converge to the very

precise estimates for China that we have already reported for the full sample in Table 2.

Subsample estimates of λ are presented in Table 3. For λ the point estimates based on the

two samples are very close, in line with the news reporting/anecdotal evidence of stringent and

consistent implementation of social distancing. Remarkably, these estimates continue to be very

precisely estimated. A visual comparison between the estimates of λ based on the full and the

subsamples is given in Figure 7. As can be seen, the estimates of λ are essentially the same for the

two sample periods, with the exception of the estimates for Shandong province where the subsample

estimate of λ is larger than the full-sample estimate. This could be due to the fact that outside the

epicenter, Shandong is the only province to experience a second wave in mid course, as is evident

from the plot of active cases for Shandong in Figure 6.
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Table 2: Estimates of the recovery rates (γj) for Chinese provinces

γ̂j (s.e.) ρ̂j (s.e.) σ̂j

Hubei 0.035 (0.0030) 1.0088 (0.0018) 0.09

Guangdong 0.042 (0.0032) 1.0070 (0.0018) 0.08

Henan 0.054 (0.0054) 1.0072 (0.0025) 0.08

Zhejiang 0.044 (0.0038) 1.0073 (0.0019) 0.09

Hunan 0.056 (0.0039) 1.0055 (0.0017) 0.07

Anhui 0.049 (0.0052) 1.0081 (0.0026) 0.09

Jiangxi 0.047 (0.0049) 1.0081 (0.0025) 0.09

Shandong 0.046 (0.0060) 1.0084 (0.0030) 0.09

Jiangsu 0.055 (0.0045) 1.0063 (0.0021) 0.08

Chongqing 0.043 (0.0039) 1.0077 (0.0021) 0.09

Sichuan 0.040 (0.0034) 1.0081 (0.0019) 0.09

Heilongjiang 0.043 (0.0052) 1.0086 (0.0030) 0.09

Beijing 0.033 (0.0042) 1.0053 (0.0028) 0.07

Shanghai 0.043 (0.0065) 1.0034 (0.0034) 0.06

Hebei 0.066 (0.0058) 1.0060 (0.0023) 0.08

Fujian 0.039 (0.0051) 1.0078 (0.0029) 0.09

Guangxi 0.037 (0.0051) 1.0093 (0.0031) 0.10

Shaanxi 0.044 (0.0051) 1.0074 (0.0027) 0.09

Yunnan 0.041 (0.0068) 1.0085 (0.0038) 0.09

Hainan 0.052 (0.0078) 1.0080 (0.0037) 0.09

Guizhou 0.056 (0.0079) 1.0049 (0.0038) 0.07

MG estimates 0.046 (0.0017) 1.0072 (0.0003) 0.08

Notes: Estimation is based on regression rj,t+1 = ρj rjt +
(
γjρj

)
ijt + εj,t+1, where σj =

√
ln(ρj). See also (27). Sample is

Jan-22 to March-31, 2020 (T = 70) with the exception of Hubei which is estimated using the sample Jan-22 to Apr-6 (T = 76).
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Table 3: Estimates of exposure rates (λj) per 100,000 population for Chinese provinces

(π = 0.5, R0 = 3)

Using province-specific estimates ρ̂j ,γ̂j Using pooled estimates ρ̂MG, γ̂MG

Full sample Subsample Full sample Subsample

λ̂j (s.e.) λ̂j (s.e.) λ̂j (s.e.) λ̂j (s.e.)

Guangdong 0.441 (0.042) 0.431 (0.044) 0.491 (0.044) 0.484 (0.046)

Henan 0.610 (0.099) 0.571 (0.115) 0.501 (0.085) 0.457 (0.093)

Zhejiang 0.610 (0.079) 0.599 (0.110) 0.643 (0.084) 0.633 (0.117)

Hunan 0.663 (0.108) 0.677 (0.146) 0.468 (0.072) 0.472 (0.095)

Anhui 0.734 (0.159) 0.692 (0.157) 0.722 (0.168) 0.675 (0.164)

Jiangxi 0.846 (0.166) 0.770 (0.176) 0.868 (0.180) 0.786 (0.190)

Shandong 0.087 (0.008) 0.200 (0.034) 0.088 (0.008) 0.216 (0.040)

Jiangsu 0.389 (0.065) 0.399 (0.075) 0.297 (0.049) 0.300 (0.057)

Chongqing 0.586 (0.106) 0.583 (0.133) 0.644 (0.118) 0.642 (0.150)

Sichuan 0.166 (0.021) 0.165 (0.026) 0.211 (0.027) 0.213 (0.035)

Heilongjiang 0.364 (0.050) 0.364 (0.057) 0.414 (0.060) 0.420 (0.072)

Beijing 0.412 (0.077) 0.444 (0.127) 0.586 (0.096) 0.644 (0.163)

Shanghai 0.498 (0.106) 0.524 (0.156) 0.451 (0.079) 0.472 (0.115)

Hebei 0.215 (0.050) 0.205 (0.070) 0.126 (0.029) 0.115 (0.037)

Fujian 0.211 (0.042) 0.194 (0.041) 0.266 (0.053) 0.251 (0.054)

Guangxi 0.106 (0.030) 0.104 (0.045) 0.156 (0.049) 0.156 (0.076)

Shaanxi 0.213 (0.040) 0.199 (0.050) 0.227 (0.043) 0.213 (0.054)

Yunnan 0.108 (0.020) 0.095 (0.019) 0.130 (0.026) 0.116 (0.025)

Hainan 0.461 (0.079) 0.463 (0.108) 0.396 (0.069) 0.395 (0.094)

Guizhou 0.131 (0.034) 0.133 (0.046) 0.096 (0.023) 0.096 (0.031)

MG estimate 0.393 (0.050) 0.391 (0.047) 0.389 (0.050) 0.388 (0.047)

Hubei 16.306 (1.764) 16.164 (2.765) 23.743 (2.720) 23.584 (4.395)

Notes: Estimation is based on regressions ij,t+1 =
(
i2jt/ij,t−1

)
ρ3j + ρ2j

(
γjR0
πλj

) [
ijtij,t−1

(
1− γj

)
− ρji2jt

]
+ ξjt+1, for

j = 1, 2, ..., 21 (provinces), with ρj , γj imposed equal to the country-specific estimates from Table 2 or their MG estimates

from Table 2. The full sample is the same as in Table 2. The subample is Jan-22 to Feb-20 (T = 30).
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Figure 6: Number of active cases in Chinese provinces (Ijt) and fitted values
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Table 4: Subsample estimates of recovery rates (γj) for Chinese provinces using the sample

ending Feb-20

γ̂j (s.e.) ρ̂j (s.e.) σ̂j

Hubei 0.013 (0.0038) 1.0656 (0.0226) 0.25

Guangdong 0.022 (0.0037) 1.0587 (0.0104) 0.24

Henan 0.025 (0.0052) 1.0636 (0.0135) 0.25

Zhejiang 0.024 (0.0047) 1.0492 (0.0115) 0.22

Hunan 0.031 (0.0064) 1.0581 (0.0124) 0.24

Anhui 0.009 (0.0042) 1.1391 (0.0161) 0.36

Jiangxi 0.006 (0.0037) 1.1422 (0.0150) 0.36

Shandong 0.019 (0.0045) 1.0739 (0.0140) 0.27

Jiangsu 0.019 (0.0049) 1.1020 (0.0129) 0.31

Chongqing 0.019 (0.0038) 1.0840 (0.0109) 0.28

Sichuan 0.013 (0.0062) 1.0823 (0.0208) 0.28

Heilongjiang 0.016 (0.0077) 1.0785 (0.0373) 0.27

Beijing 0.014 (0.0063) 1.0681 (0.0231) 0.26

Shanghai 0.020 (0.0089) 1.0819 (0.0226) 0.28

Hebei 0.026 (0.0073) 1.0830 (0.0164) 0.28

Fujian 0.012 (0.0050) 1.0916 (0.0199) 0.30

Guangxi 0.009 (0.0079) 1.1034 (0.0373) 0.31

Shaanxi 0.010 (0.0042) 1.1194 (0.0156) 0.34

Yunnan 0.002 (0.0080) 1.1609 (0.0382) 0.39

Hainan 0.027 (0.0144) 1.0621 (0.0373) 0.25

Guizhou 0.038 (0.0140) 1.0434 (0.0349) 0.21

MG estimate 0.018 (0.0019) 1.0862 (0.0067) 0.29

Notes: Estimation is based on regression rj,t+1 = ρj rjt +
(
γjρj

)
ijt + εj,t+1. See also (27). Sample is Jan-22 to Feb-20

(T = 30).
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Figure 7: Full sample and subsample estimates of exposure rate (λ) per 100,000 population

across Chinese provinces (π = 0.5, R0 = 3)

Note: Full sample results are based on the same samples as in Table 2. The subsample estimates are based on the sample

Jan-22 to Feb-20, 2020. ρj , γj are country-specific as estimated in Table 2.

5.3 Estimation results for selected countries

Bearing in mind the preliminary nature of these estimates using a subsample that covers the first

phase of the epidemic, we now provide estimates for a selected number of countries with at least 30

days of reported active cases. Specifically, we consider South Korea, Iran and a selected number of

European countries (Spain, Italy, France, Germany, United Kingdom, Belgium, Switzerland, and

Austria).13 Additional countries can be included as the epidemic spreads and moves to its later

stages in the rest of the world.

The estimates of γ and ρ for these countries are summarized in Table 5. Estimates of γ are

generally lower than the ones we obtain for Chinese provinces, using the full sample, implying longer

removal times. In some cases, they are also less precisely estimated. Nevertheless, these country

estimates are remarkably close to the estimates we obtained in Table 4 for Chinese provinces, when

13The fitting of epidemic curves for the United States or its counties is hampered by the lack of data for recovered
cases. Due to the absence of minimally reliable data on recoveries, JHU stopped reporting these statistics at the US
state level on March 9, 2020. Given the large variation in social distancing policies across US states and counties, it
would be misleading to report a country-wide estimate of λ for the country as a whole.
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we used the subsample. It is therefore reasonable to conjecture that the mean estimate of γ across

European countries and elsewhere will end up converging to the mean estimate of γ = 0.046 that

we have provided for China using the full samples.

The estimates of exposure rates, λ, for the selected countries are summarized in Table 6, with

the left panel giving the estimates using country-specific estimates of ρ and γ from Table 5, and the

right panel using the pooled estimate of ρ and γ from Chinese provinces, namely ρ̂MG = 1.0072,

γ̂MG = 0.046, which are arguably closer to their true values. This choice is driven by our belief

that the pooled estimates based on the full set of data from Chinese provinces provide a more

reliable benchmark for these parameter values for countries with advanced scientific and medical

capabilities and are possibly less likely to be biased as compared to the MG estimate for the selected

countries in Table 5.

As can be seen, there is a great deal of heterogeneity in the estimates of λ across the selected

countries, partly reflecting differences in the mitigation polices adopted. However, most of these

estimates are much larger than those obtained for Chinese provinces ex-Hubei. Strikingly, and

unfortunately, these estimates are 3-6 times larger than in Hubei, reflecting a massive failure at

learning from the Chinese earlier experience with firm and uniform social distancing. With the

exception of Iran, South Korea, and Austria the estimates of λ for the European countries in our

sample are all either comparable or much higher than estimates we have obtained for the Hubei

province. In particular, Italy, Spain and Belgium stand out with the largest estimates, all more

than multiple times as high as Hubei. Again, remarkably, even though less precisely estimated than

in the case of Chinese provinces sub-samples, these estimates continue to be relatively precise. We

therefore have confidence that, as more data will become available, a very precise estimate of the

actual degree of social distancing adopted will be measurable from the data.
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Table 5 Estimated values of recovery rates (γj) for a selection of countries

γ̂j (s.e.) ρ̂j (s.e.) σ̂i Sample T

Spain 0.054 (0.0015) 1.000 . . 25-Feb to 12-Apr 46

Italy 0.026 (0.0010) 1.000 . . 20-Feb to 12-Apr 51

France 0.035 (0.0025) 1.000 . . 26-Feb to 12-Apr 45

Germany 0.045 (0.0124) 1.023 (0.022) 0.15 24-Feb to 12-Apr 47

United Kingdom 0.016 (0.0006) 1.000 . . 24-Feb to 12-Apr 47

Iran 0.007 (0.0171) 1.081 (0.020) 0.28 20-Feb to 12-Apr 51

Belgium 0.041 (0.0056) 1.003 (0.013) 0.05 02-Mar to 12-Apr 40

Switzerland 0.037 (0.0098) 1.039 (0.018) 0.20 28-Feb to 12-Apr 43

Austria 0.023 (0.0037) 1.077 (0.010) 0.27 28-Feb to 12-Apr 43

South Korea 0.022 (0.0071) 1.020 (0.010) 0.14 19-Feb to 12-Apr 52

MG estimate 0.031 (0.0043)

Notes: Estimation is based on regression rj,t+1 = ρj rjt +
(
γjρj

)
ijt + εj,t+1.

Table 6: Estimated values of exposure rate (λj) per 100,000 population for a selection of

countries (π = 0.5, R0 = 3)

Using country-specific Using pooled

estimates ρ̂j ,γ̂j estimates ρ̂MG, γ̂MG

λ̂j (s.e.) λ̂j (s.e.)

Spain 457.9 (256.9) 117.8 (19.5)

Italy 252.4 (153.8) 117.8 (12.7)

France 25.8 (4.6) 34.5 (5.5)

Germany 23.6 (1.7) 43.9 (6.6)

United Kingdom 47.2 (18.2) 79.6 (13.0)

Iran 0.8 (0.1) 17.3 (2.9)

Belgium 172.9 (52.7) 120.8 (20.9)

Switzerland 24.8 (1.5) 65.4 (10.9)

Austria 6.8 (0.3) 47.7 (6.9)

South Korea 1.6 (0.2) 5.5 (0.8)

MG estimate 101.4 (37.4) 65.0 (23.7)

Notes: Estimation is based on regression ij,t+1 =
(
i2jt/ij,t−1

)
ρ3j + ρ2j

(
γR0
πλ

) [
ijtij,t−1 (1− γ)− ρi2t

]
+ ξt+1, using the same

sample as in Table 3. The left part of this table reports results using country-specific estimates ρ̂j ,γ̂j , and the right part of

this table uses pooled estimates ρ̂MG, γ̂MG from Table 2
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6 Conclusions

This paper makes two related contributions. At the theoretical level, it integrates social distancing

polices in a standard SIR model in order to evaluate their impact on both the COVID-19 epidemic

and the associated employment costs. The framework distinguishes between mandatory and vol-

untary isolation. Critically, it is shown with simulations that, while targeted mandated policies

can be very useful in flattening the epidemic curve, voluntary policies are relatively ineffective.

Self-isolation can affect the epidemic curve, but only when it is close to its peak. We also show that

mandating social distancing is very effective at flattening the epidemic curve, but is costly in terms

of employment loss. However, if targeted towards individuals most likely to spread the infection,

the employment loss can be somewhat reduced.

At the empirical level, using JHU daily COVID-19 statistics corrected for measurement errors,

the paper provides estimates of province-specific recovery (γ) and exposure (λ) rates in China and

in a selected number of countries, and shows that the rate of exposure to COVID-19 was around

40− 60 times higher in Hubei at the epicenter of the epidemic compared to the rest of China. We

find a very high degree of effective isolation, stable over time, and homogeneous across Chinese

provinces. In contrast, we document lower and more heterogeneous degrees of effective isolation

across European countries, and the degree of effective isolation turns out to be the lowest in Italy

and Spain with an exposure some five times larger than our estimate for Hubei province, the

epicenter of the epidemic in China.

As more and more reliable data becomes available, extending the empirical analysis to the

United States and its metropolitan areas, as well as other countries worldwide, is an essential area

of further research.

A further challenge is to relate the elasticity of employment loss, α, to the way social distancing

policies are implemented, including intensive testing and contact tracing. These are important

topics of current and future research.
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