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1 Introduction

Medium-scale DSGE models such as Christiano et al. (2005) and Smets and Wouters (2007)

abstract from capital market imperfections. However, credit frictions have gained much

prominence as distortions in capital markets tend to amplify and prolong over time the effects

of shocks– as in the financial accelerator’s adverse feedback loop that arises in the seminal

work of Bernanke et al. (1999) on costly-state verification in general equilibrium. More

recently, Dorofeenko et al. (2008), Christiano et al. (2014), Cesa-Bianchi and Fernández-

Corugedo (2018), among others, have also recognized that financial uncertainty (which we

refer here as micro-uncertainty) can have first-order effects over the business cycles in the

presence of credit frictions.

Financial risks or micro-uncertainty are not the only type of uncertainty that has received

attention in the literature. Monetary policy uncertainty in particular and uncertainty about

the state of the economy (about aggregate TFP) are among the main sources of macro/policy

risk that researchers have looked at. Fernández-Villaverde et al. (2010) as well as Born

and Pfeifer (2014) have explored them closely, but in economic environments which do not

feature credit market imperfections like ours does. However, unlike for micro-uncertainty,

their papers tend to suggest that neither aggregate (TFP) uncertainty nor policy risk appear

to be of first-order importance over the business cycle.

The framework of Balke et al. (2017) employs a medium-scale Dynamic New Keynesian

model with credit frictions (asymmetric information and costly monitoring as in Bernanke

et al. (1999)) and uncertainty (stochastic volatility as in Fernández-Villaverde et al. (2010)).

In Balke et al. (2017), we study specifically how financial frictions and micro-uncertainty

affect our understanding of the monetary policy transmission mechanism through the lens

of the Dynamic New Keynesian model. We also investigate the interaction between credit

frictions and macro/policy and micro-uncertainty explicitly. This is where our estimated

model makes its most novel contributions.

This paper complements the work of Balke et al. (2017). We describe our approach to

model mean-preserving stochastic volatility in detail, provide a derivation of the optimal

nominal risky debt contract between entrepreneurs (borrowers) and financial intermediaries

(lenders), and include a brief description of the equilibrium conditions and steady state

equations that characterize the solution of the Balke et al. (2017) model. We also present

an overview of the data used to estimate the model as well as a detailed explanation of

the codes developed for the estimation and for the quantitative simulation of the pruned

third-order approximation of the model’s solution. Finally, this paper also contains an
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additional discussion of the main results inferred from the estimated model as well as a

comprehensive set of experiments not reported in Balke et al. (2017) but conducted to

establish the robustness of our findings.

2 Modeling Mean-Preserving Stochastic Volatility

In our framework, all shock processes with stochastic volatility– aggregate productivity

(TFP), idiosyncratic productivity, and monetary policy shocks, i.e., zt ∈ {at, ln (ωt) ,mt}–
can be cast in the following canonical form:

zt = µz,t + ρz
(
zt−1 − µz,t−1

)
+ σze

σ̂z,tεz,t, (1)

µz,t = −
(
σze

σ̂z,t
)2

2
+ (ρz)

2 µz,t−1, (2)

σ̂z,t = υzσ̂z,t−1 + ηzuz,t, (3)

where σ̂z,t = lnσz,t − lnσz and σz,t ≡ σze
σ̂z,t . The innovation terms εz,t and uz,t are i.i.d.

N (0, 1) and uncorrelated. Differences between conditional and unconditional moments of

the distribution can arise under this canonical form– hence, we must note that the notion

of mean-preserving spread that we adopt in this paper is that of a mean-preserving spread

conditional on the history of the volatility shocks.

Any shock zt ∈ {at, ln (ωt) ,mt} is specified in logs as a stochastic (Gaussian) process,
but appears in the model equilibrium conditions in levels (as ezt). Under the assumption of

log-normality, an increase in σz,t increases not only the variance of the shock (the dispersion

for ezt) but also the expected mean value of ezt. Since we are interested in mean-preserving

spreads that arise solely because of shifts in the dispersion of the distribution and not from

indirect effects coming through the mean, we introduce a recursive correction given in (2)

that reverses the conditional mean-effect of volatility on the time-varying conditional mean

of the shock process µz,t.

To show that this recursive correction is conditional mean-preserving, note first that zt
and µz,t can be expanded backwards as follows:

zt = µz,t +
∑∞

i=0
(ρz)

i σz,t−iεz,t−i, (4)

µz,t = −
∑∞

i=0

(
ρ2
z

)i σ2
z,t−i

2
. (5)
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When we compute the mean of the process ezt conditional on the history of the volatility

shocks, we obtain the following expression under the time-varying conditional mean (µz,t)

recursion given in (2):

E [ezt | σz,t−i, i = 0, ...,∞]

= E

[
e
µz,t+

∑∞

i=0
(ρz)iσz,t−iεz,t−i | σz,t−i, i = 0, ...,∞

]

= e

(
−
∑∞

i=0
(ρ2z)

i σ
2
z,t−i
2

)
E

e
(∑∞

i=0
(ρz)iσz,t−iεz,t−i

)
| σz,t−i, i = 0, ...,∞


= e

(
−
∑∞

i=0
(ρ2z)

i σ
2
z,t−i
2

)
e
E

(∑∞

i=0
(ρz)iσz,t−iεz,t−i|σz,t−i,i=0,...,∞

)
+ 1
2
V

(∑∞

i=0
(ρz)iσz,t−iεz,t−i|σz,t−i,i=0,...,∞

)

= e

(
−
∑∞

i=0
(ρ2z)

i σ
2
z,t−i
2

)
e

(∑∞

i=0
(ρ2z)

i σ
2
z,t−i
2

)
= 1, (6)

which follows given that εz,t are i.i.d. N(0, 1) innovations. As a result, this shows that the

recursive correction proposed in (2) ensures that the conditional mean of the shock zt in

levels is not affected by a change in the second moment σz,t. This is the sense in which the

specification of the stochastic volatility shocks is said to be mean-preserving in our model.

Finally, we consider the implications that this mean-preserving correction has on the

steady state. The standard way we characterize the deterministic steady state is: (a) to

assume that εz,t and uz,t are replaced by their unconditional means (i.e., replaced by E (εz,t) =

E (uz,t) = 0), and (b) to drop the time subscript in the corresponding dynamic equations

in the canonical form. Based on that logic, we get the following set of equations for the

deterministic steady state:

z = µz = −1

2

σ2
z

1− ρ2
z

, (7)

σ̂z = 0, (8)

for each z ∈ {a, ln (ω) ,m}. This describes the steady state for all shocks z under our

conditional mean-preserving recursive correction.
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3 The Optimal Nominal Risky Debt Contract

At time t − 1, entrepreneurs purchase the aggregate stock of physical capital, Kt, which

is needed for wholesale production at time t at a price of Qt−1 units of the final good

per unit of physical capital. Capital-producing firms produce and sell the physical capital.

The nominal expense on the acquisition of physical capital, Pt−1Qt−1Kt, is financed with a

combination of the entrepreneurs’accumulated nominal net worth (internal funds or equity),

Nt−1, and external funding provided by the financial intermediaries (via one-period loans),

Lt−1 = Pt−1Qt−1Kt −Nt−1. A linear technology transforms physical capital into the capital

services supplied by entrepreneurs to wholesale producers at time t. Furthermore, these

technological constraint implies that the physical capital transformed into capital services

by each entrepreneur is subject to a purely idiosyncratic technology shock ωt−1 which is i.i.d.

across entrepreneurs with E (ωt−1) = 1.

While all entrepreneurs face the same capital purchasing decision problem at t − 1 and

make identical choices, ex post differences emerge because each entrepreneur receives a dif-

ferent draw from ωt−1. At time t, each entrepreneur can only rent ωt−1 units of capital

services to the wholesale producers per unit of physical capital owned. Then, in nominal

terms, each entrepreneur accrues a nominal capital income of ωt−1

[
Rw
t + PtQt (1− δ)

]
at

time t per unit of physical capital acquired at time t− 1. This nominal income comes from

the earned competitive nominal rental rate on capital services, Rw
t , paid by the wholesale

producers, but also from the resale value expressed in units of the final good, Qt, paid by

the capital producers for the entrepreneurs’depreciated physical capital after production.

From here it follows that each entrepreneur’s nominal return accrued on physical capital is

given by ωt−1R
e
t and that the aggregate nominal return on capital, R

e
t , is defined as follows:

Re
t

Πt

≡
[
Rwt
Pt

+Qt (1− δ)
Qt−1

]
, (9)

with Πt ≡ Pt
Pt−1

being the gross inflation rate on final goods and 0 < δ < 1 the depreciation

rate.

Given the definition of Re
t in (9), each individual entrepreneur’s nominal capital income

at time t is ωt−1

[
Rw
t + PtQt (1− δ)

]
Kt = ωt−1R

e
tPt−1Qt−1Kt. The idiosyncratic technology

shock ωt−1 when realized is costlessly observed by the individual entrepreneur. However,

ωt−1 is not observed by the financial intermediaries and verification (through monitoring) of

the loan terms agreed upon is costly. The financial friction therefore arises from the agency

4



costs associated with this informational asymmetry between entrepreneurs (borrowers) and

financial intermediaries (lenders).1

At time t, default on a loan occurs whenever the nominal capital income earned after the

realization of the idiosyncratic technology shock ωt−1 is insuffi cient for the entrepreneur to

cover the nominal repayment of its loan, i.e., whenever

ωt−1R
e
tPt−1Qt−1Kt ≤ RL

t Lt−1, (10)

where, RL
t , denotes the nominal return required at time t by the financial intermediaries on

the risky nominal one-period loan extended at time t− 1, Lt−1. The return on the nominal

one-period loan (risky debt contract) is defined implicitly in terms of a default threshold

set on the idiosyncratic technology shock, ωt−1, which corresponds to the draw of ωt−1 that

equates the nominal loan repayment owed to financial intermediaries with the nominal capital

income accrued by the entrepreneur– i.e., ωt−1 such that RL
t Lt−1 = ωt−1R

e
tPt−1Qt−1Kt.

Under limited liability, in case of default at time t (ωt−1 < ωt−1), the financial intermedi-

aries appropriate only the nominal capital income generated by the defaulting entrepreneur

in that period– which equals ωt−1

[
Rw
t + PtQt (1− δ)

]
Kt = ωt−1R

e
tPt−1Qt−1Kt. The finan-

cial intermediaries always choose to monitor the defaulting entrepreneurs in order to prevent

them from misrepresenting the true value of ωt−1 and, therefore, the nominal income that

can be recovered. Financial intermediaries monitor and verify the defaulting entrepreneur’s

income at a cost of µωt−1R
e
tPt−1Qt−1Kt. The entrepreneur that defaults gets nothing, while

the financial intermediaries are able to recover (1− µ)ωt−1R
e
tPt−1Qt−1Kt. If the entrepre-

neur does not default (ωt−1 ≥ ωt−1), then he simply pays ωt−1R
e
tPt−1Qt−1Kt back to the

financial intermediaries and keeps (ωt−1 − ωt−1)Re
tPt−1Qt−1Kt.

Aggregate Sharing of Nominal Income from Capital. We denote the probability dis-

tribution function (pdf) and the cumulative distribution function (cdf) for the log-normally-

distributed idiosyncratic technology shock ωt as φ
(
ωt | µω,t = −σ2ω,t

2
, σω,t

)
andΦ

(
ωt | µω,t = −σ2ω,t

2
, σω,t

)
,

respectively. Or, to save notation, simply as φ (ωt | σω,t) and Φ (ωt | σω,t). At time t, the
entrepreneurs anticipate the nominal capital income net of borrowing costs for each possi-

ble state of aggregate risk– where aggregate risks arise from aggregate productivity (TFP)

shocks, monetary policy shocks, and from the stochastic volatility on the aggregate produc-

tivity (TFP) shock, the monetary policy shock, and the idiosyncratic technology shock– at

1The costly acquisition of information about these idiosyncratic shocks implies that financial contracts
cannot be written down to completely diversify away these idiosyncratic risks. With a nominal financial
contract, aggregate inflation risks can also impact the contract’s borrowing terms.
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time t+ 1 which can be calculated as follows:2∫ +∞

ωt

[
ωtR

e
t+1PtQtKt+1 −RL

t+1Lt
]
φ (ωt | σω,t) dωt

= Re
t+1PtQtKt+1

[∫ +∞

ωt

(ωt − ωt)φ (ωt | σω,t) dωt
]

= Re
t+1PtQtKt+1f (ωt, σω,t) , (11)

where

f (ωt, σω,t) ≡
∫ +∞

ωt

ωtφ (ωt | σω,t) dωt − ωt (1− Φ (ωt | σω,t)) . (12)

By the law of large numbers, f (ωt, σω,t) can be interpreted as the fraction of the expected

nominal income from capital obtained by the entrepreneurs.

Similarly, the nominal capital income net of monitoring costs at time t + 1 anticipated

by the financial intermediaries at each possible state of aggregate risk is equal to:

(1− µ)

∫ ωt

0

[
ωtR

e
t+1PtQtKt+1

]
φ (ωt | σω,t) dωt +

∫ +∞

ωt

[
RL
t+1Lt

]
φ (ωt | σω,t) dωt

= Re
t+1PtQtKt+1

[
(1− µ)

∫ ωt

0

ωtφ (ωt | σω,t) dωt + ωt

∫ +∞

ωt

φ (ωt | σω,t) dωt
]

= Re
t+1PtQtKt+1g (ωt, σω,t) , (13)

where

g (ωt, σω,t) ≡ (1− µ)

∫ ωt

0

ωtφ (ωt | σω,t) dωt + ωt (1− Φ (ωt | σω,t)) . (14)

By the law of large numbers, g (ωt, σω,t) can be interpreted as the fraction of the expected

nominal capital income that accrues to the financial intermediaries.

Finally, the monitoring costs can be expressed as:

µ

∫ ωt

0

[
ωtR

e
t+1PtQtKt+1

]
φ (ωt | σω,t) dωt

= Re
t+1PtQtKt+1

[
µ

∫ ωt

0

ωtφ (ωt | σω,t) dωt
]

= Re
t+1PtQtKt+1µG (ωt, σω,t) , (15)

2Whenever there is aggregate risk, Ret is not known at time t−1 when the loan is finalized. Bernanke et al.
(1999) argue that loan contracts must imply that the risk-neutral entrepreneurs bear all the aggregate risk to
provide full insurance for the risk-averse households’savings loaned to them through financial intermediaries.
However, loan contracts with full insurance for the savers are not necessarily optimal in more general settings
(see, e.g., Hellwig (2001), Monnet and Quintin (2005), and Carlstrom et al. (2016), among others). We leave
the exploration of more complex risk-sharing financial arrangements for future research.
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where

G (ωt, σω,t) ≡
∫ ωt

0

ωtφ (ωt | σω,t) dωt. (16)

By the law of large numbers, µG (ωt, σω,t) can be interpreted as the fraction of the expected

nominal capital income that is lost due to monitoring costs. Then, naturally, a nominal

capital income sharing rule between entrepreneurs and financial intermediaries arises in the

following form:

f (ωt, σω,t) + g (ωt, σω,t) = 1− µG (ωt, σω,t) , (17)

where µG (ωt, σω,t) ≥ 0 determines the nominal capital income losses due to monitoring costs

which would be set to zero only if monitoring costs are zero, i.e., if µ = 0.

The Loan Contracting Problem. With the information available at time t, the entre-

preneurs’expected nominal capital income net of borrowing costs implied by equation (11)

is:

PtQtKt+1Et
[
Re
t+1

]
f (ωt, σω,t) . (18)

Similarly, financial intermediaries’expected nominal capital income net of monitoring costs

given by equation (13) is:

PtQtKt+1Et
[
Re
t+1

]
g (ωt, σω,t) . (19)

The formal contracting problem, at time t, reduces to choosing the quantity of physical cap-

ital, Kt+1, and the default threshold, ωt, that maximize the entrepreneurs’expected nominal

capital income net of borrowing costs given by (18) subject to the following participation

constraint for the financial intermediaries:

PtQtKt+1Et
[
Re
t+1

]
[1− f (ωt, σω,t)− µG (ωt, σω,t)] ≥ ItLt = It [PtQtKt+1 −Nt] , (20)

where the left-hand side combines the expected nominal capital income for the financial

intermediaries in (19) with the sharing rule equation in (17). The equality on the right-hand

side of (20) follows from the aggregate balance sheet equation of the entrepreneurs (i.e.,

from PtQtKt+1 = Nt + Lt). All financial intermediaries share equally in the pool of loans

to entrepreneurs. If lenders participate in this loan contract, they always supply the desired

nominal loans, Lt, as long as they accrue a rate of return on their loan portfolio greater than

or equal to the return owed on deposits (the nominal risk-free interest rate, It). In other

words, we do not explicitly consider here the possibility of credit rationing.
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It follows from the first-order condition with respect to ωt that:

− fω (ωt, σω,t) + λ (ωt, σω,t) [fω (ωt, σω,t) + µGω (ωt, σω,t)] = 0, (21)

where λ (ωt, σω,t) is the Lagrange multiplier on the financial intermediaries’participation

constraint in (20). Here, we define fω (ωt, σω,t) ≡ ∂f(ωt,σω,t)

∂ωt
and Gω (ωt, σω,t) ≡ ∂G(ωt,σω,t)

∂ωt
. By

virtue of this optimality condition, we say that the shadow cost of enticing the participation

of the financial intermediaries in this loan contract is given by:

λ (ωt, σω,t) =
fω (ωt, σω,t)

fω (ωt, σω,t) + µGω (ωt, σω,t)
. (22)

The Kuhn-Tucker conditions imply that the complementary slackness condition

λ (ωt, σω,t)
[
It (PtQtKt+1 −Nt)− PtQtKt+1Et

[
Re
t+1

]
(1− f (ωt, σω,t)− µG (ωt, σω,t))

]
= 0,

(23)

and λ (ωt, σω,t) ≥ 0 hold. This together with (22) implies that the participation constraint

must always be binding since the Lagrange multiplier is non-zero.

The binding participation constraint can be re-written as:

PtQtKt+1

Nt

Et
(
Re
t+1

It

)
(1− f (ωt, σω,t)− µG (ωt, σω,t)) =

[
PtQtKt+1

Nt

− 1

]
, (24)

or, more compactly, as

PtQtKt+1

Nt

=
1

1− Et
(
Ret+1
It

)(
Ψ(ωt,σω,t)−f(ωt,σω,t)

λ(ωt,σω,t)

) , (25)

where Ψ (ωt, σω,t) is

Ψ (ωt, σω,t) ≡ f (ωt, σω,t) + λ (ωt, σω,t) (1− f (ωt, σω,t)− µG (ωt, σω,t))

= f (ωt, σω,t) + λ (ωt, σω,t) g (ωt, σω,t) , (26)

given the nominal capital income sharing rule in (17). From (25) and (26), it follows that

the optimal leverage can be expressed as

PtQtKt+1

Nt

=
1

1− Et
(
Ret+1
It

)
g (ωt, σω,t)

, (27)
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which depends on the expected aggregate excess return as given by Et
(
Ret+1
It

)
and the frac-

tion of the expected nominal capital income that accrues to the financial intermediaries

g (ωt, σω,t).

The loan contracting problem also requires the following first-order condition with respect

to physical capital, Kt+1, to hold:

Et
(
Re
t+1

It

)
Ψ (ωt, σω,t)− λ (ωt, σω,t) = 0, (28)

where we implicitly conjecture that ωt is conditioned only on variables known at time t (to

be more precise, we conjecture that ωt is conditioned on the pair
(
PtQtKt+1

Nt
, σω,t

)
).3 Simply

re-arranging this expression gives us that,

Et
(
Re
t+1

It

)
=
λ (ωt, σω,t)

Ψ (ωt, σω,t)
. (29)

This optimality condition determines the excess returns per unit of physical capital above

the nominal interest rate, It, that are required to make the loan contract worthwhile to both

entrepreneurs and financial intermediaries.

If we combine equations (25) and (29), then it follows that:

PtQtKt+1

Nt

=
1

1− λ(ωt,σω,t)

Ψ(ωt,σω,t)

(
Ψ(ωt,σω,t)−f(ωt,σω,t)

λ(ωt,σω,t)

)
=

1

1−
(

Ψ(ωt,σω,t)−f(ωt,σω,t)

Ψ(ωt,σω,t)

) =
Ψ (ωt, σω,t)

f (ωt, σω,t)
, (30)

which validates our conjecture that the default threshold ωt is a function of observables

known at time t, that is, our conjecture that ωt ≡ ω
(
PtQtKt+1

Nt
, σω,t

)
. Given the relationships

derived in (29) and (30), the specification of the credit risk spread can be re-expressed as

follows:

Et
[
Re
t+1

It

]
= s

(
PtQtKt+1

Nt

, σω,t

)
, (31)

where

s

(
PtQtKt+1

Nt

, σω,t

)
≡
λ
(
ω
(
PtQtKt+1

Nt
, σω,t

)
, σω,t

)
Ψ
(
ω
(
PtQtKt+1

Nt
, σω,t

)
, σω,t

) , (32)

3The micro-uncertainty shock, σω,t, and the asset-to-net-worth ratio,
PtQtKt+1

Nt
, are thought to be known

by all agents at time t when the loan contract is signed.
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or simply as

Et
[
Re
t+1

]
= s

(
PtQtKt+1

Nt

, σω,t

)
It, (33)

given that It is known at time t and can be taken out of the expectation. This characterization

of the credit risk spread (or external finance premium) expands the Bernanke et al. (1999)

financial accelerator framework by modeling loan contracts explicitly in nominal terms and

by linking the external finance premium itself to the micro-uncertainty shocks, σω,t.

Loan Contract Terms Under Log-Normality. The idiosyncratic technology shock ωt is

log-normally distributed, i.e., ln(ωt) ∼ N(µω,t, σ
2
ω,t). The conditional variance, σ

2
ω,t, reflects

the time t dispersion of the cross-sectional distribution of the entrepreneurs’idiosyncratic

productivity. We set σω,t ≡ σωe
σ̂ω,t and allow the conditional variance σ̂ω,t ≡ lnσω,t − lnσω

to be time-varying as follows:

σ̂ω,t = υωσ̂ω,t−1 + ηωuω,t, (34)

where uω,t is i.i.d. N (0, 1). We refer to this as the exogenous micro-uncertainty shock. The

parameter 0 < υω < 1 determines the persistence of the idiosyncratic technology shock’s

log-volatility σ̂ω,t, the unconditional expected volatility is given by σω > 0, and the standard

deviation of its innovations by ηω ≥ 0. By setting the time-varying conditional mean µω,t to

be µω,t = −σ2ω,t
2
, we ensure the unconditional mean of the idiosyncratic productivity shock

ωt to be mean-preserving (i.e., we ensure E (ωt) = 1) isolating the effects of pure second

moment shocks (micro-uncertainty) from first moment or level effects of the shock.

The density function of the log-normally-distributed idiosyncratic technology shock ωt is

φ
(
ωt | µω,t, σω,t

)
=

1

ωtσω,t
2
√

2π
e
− (lnωt−µω,t)

2

2σ2ω,t , ωt > 0, (35)

and its cumulative distribution function is

Φ
(
ωt | µω,t, σω,t

)
= Pr

(
ωt ≤ ω | µω,t, σ2

ω,t

)
=

1

2

[
1 + erf

(
lnωt − µω,t
σω,t

2
√

2

)]
, (36)

erf

(
lnωt − µω,t
σω,t

2
√

2

)
≡ 2

2
√
π

∫ lnωt−µω,t
σω,t

2√2

0

e−x
2

dx, (37)

where erf (·) denotes the Gaussian error function.
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Given the log-normal assumption in (35)− (37), we obtain that:4

∫ +∞

ωt

ωtφ (ωt | σω,t) dωt =

∫ +∞

ωt

1

σω,t
2
√

2π
e
− (lnωt−µω,t)

2

2σ2ω,t dωt

=

(
−1

2
eµω,t+

σ2ω,t
2 erf

(
µω,t + σ2

ω,t − lnωt

σω,t
2
√

2

)∣∣∣∣+∞
ωt

)

=

(
−1

2
eµω,t+

σ2ω,t
2 erf (−∞)

)
−
(
−1

2
eµω,t+

σ2ω,t
2 erf

(
µω,t + σ2

ω,t − lnωt

σω,t
2
√

2

))
=

1

2
eµω,t+

σ2ω,t
2

[
1 + erf

(
µω,t + σ2

ω,t − lnωt

σω,t
2
√

2

)]
, (38)

and

Φ
(
ωt | µω,t, σω,t

)
=

1

2

[
1 + erf

(
lnωt − µω,t
σω,t

2
√

2

)]
. (39)

Hence, it is possible to characterize the share f (ωt, σω,t) in (12) as:

f (ωt, σω,t) =
1

2
eµω,t+

σ2ω,t
2

[
1 + erf

(
µω,t + σ2

ω,t − lnωt

σω,t
2
√

2

)]
− ωt (1− Φ (ωt | σω,t)) , (40)

in terms of the error function erf (·).
Similarly, given the log-normal assumption in (35) − (37), the function G (ωt, σω,t) can

be re-expressed as:

G (ωt, σω,t) ≡
∫ ωt

0

ωtφ (ωt | σω,t) dωt

=

∫ +∞

0

ωtφ (ωt | σω,t) dωt −
∫ +∞

ωt

ωtφ (ωt | σω,t) dωt, (41)

where E (ωt) =
∫ +∞

0
ωtφ (ωt | σω,t) dωt = eµω,t+

σ2ω,t
2 . Hence, the functional form forG (ωt, σω,t)

becomes:

G (ωt, σω,t) = 1−
∫ +∞

ωt

ωtφ (ωt | σω,t) dωt = 1−
∫ +∞

ωt

1

σω,t
2
√

2π
e
− (lnωt−µω,t)

2

2σ2ω,t dωt

= 1− 1

2
eµω,t+

σ2ω,t
2

[
1 + erf

(
µω,t + σ2

ω,t − lnωt

σω,t
2
√

2

)]
, (42)

4The properties of the error function erf (·) imply that lim
x→−∞

erf (x) = −1.
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expressed in terms of the error function erf (·). The functional forms for f (ωt, σω,t) and

for G (ωt, σω,t) together with equation (17) completely characterize the split of the nominal

capital income between entrepreneurs and financial intermediaries, while also accounting for

the losses due to costly monitoring. As indicated before, here we assume a mean-preserving

distribution that ensures the unconditional mean is equal to one in every period (i.e., E (ωt) =

1) by setting µω,t = −σ2ω,t
2
.

Given the functional form f (ωt, σω,t) derived in (39)−(40), we can compute the derivative

of f (ωt, σω,t) with respect to ωt as:

f (ωt, σω,t) =
1

2
eµω,t+

σ2ω,t
2

[
1 + erf

(
µω,t + σ2

ω,t − lnωt

σω,t
2
√

2

)]
− ωt

(
1− 1

2

[
1 + erf

(
lnωt − µω,t
σω,t

2
√

2

)])
,

fω (ωt, σω,t) ≡
∂f (ωt, σω,t)

∂ωt
= −1

2

[
1 + erf

(
µω,t − ln (ωt)

σω,t
2
√

2

)]
. (43)

Similarly, we can compute the derivative of G (ωt, σω,t) with respect to ωt as:

G (ωt, σω,t) = 1− 1

2
eµω,t+

σ2ω,t
2

[
1 + erf

(
µω,t + σ2

ω,t − lnωt

σω,t
2
√

2

)]
,

Gω (ωt, σω,t) ≡
∂G (ωt, σω,t)

∂ωt
= 0.398942

(ωt)

µω,t

σ2ω,t

σω,t

 e
−
(

(µω,t)
2
+(ln(ωt))

2

2σ2ω,t

)
. (44)

Finally, the Lagrange multiplier λ (ωt, σω,t) = fω(ωt,σω,t)

fω(ωt,σω,t)+µGω(ωt,σω,t)
can be expressed as:

λ (ωt, σω,t) =
−1

2

[
1 + erf

(
µω,t−ln(ωt)

σω,t
2√2

)]
−1

2

[
1 + erf

(
µω,t−ln(ωt)

σω,t
2√2

)]
+ µ

(
0.398942

(
(ωt)

µω,t

σ2ω,t

σω,t

)
e
−
(

(µω,t)
2
+(ln(ωt))

2

2σ2ω,t

)) .
(45)

In this case, it follows that −1 < fω (ωt, σω,t) < 0 and Gω (ωt, σω,t) > 0. From (22) and the

Kuhn-Tucker condition λ (ωt, σω,t) ≥ 0, it follows that λ (ωt, σω,t) = fω(ωt,σω,t)

fω(ωt,σω,t)+µGω(ωt,σω,t)
≥ 0

and this, in turn, can only hold if fω (ωt, σω,t) + µGω (ωt, σω,t) < 0. Moreover, given that

Gω (ωt, σω,t) > 0, we can go further and show that λ (ωt, σω,t) ≥ 1 when the parameter that

governs the fraction of nominal capital income lost due to monitoring costs µ lies within the

unit interval.
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The Borrowing Costs’Channel. Under perfect information and costless monitoring,

the risk-neutral entrepreneurs are willing to invest on an additional unit of physical capital

if Et
[
Re
t+1

]
≥ It where It is the nominal risk-free interest rate and Re

t the entrepreneurs’

aggregate nominal return on physical capital. It represents the cost of the loanable funds

obtained from households’deposits by the financial intermediaries and, therefore, the oppor-

tunity cost of capital investment. If Et
[
Re
t+1

]
> It, then the entrepreneurs’demand for funds

is infinite. Hence, competitive market forces would imply the following arbitrage condition

Et
[
Re
t+1

]
= It. Moreover, under costless monitoring, credit frictions are removed and the

Modigliani-Miller theorem holds in effect (capital investment decisions are independent of

the capital structure, i.e., of whether entrepreneurs are equity or debt financed).

In our model, private information and costly monitoring with limited liability are the key

assumptions needed to incorporate credit frictions and pin down the balance sheet structure

of entrepreneurs (a key departure from the Modigliani-Miller theorem on the indeterminacy

of the capital structure). The costly-state verification framework we propose also has the

advantage that it endogenizes the probability of default, unlike what occurs with other

models of credit distortions such as those based on borrowing constraints (Kiyotaki and

Moore (1997)). Private information implies that only entrepreneurs can costlessly observe

their own returns, while lenders must pay a fixed fraction of the realized nominal capital

income to cover the costs of monitoring and verification of the defaulting entrepreneurs.

Limited liability on the part of the entrepreneurs, in turn, introduces a lower bound (of

zero) on the minimum payoff that the entrepreneurs can accrue.

In this costly-state verification setting, we end up with a modified effi ciency condition

to determine the optimal choice of physical capital in the model implied by equation (32)−
(33). If we look back at (29), given the definition of Ψ (ωt, σω,t) in (26), we can infer that
λ(ωt,σω,t)

Ψ(ωt,σω,t)
= λ(ωt,σω,t)

f(ωt,σω,t)+λ(ωt,σω,t)g(ωt,σω,t)
≥ λ (ωt, σω,t) ≥ 1 since we have already shown before

that λ (ωt, σω,t) ≥ 1. And, in the special case where monitoring becomes costless (µ = 0),

we immediately get that λ(ωt,σω,t)

Ψ(ωt,σω,t)
= 1. Hence, this proves the following proposition:

Proposition 1 In equilibrium, (32) − (33) implies that Et
(
Re
t+1

)
= λ(ωt,σω,t)

Ψ(ωt,σω,t)
It ≥ It which

holds with equality only if µ = 0. In other words, the external borrowing costs (endogenous

credit risk spread) faced by entrepreneurs must be at or above the nominal risk-free rate, It,

when monitoring is costly (µ > 0).

We show here that Et
(
Re
t+1

)
> It if the monitoring cost parameter satisfies that 0 < µ < 1

13



(and Et
(
Re
t+1

)
= It if µ = 0). Inverting the effi ciency condition in (33), we obtain that

PtQtKt+1

Nt

= φ

(
Et
(
Re
t+1

It

)
, σω,t

)
, (46)

where φ
(
Et
(
Ret+1
It

)
, σω,t

)
≡ s−1

(
Et
(
Ret+1
It

)
, σω,t

)
is the optimal leverage (asset-to-equity

ratio) and s−1 (·, σω,t) is the inverse of the credit spread s
(
PtQtKt+1

Nt
, σω,t−1

)
in (32). In

equilibrium, the credit spread is inversely related to the net-worth-to-asset ratio (or equity

ratio) of the entrepreneurs, Nt
PtQtKt+1

, and directly related to micro-uncertainty, σω,t. We view

σω,t as a measure of the dispersion of the idiosyncratic shock ωt and, accordingly, consider

the consequences of a mean-preserving increases in the credit spread.

From here, the demand for physical capital in nominal terms can be expressed as follows:

PtQtKt+1 = φ

(
Et
(
Re
t+1

It

)
, σω,t

)
Nt, (47)

with
∂φ

(
Et
(
Ret+1
It

)
,σω,t

)
∂Et

(
Ret+1
It

) > 0 and
∂φ

(
Et
(
Ret+1
It

)
,σω,t

)
∂σω,t

< 0. Hence, increasing the idiosyncratic

risk or reducing the excess returns for entrepreneurs over the risk-free rate reduces capital

demand by tightening the margins and reducing the optimal leverage ratio required. This

is the heart of the mechanism that we explore quantitatively and empirically in the Balke

et al. (2017) model. Our theory motivates these (credit) risk shocks based on the idea

of uncertainty about the idiosyncratic shocks– or micro-uncertainty– that cannot be fully

insured against due to asymmetries of information between borrowers and lenders.

The leverage ratio moves with asset values (Tobin’s q)– particularly on impact, as the

stock of capital and net worth are slower to adjust– and influences capital demand as a result

of a real options effect (from fixed adjustment costs on capital) or through a precautionary

savings effect (from risk aversion). The macro-uncertainty and monetary policy uncertainty

shocks only impact the credit spreads and the demand for capital to the extent that they feed

through the endogenous leverage ratio. In turn, the demand for capital depends inversely

on the uncertainty attached to the idiosyncratic shocks (direct effects of micro-uncertainty).

And, what is most significant, the endogenous propagation of other shocks through the

financial accelerator mechanism described here also depends on whether idiosyncratic shocks

are more or less uncertain. In other words, the propagation of shocks is conditional on the

amount of micro-uncertainty in the economy through this financial lever mechanism.

We find that whenever micro-uncertainty σω,t is low, the optimal leverage is high and–
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concurrently– the credit risk spreads are low. In that environment, conventional monetary

policy shocks would have a more muted impact on the capital demand resulting in smaller

amplification effects on investment and economic activity. However, this also implies a higher

level of capital. That is to say, we find that lower uncertainty about the idiosyncratic shocks

results in higher leverage (lessening the precautionary motive) and also in higher capital

accumulation. In turn, TFP level shocks are amplified given that the lower credit spreads

and more benign financial conditions make it possible for entrepreneurs to take advantage

more fully of the changes in aggregate productivity (TFP).

4 Benchmark Model Equilibrium Conditions

In the presence of habit preferences it follows that:

(Ct − bCt−1)−χ − bβEt
[
(Ct+1 − bCt)−χ

]
= Λt (48)

where Λt is the Lagrange multiplier on the household’s budget constraint expressed in units

of the final good.5

5The local curvature of the household’s preferences on consumption (the Arrow-Pratt coeffi cient of relative
risk aversion) is given by

−
Ct

(
∂Λt
∂Ct

)
Λt

=


χ

(Ct−bCt−1)−χ−bβEt[(Ct+1−bCt)−χ]
Ct[(Ct−bCt−1)−χ−1+b2βEt((Ct+1−bCt)

−χ−1)]

if 0 < b ≤ 1,

χ if b = 0,

while the corresponding Arrow-Pratt coeffi cient of relative prudence is given by

−

(
∂2Λt
∂Ct∂Ct

)
(
∂Λt
∂Ct

) =


1+χ

(Ct−bCt−1)−χ−1+b2βEt((Ct+1−bCt)
−χ−1)

Ct[(Ct−bCt−1)−χ−2−b3βEt((Ct+1−bCt)
−χ−2)]

if 0 < b ≤ 1,

1 + χ if b = 0.

Local risk aversion on consumption refers to the curvature of the utility function, whereas local prudence
refers to the curvature of the marginal utility function (the Lagrange multiplier Λt). If the marginal utility

is convex (i.e., if the Lagrange multiplier Λt satisfies that
(
∂2Λt
∂C2

t

)
> 0), then households are "prudent" and,

faced with higher uncertainty, may consume less and work more in order to self-insure against future shocks
(a precautionary savings motive). When households have no internal habits (b = 0), their preferences feature
precautionary savings but their relative prudence is constant and depends solely on the relative risk aversion
parameter χ ≥ 0. When households have internal habits (0 < b ≤ 1), their relative prudence depends not
solely on the relative risk aversion parameter χ ≥ 0 but also on the internal habit persistence parameter
0 < b ≤ 1. Thus a given relative risk aversion parameter χ can mean a time-varying relative risk aversion
and risk prudence. As a result, the strength of the precautionary savings motive will vary as households
become more or less prudent as a function of the consumption and internal habit paths.
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4.1 Goods Market

Equilibrium in the final goods market means the production of the final good Yt in each period

t is allocated either to households’consumption, Ct, and capital producers’investment, Xt,

or gets lost due to price adjustment costs in the retail sector,
ϕp
2

(Πt − 1)2 Yt, and to agency

costs in the financial intermediation sector, µG (ωt−1, σω,t−1)
Ret
Πt
Qt−1Kt. Hence, the resource

constraint can be expressed as:6[
1−

ϕp
2

(Πt − 1)2
]
Yt = Ct +Xt + µG (ωt−1, σω,t−1)

Re
t

Πt

Qt−1Kt (49)

In the symmetric equilibrium that characterizes the pricing decisions of retailers, final

goods, Yt, are equal to wholesale output produced with an aggregate Cobb-Douglas produc-

tion function that uses labor from households, Ht, labor from entrepreneurs, He
t , and rented

capital services from entrepreneurs, Kt, as inputs:7

Yt = eât (Kt)
α (He

t )
ϑ (Ht)

1−α−ϑ (50)

where the TFP process in logs is given as ât ≡ at − a with a = −1
2

σ2a
1−(ρa)2

.

The optimizing household’s Euler equation can be written as:

1 = βEt
[(

Λt+1

Λt

)(
It

Πt+1

)]
(51)

where Λt is the Lagrange multiplier on the household’s budget constraint expressed in units

of the final good.

The optimizing firms’price-setting dynamics (the Phillips curve) in the symmetric equi-

6The entrepreneurial consumption Cet in (62) is the fraction of final output accumulated through entre-
preneurial net worth that corresponds to the dying entrepreneurs and hence does not detract from current
production of final goods (which explains why it does not appear in the resource constraint in (49)).

7Capital services are homogenous in production and, accordingly, perfectly substitutable across entrepre-
neurs. Given that in equilibrium the aggregate supply of capital services must equate the aggregate stock
of physical capital owned by the entrepreneurs, we use the same notation Kt interchangeably for physical
capital and capital services. Furthermore, in equilibrium, each identical wholesale producer’s demand for
capital services is the same and therefore must be equal to the aggregate stock physical capital Kt.
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librium becomes:8

(1− Pwr
t ) ε =

[
1− ϕp (Πt − 1) Πt

]
+ ϕpβEt

[(
Λt+1

Λt

)(
(Πt+1 − 1) Πt+1

Yt+1

Yt

)]
(52)

where the gross inflation rate on final goods is given as Πt ≡ Pt
Pt−1

, and the inverse of

Pwr
t ≡ Pwt

Pt
can be interpreted as the gross markup of each retail variety over the wholesale

good’s price.9

4.2 Labor Market

We define households’real wages as W r
t ≡ Wt

Pt
and entrepreneurial real wages as W er

t ≡
W e
t

Pt
.

Hence, the labor demand equations can be expressed as:

W r
t = (1− α− ϑ)

Pwr
t Yt
Ht

(53)

W er
t = ϑ

Pwr
t Yt
He
t

(54)

while the labor supply equations are give by:

He
t = 1 (55)

W r
t =

κHξ
t

Λt

(56)

4.3 Capital Market

We define the aggregate nominal return on capital as Re
t and the real rental rate on capital

in units of the final good paid by the wholesale producers to the entrepreneurs for the capital

8Retailers change nominal prices every period but face a Rotemberg (1982) quadratic adjustment cost

function sp (Pt (j) , Pt−1 (j)) given by: p (Pt (j) , Pt−1 (j)) =
ϕp
2

(
Pt(j)
Pt−1(j) − 1

)2

, ∀j ∈ [0, 1], where ϕp ≥ 0

scales the quadratic price adjustment cost. For their problem to be well-defined, it must hold that
ϕp
2 (πt − 1)

2
< 1, i.e., πt ∈

(
1− 2

√
2
ϕp
, 1 + 2

√
2
ϕp

)
.

9Absent nominal price adjustment costs (ϕp = 0), the gross markup 1
Pwrt

= ε
ε−1 under monopolistic

competition and flexible prices is a time-invariant function of the elasticity of substitution across variaties
ε > 1. With nominal price adjustment costs (ϕp > 0), the gross markup implied by (52) becomes time-
varying and dependent on macroeconomic factors (not just on the parameter ε).
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services provided as Rwr
t ≡

Rwt
Pt
, i.e.,

Re
t

Πt

=

[
Rwr
t +Qt (1− δ)

Qt−1

]
(57)

where the rental rate on capital services is given by the marginal product of capital in the

production of wholesale goods:

Rwr
t = α

Pwr
t Yt
Kt

(58)

The optimization problem of the capital goods producers pins down the relative price of

physical capital or Tobin’s q, Qt, as:

Qt =

(
Xt
Kt

δ

) 1
ϕk

(59)

The relative resale value of capital Qt is a function of Tobin’s q, Qt, and the investment-

to-capital ratio, Xt
Kt
, implied by the zero-profit condition for capital goods producers:10

Qt

(δ)
1
ϕk

(
Xt
Kt

)1− 1
ϕk − 1

ϕk
δ

1− 1
ϕk

− Xt

Kt

− (1− δ)
(
Qt −Qt

)
= 0 (60)

We denote the law of motion for next period’s physical capital, Kt+1, under the techno-

10Time-variation in the relative price of capital Qt serves as an additional amplification and propagation
mechanism in the model. The difference between Qt and Qt implied by (60) is of second-order importance
and, accordingly, omitted by Bernanke et al. (1999) and Martínez-García (2014), which rely on a first-order
perturbation solution. Unlike them, we take explicit account of the difference between Qt and Qt in our
set-up, as we solve our model up to a higher order of approximation. This matters in particular for the key
definition of aggregate nominal returns on capital, Ret , in (57).
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logical constraints of these capital-producing firms as:11

Kt+1 = (1− δ)Kt +

(δ)
1
ϕk

(
Xt
Kt

)1− 1
ϕk − 1

ϕk
δ

1− 1
ϕk

Kt (61)

From the entrepreneurs’optimization problem, we also obtain two equations that pin

down the entrepreneurial consumption, Ce
t , and the law of motion for entrepreneurial net

worth adjusted by inflation, Nt
Pt
:

Ce
t = (1− γ) Ψ (ωt−1, σω,t−1)

Re
t

Πt

N r
t−1 (62)

N r
t = W er

t H
e
t + γΨ (ωt−1, σω,t−1)

Re
t

Πt

N r
t−1 (63)

where N r
t ≡ Nt

Pt
denotes the real net worth of the entrepreneurs in units of the final good

while Nt is the nominal net worth. Entrepreneurs are risk-neutral and die with probability

1−γ each period, so equation (62) reflects the fact that under such conditions entrepreneurs

would postpone their consumption until death at which time they "eat" the entire net worth

they have accumulated during their lifetime.12

11The adjustment cost function adopted here is sk
(
Xt
Kt

)
=

(
δ

1− 1
ϕk

)[(
Xt
Kt

δ

)1− 1
ϕk

− 1
ϕk

]
. The adjustment

cost function sk
(
Xt
Kt

)
satisfies that sk (δ) = δ and s′k (δ) = 1 ensuring that adjustment costs drop out in

steady state. The adjustment cost function sk
(
Xt
Kt

)
also implies that sk (·) > 0 if XtKt ≥ δ

(
1
ϕk

) ϕk
ϕk−1 and

ϕk > 1, while s′k (·) > 0 and s′′k (·) < 0 for any Xt
Kt
≥ 0 and any ϕk > 0. The range of the parameter

space for ϕk that appears more plausible is given by ϕk > 1 and, in this case, 0 < δ
(

1
ϕk

) ϕk
ϕk−1 < δ implies

that Xt
Kt
≥ δ suffi ces (but is not necessary) to ensure sk (·) > 0. We interpret the adjustment cost function

as penalizing underinvestment when investment falls significantly below the steady state replacement rate

given by the depreciation rate δ. In other words, when Xt < δKt it follows that 0 < sk

(
Xt
Kt

)
Kt < δKt and,

subject to the law of motion for physical capital in (61), that Kt+1 < Kt. If investment is suffi ciently low

(Xt < δ
(

1
ϕk

) ϕk
ϕk−1 Kt) then it holds that sk

(
Xt
Kt

)
Kt < 0 < δKt and Kt+1 < (1− δ)Kt.

12The exogenous death makes entrepreneurs more impatient than households and induces them to be
borrowers and households to be savers. It also prevents entrepreneurs from accumulating infinite wealth and
becoming self-financing. The risk-neutrality of the entrepreneurs leads them to postpone consumption until
death as long as the gross growth rate of nominal net worth Nt is above the inverse of the discount factor
γβ as that would afford them a higher present-discounted consumption and lifetime utility than if they tried
to anticipate some consumption.
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4.4 Credit Market

The first-order conditions that solve the optimal risky debt contract described in Section 3

are:

Φ
(
ωt | µω,t, σω,t

)
=

1

2

[
1 + erf

(
lnωt − µω,t
σωeσ̂ω,t

2
√

2

)]
(64)

f (ωt, σω,t) =
1

2
eµω,t+

(σωeσ̂ω,t)
2

2

[
1 + erf

(
µω,t +

(
σωe

σ̂ω,t
)2 − lnωt

σωeσ̂ω,t
2
√

2

)]
− ωt (1− Φ (ωt | σω,t))

(65)

G (ωt, σω,t) = 1− 1

2
eµω,t+

(σωeσ̂ω,t)
2

2

[
1 + erf

(
µω,t +

(
σωe

σ̂ω,t
)2 − lnωt

σωeσ̂ω,t
2
√

2

)]
(66)

f (ωt, σω,t) + g (ωt, σω,t) = 1− µG (ωt, σω,t) (67)

λ (ωt, σω,t) (fω (ωt, σω,t) + µGω (ωt, σω,t)) = fω (ωt, σω,t) (68)

fω (ωt, σω,t) = −1

2

[
1 + erf

(
µω,t − ln (ωt)

σωeσ̂ω,t
2
√

2

)]
(69)

Gω (ωt, σω,t) = 0.398942

(ωt)

µω,t

(σωeσ̂ω,t)
2

σωeσ̂ω,t

 e
−

 (µω,t)
2
+(ln(ωt))

2

2(σωeσ̂ω,t)
2


(70)

Ψ (ωt, σω,t) = f (ωt, σω,t) + λ (ωt, σω,t) g (ωt, σω,t) (71)

QtKt+1

N r
t

=
Ψ (ωt, σω,t)

f (ωt, σω,t)
(72)

Et
(
Re
t+1

)
=
λ (ωt, σω,t)

Ψ (ωt, σω,t)
It (73)

where the stochastic volatility of the idiosyncratic technology shock σω,t is computed as

σω,t = σωe
σ̂ω,t.

4.5 Monetary Policy

The monetary authority sets the nominal interest rate, It, following a modified Taylor (1993)-

type monetary policy rule with inertia which we express in index form as:

It
I

=

(
It−1

I

)ρi ((Πt

Π∗t

)ψπ ( Yt
Yt−1

)ψx)1−ρi

em̂t (74)
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where m̂t ≡ mt − m and m = −1
2

σ2m
1−(ρm)2

. We also impose that the monetary authority

targets zero net-inflation in every period, i.e., Π∗t = 1.

4.6 Exogenous Shocks with Stochastic Volatility

Denoting σ̂a,t ≡ lnσa,t− lnσa, σ̂ω,t ≡ lnσω,t− lnσω and σ̂m,t ≡ lnσm,t− lnσm, we define the

shock processes as follows:

Aggregate Productivity (TFP) Shock (with Macro-Uncertainty)

µa,t = −
(
σae

σ̂a,t
)2

2
+ (ρa)

2 µa,t−1 (75)

at = µa,t + ρa
(
at−1 − µa,t−1

)
+ σae

σ̂a,tεa,t (76)

σ̂a,t = υaσ̂a,t−1 + ηaua,t (77)

At ≡ eât (auxiliary equation) (78)

where the stochastic volatility of the TFP shock σa,t is computed as σa,t = σae
σ̂a,t .

Micro-Uncertainty Shock

µω,t = −
(
σωe

σ̂ω,t
)2

2
(79)

σ̂ω,t = υωσ̂ω,t−1 + ηωuω,t (80)

Ot ≡ E (ωt) = eµω,t+
(σωeσ̂ω,t)

2

2 (auxiliary equation) (81)

where the stochastic volatility of the idiosyncratic technology shock σω,t is computed as

σω,t = σωe
σ̂ω,t.

Monetary Policy Shock (with Policy-Uncertainty)

µm,t = −
(
σme

σ̂m,t
)2

2
+ (ρm)2 µm,t−1 (82)

mt = µm,t + ρm
(
mt−1 − µm,t−1

)
+ σme

σ̂m,tεm,t (83)

σ̂m,t = υmσ̂m,t−1 + ηmum,t (84)
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Mt ' 1 + m̂t (auxiliary equation) (85)

where the stochastic volatility of the monetary policy shock σm,t is computed as σm,t =

σme
σ̂m,t .

5 Deterministic Steady State

5.1 Habit Preferences

(1− bβ) (1− b)−χC−χ = Λ (86)

5.2 Goods Market[
1−

ϕp
2

(Π− 1)2
]
Y = C +X + µG (ω, σω)

Re

Π
QK (87)

Y = eâ (K)α (He)ϑ (H)1−α−ϑ (88)

1 = β

(
I

Π

)
(89)

(1− Pwr) ε = 1− (1− β)ϕp (Π− 1) Π (90)

where â = 0.

5.3 Labor Market

W r = (1− α− ϑ)
PwrY

H
(91)

W er = ϑ
PwrY

He
(92)

He = 1 (93)

W r =
κHξ

Λ
(94)

5.4 Capital Market

Q =

(
X
K

δ

) 1
ϕk

(95)
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Q

(δ)
1
ϕk

(
X
K

)1− 1
ϕk − 1

ϕk
δ

1− 1
ϕk

− X

K
− (1− δ)

(
Q−Q

)
= 0 (96)

Re

Π
=

[
Rwr +Q (1− δ)

Q

]
(97)

Rwr = α
PwrY

K
(98)

K = (1− δ)K +

(δ)
1
ϕk

(
X
K

)1− 1
ϕk − 1

ϕk
δ

1− 1
ϕk

K (99)

Ce = (1− γ) Ψ (ω, σω)
Re

Π
N r (100)

N r = W erHe + γΨ (ω, σω)
Re

Π
N r (101)

5.5 Credit Market

Φ (ω | µω, σω) =
1

2

[
1 + erf

(
lnω − µω
σωeσ̂ω

2
√

2

)]
(102)

f (ω, σω) =
1

2
eµω+

(σωeσ̂ω)
2

2

[
1 + erf

(
µω +

(
σωe

σ̂ω
)2 − lnω

σωeσ̂ω
2
√

2

)]
− ω (1− Φ (ω | σω)) (103)

G (ω, σω) = 1− 1

2
eµω+

(σωeσ̂ω)
2

2

[
1 + erf

(
µω +

(
σωe

σ̂ω
)2 − lnω

σωeσ̂ω
2
√

2

)]
(104)

f (ω, σω) + g (ω, σω) = 1− µG (ω, σω) (105)

λ (ω, σω) (fω (ω, σω) + µGω (ω, σω)) = fω (ω, σω) (106)

fω (ω, σω) = −1

2

[
1 + erf

(
µω − ln (ω)

σω
2
√

2

)]
(107)

Gω (ω, σω) = 0.398942

(ω)

µω

(σωeσ̂ω)
2

(σωeσ̂ω)

 e
−

 (µω)
2+(ln(ω))2

2(σωeσ̂ω)
2


(108)

Ψ (ω, σω) = f (ω, σω) + λ (ω, σω) g (ω, σω) (109)

QK

N r
=

Ψ (ω, σω)

f (ω, σω)
(110)
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Re =
λ (ω, σω)

Ψ (ω, σω)
I (111)

5.6 Monetary Policy Rule

I

I
=

(
I

I

)ρi (( Π

Π∗

)ψπ (Y
Y

)ψx)1−ρi

em̂ (112)

where m̂ = 0.

5.7 Exogenous Shocks with Stochastic Volatility

Aggregate Productivity (TFP) Shock (with Macro-Uncertainty)

µa = −
(
σae

σ̂a
)2

2
+ (ρa)

2 µa (113)

a = µa + ρa (a− µa) + σae
σ̂a · 0 (114)

σ̂a = υaσ̂a + ηa · 0 (115)

A ≡ eâ (auxiliary equation) (116)

Micro-Uncertainty Shock

µω = −
(
σωe

σ̂ω
)2

2
(117)

σ̂ω = υωσ̂ω + ηω · 0 (118)

Ot ≡ eµω+
(σωeσ̂ω)

2

2 (auxiliary equation) (119)

Monetary Policy Shock (with Policy-Uncertainty)

µm = −
(
σme

σ̂m
)2

2
+ (ρm)2 µm (120)

m = µm + ρm (m− µm) + σme
σ̂m · 0 (121)

σ̂m = υmσ̂m + ηm · 0 (122)

M ' 1 + m̂ (auxiliary equation) (123)
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5.8 Steady State and Structural Parameters

The zero-inflation deterministic steady state of the model can be specified as follows:

Π = Π∗ = 1. (124)

Let us impose â = m̂ = 0 and let’s ignore the exogenous show equations in (113) − (123)

for now. This ensures that the monetary policy rule in (112) is satisfied in steady state. We

also assume that the characterization of the steady state implies that,

X = δK, (125)

Q = 1. (126)

This satisfies (95) and (99) trivially, but it also implies from (96) that,

Q = 1. (127)

From (90), it follows that,

Pwr =
ε− 1

ε
, (128)

and from (89) we get that,

I =
1

β
, (129)

while (93) simply says,

He = 1. (130)

Then, we can re-write (86) in the following terms,

Λ = (1− bβ) (1− b)−χC−χ. (131)

All these steady state conditions hold in equilibrium and are straightforward to characterize

in setting up the deterministic steady state for the model.

The deterministic steady state of the different shock processes described in (113)− (123)
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can be summarized now as follows,

µa = −1

2

σ2
a

1− (ρa)
2 ,

a = µa,

σ̂a = 0,

A ≡ 1⇔ â = 0,

and

µω = −σ
2
ω

2
,

σ̂ω = 0,

Ot = 1,

and

µm = −1

2

σ2
m

1− (ρm)2 ,

m = µm,

σ̂m = 0,

M ≡ 1⇔ m̂ = 0.

Finally, the reminder of the steady state conditions not related to the loan contract– i.e.,

(87), (88), (91), (92), (94), (97), (98), (100) and (101)– can be re-written as,

Y = C + δK + µG (ω, σω)ReK,

Y = eâ (K)α (H)1−α−ϑ ,
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W r = (1− α− ϑ)

(
ε− 1

ε

)
Y

H
,

W er = ϑ

(
ε− 1

ε

)
Y,

W r =

(
(1− b)χ

1− bβ

)
κHξCχ,

Re = Rwr + (1− δ) ,

Rwr = α

(
ε− 1

ε

)
Y

K
,

Ce = (1− γ) Ψ (ω, σω)ReN r,

N r =
W er

1− γΨ (ω, σω)Re
.

The deterministic steady state is then complete with the corresponding equations that char-

acterize the terms of the loan contract under log-normality in (102)− (111), i.e. with

Φ (ω | σω) =
1

2

[
1 + erf

(
lnω + σ2ω

2

σω
2
√

2

)]
,

f (ω, σω) =
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− lnω
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2
√

2

)]
− ω (1− Φ (ω | σω)) ,

G (ω, σω) = 1− 1

2

[
1 + erf

(
σ2ω
2
− lnω

σω
2
√

2

)]
,

f (ω, σω) + g (ω, σω) = 1− µG (ω, σω) ,

λ (ω, σω) (fω (ω, σω) + µGω (ω, σω)) = fω (ω, σω) ,

fω (ω, σω) = −1

2

[
1 + erf

(
−σ2ω

2
− lnω

σω
2
√
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,

Gω (ω, σω) = 0.398942
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2
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2σ2ω
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,

Ψ (ω, σω) = f (ω, σω) + λ (ω, σω) g (ω, σω) ,

K

N r
=

Ψ (ω, σω)

f (ω, σω)
,

Re =
λ (ω, σω)

Ψ (ω, σω)

1

β
.
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We solve this subset of equations to characterize the deterministic steady state of the model

with frictions using the nonlinear solver fsolve in Matlab.

Remark: On Matters of Implementation. The deterministic steady state for the

model can be expressed in a somewhat more tractable manner using equation (102)– which

defines the probability of default in steady state Φ (ω | σω) under log-normality– as follows,

Φ (ω | σω) =
1

2

[
1 + erf

(
lnω + σ2ω

2

σω
2
√

2

)]

⇔ erf

(
lnω + σ2ω

2

σω
2
√

2

)
= 2Φ (ω | σω)− 1

⇔ erf−1

(
erf

(
lnω + σ2ω

2

σω
2
√

2

))
= erf−1 (2Φ (ω | σω)− 1) .

From here, we get that,

lnω = σω
2
√

2
[
erf−1 (2Φ (ω | σω)− 1)

]
− σ2

ω

2
,

or simply

ω = eσω
2√2[erf−1(2Φ(ω|σω)−1)]−σ

2
ω
2 .

As a result, the steady state default threshold ω can be expressed as a function of the steady

state probability of default Φ (ω | σω). This is useful to facilitate the parameterization of the

model.

6 Data

Through the Federal Reserve Bank of St. Louis’FRED database, we collect data on real

GDP, consumption, investment and hours worked in per capita terms, together with time

series for the real wage, the net-worth-to-asset ratio (or equity ratio) of nonfinancial corpo-

rations, the inflation rate, the short-term nominal interest rate and the interest rate credit

risk spread for the U.S. economy. The data we use is quarterly and covers the period from

1984:Q1 to 2014:Q4.

Our measure of output is the real GDP from the U.S. Bureau of Economic Analysis’

(BEA) National Income and Product Accounts (NIPA) in billions of Chained 2009 Dollars.
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Our measure of consumption is the sum of nondurable and services consumption, also in

billions of Chained 2009 Dollars from the BEA’s NIPA accounts. Investment is calculated

as gross private fixed investment plus consumption expenditures on durable goods (since

durable goods behave more similar to investment than to nondurable goods consumption).

Durable consumption and investment data are also expressed in billions of Chained 2009

Dollars and reported in the BEA’s NIPA accounts.

These national account series (GDP, consumption and investment) are then expressed in

per capita terms after dividing them by the civilian non-institutionalized population aged 16

and over from the U.S. Bureau of Labor Statistics (BLS). This population series is simply

a quarterly average of monthly data. The three of them are already reported in real terms,

but we also index them to 2009 = 100 and express them in logs times 400. With these

transformations we help express their cyclical component in percentages at an annualized rate

after filtering each of them (consistently with what we do to the corresponding endogenous

variables in the simulated model).

Total hours worked refers to the index series (2009 = 100) on hours of all persons in the

non-farm business sector reported by the BLS. This series is expressed in per capita terms

divided by the civilian non-institutionalized population aged 16 and over from the BLS and

re-based to 2009 = 100. Then, the series is expressed in logs times 400 prior to filtering

to maintain consistency with its simulated counterpart. Real wages are measured as real

compensation per hour in the non-farm business sector, with the index series (2009 = 100)

obtained from the BLS. This wage series is already reported in real terms, but we also express

it in logs times 400 to make it consistent with the corresponding definition in the simulated

model.

The price level is measured as the implicit price deflator for GDP (2009 = 100), obtained

from the BEA. The implicit GDP deflator is expressed in logs times 400 to keep it consistent

with the corresponding model definition. We then calculate the inflation rate by simply

computing the first differences of the series. The nominal short term interest rate corresponds

to the three month Treasury Bill (secondary market) rate (henceforth, T-bill rate), obtained

from the Board of Governors of the Federal Reserve System (H.15 Selected Interest Rates).

The three-month T-bill rate is a quarterly average of daily data calculated on a discount

basis, and reported annualized and in percentage terms. Therefore, the three-month T-bill

rate does not have to be logged times 400 to keep it consistent with its counterpart in the

model.

The interest rate credit spread is measured with the seasoned Baa corporate bond yield

from Moody’s relative to the yield on the 10-Year Treasury constant maturity, obtained from
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the Federal Reserve Bank of St. Louis. This spread is calculated as a quarterly average from

monthly data, but does not have to be transformed in logs and multiplied by 400 to make

it comparable with its endogenous counterpart from the model. The nonfinancial corporate

net-worth-to-asset ratio (or equity ratio) is computed as the ratio of the net worth (level) of

the nonfinancial corporate business sector over its total assets (level) times 100, using data

from the Board of Governors of the Federal Reserve System (Z.1 Financial Accounts of the

U.S.). This data is reported as end-of-period, at quarterly frequency. No further adjustment

of the net-worth-to-asset ratio (or equity ratio) series is needed.

The Business Cycle Component and its Features. We extract the cyclical component

of all these series by HP-filtering them with a one-sided filter using a lambda of 1600 and a

power of 2, except for the net-worth-to-asset ratio (or equity ratio) that is demeaned instead.

We apply the same filtering to the corresponding endogenous data simulated by the model

to ensure the comparability between simulated and empirical moments. Some of the selected

business cycle moments reported below are used for estimation with our simulated method

of moment (SMM) approach and, more generally, they provide us with an empirical point

of reference for the parameterization of the model.

Main files to replicate the data and examine the business cycle moments used to para-

meterize the model:

1. BusinessCyclesStylizedFacts.xlsx. This excel file contains links to the data down-
loaded from the Federal Reserve Bank of St. Louis’FRED database as well as the

necessary calculations to compute the business cycle moments reported in the paper.

2. one_sided_hp_filter_serial.m. This matlab program extracts the cyclical com-

ponent from a time series using the one-sided HP-filter based on spare matrices and

exploiting their pattern. This code follows the approach described in Mehra (2004).

The code was written by Alexander Meyer-Gohde.

3. one_sided_hp_filter_kalman.m. This matlab program extracts the cyclical com-
ponent from a time series using the one-sided HP-filter based on implementing the

Kalman filter. This code follows the approach described in page 301 of Stock and

Watson (1999), as written by Alexander Meyer-Gohde.
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7 Codes

Driver files for simulating, estimating, and examining the benchmark model with a third-

order approximation solution.13 These driver files also replicate the alternative model para-

meterizations considered in the paper.

1. BMZ_credit_moments_cases.m. This programs simulates the pruned 3rd order

approximation in order to generate stationary distribution and the model moment

statistics. There are lines in the code that allows one to change specific parameter

values. The results are saved to an external file (this is actually commented out in

copy of the program so that existing results are not inadvertently overwritten).

2. BMZ_credit_conditional_GIRF_positive.m. This program generates condi-

tional GIRF. To run this program one must first have generated the stationary distrib-

ution for the relevant model (see BMZ_credit_moments_cases.m). The default
take the conditional at the approximately the 5th and 95th percentiles

3. BMZ_credit_unconditional_GIRF_positive.m. This program generates un-

conditional GIRF. To run this program one must first have generated the stationary

distribution for the relevant model (see BMZ_credit_moments_cases.m). Here
500 starting values, randomly drawn from the unconditional distribution, are fed is an

initial conditions for the IRF calculations.

4. BMZ_credit_esitmate.m. This program that estimates a select number of model

parameters by SMM. The current version of the program calls initial parameter values

from a file (the final estimated values). If you want to start from scratch, this would

need to be commented out.

Files used for printing out and plotting results:

1. BMZ_credit_conditional_GIRF_plot.m. This graphs out various impulse re-
sponse experiments. The program calls external files that contain the results of previ-

ously generated IRF experiments (both unconditional and conditional).

2. BMZ_credit_conditional_dist.m. This file graphs out various scatterplots and
conditional density functions based on the unconditional distribution for a specific

model. Draws from the unconditional distribution are read in from an external file.
13First- and second-order approximations do not properly account for time-varying uncertainty. See

Schmitt-Grohé and Uribe (2004), Aruoba et al. (2006), Fernández-Villaverde (2010), and Martínez-García
(2018), among others, for a further discussion of the relative merits of local approximation methods.
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3. BMZ_credit_moments_load_print.m. This file prints out a table with various
moment statistics for the alternative models. The statistics are read in from various

external data files.

To run these programs the "current folder" in MATLAB must be the same folder that

bgg_with_SV.mod is in.
Supplementary files that are called by the driver programs and other subroutines. These

files are specific for the project in this paper:

1. bgg_with_SV.mod. This is the main Dynare file for the code. This initializes
Dynare and creates the global variables that will be used later to solve for the pruned

3rd order approximation.

2. bgg_with_SV_SS.m. This matlab file is auxiliary external code needed to calcu-
late the steady state of the model for Dynare. This program finds initial estimate of

the steady state.

3. bgg_with_SV_Rev.m. This file allows the user to modify parameter values and
to call modified Dynare subroutines that are then used to solve for 2nd and 3rd order

approximations. These will be used to construct the pruned 3rd order approximation.

4. bgg_with_SV_SS_Rev.m. This code solves for steady state (called from the

bgg_with_SS_Rev.m subroutine).

The file bgg_with_SV.mod contains the compact set of equations that we use to
simulate the model in our Dynare code (written for Dynare version 4.3.2 and Matlab R2012a

(7.14.0.739)). Some preliminary considerations about the model and the Dynare code:

• Special cases of the model without frictions: The frictionless version of the model can
be described with the same set of equilibrium conditions imposing certain restrictions

on the parameterization of the code: ϕp = 0 (no price adjustment costs), µ = 0 (no

monitoring costs) and a policy rule that targets Π
∗
t = 1 (setting the net inflation target

to zero and the gross to one). This alone suffi ces to characterize the dynamics of the

model without nominal rigidities and without the financial friction.

• Pre-determined variables and state variables in the model : There are two endogenous
state variables in the model: capital, Kt, and real net worth, N r

t ≡ Nt
Pt
. We use the

predetermined_variables option in Dynare to change the default convention which is
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that the timing of a variable reflects when this variable is actually decided. Hence,

the endogenous variables declared as predetermined are decided one period ahead of

all other endogenous variables. The convention is that Kt is actually decided prior

to t with the investment decisions made at time t − 1 and in previous periods, so it

is declared as predetermined. In turn, the real net worth of entrepreneurs N r
t used

to fund capital purchases at time t depends on past decisions but also depends on

the entrepreneurial income earned at time t. Given this timing, real net worth is not

treated as a predetermined variable.

The following subroutines are from the "sim_folder." These subroutines are called with

simulating the pruned 3rd order approximation or when generating impulse responses from

the 3rd order approximation.

1. postGIRFsim_3rd_aux.m. This subroutine generates pruned 3rd order approxi-

mation and then calculates IRFs (given an initial condition).

2. postmoment_3rd_aux.m. This subroutine generates pruned 3rd order approx-

imation and the simulates and does moment calculations for the pruned 3rd order

approximation.

3. particle3rd_setup_aux.m. This subroutine constructs the components of the

pruned 3rd order approximation.

4. SIM3rd.m. Simulates the pruned 3rd order approximation.

5. IRFSIM3rd.m. Calculates simulated estimates of the impulse responses (not cur-
rently used).

6. GIRF3rd.m. This subroutine calculates the analytical impulse responses (given an
initial conditional).

7. Statemoments3rdvar.m. Calculates the unconditional mean of the model variables
for pruned 3rd order approximation.

8. stoch_simul2.m. Custom modified Dynare subroutine.

9. dynare_solve2.m. Custom modified Dynare subroutine.

10. resol2.m. Custom modified Dynare subroutine.
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11. evaluate_steady_state2.m. Custom modified Dynare subroutine.

12. k_order_pert2.m. Custom modified Dynare subroutine.

13. stochastic_solvers2.m. Custom modified Dynare subroutine.

14. mykron2.m. Custom kronecker product subroutine.

15. mykron.m. Custom kronecker product subroutine.

16. hpfilter.m. Regular 2-sided hp filter.

17. one_sided_hp_filter_kalman.m. One sided HP filter.

18. one_sided_hp_filter_serial.m. One sided HP filter.

The following files are from the GMM_folder. They are called when estimating the

model by GMM/SMM.

1. SIM3rdSMM.m. This program simulates pruned 3rd order approximation when

doing SMM.

2. Estmoment.m. This subroutine calculates the empirical moment conditions used in
estimation.

3. Estmoment_Wout.m. This subroutine calculates the empirical moment conditions
as well as outputs the weighting matrix W = S.

4. GMMest_Moment_3rd.m. This subroutine generates pruned 3rd order approxi-

mation and then calculates various moment conditions implied by the model.

5. GMMest_loss_3rd.m. Generates the empirical loss function for the GMM/SMM
when using a pruned 3rd order approximation.

6. GMMest_loss_3rd_exact.m. Generates the estimated moment conditions when
using a pruned 3rd order approximation.

7. GMMloss.m. Calculates the loss function for the moment conditions for a specific
weighting matrix.

8. GMMest_Mout_3rd.m. Generates the estimated moment conditions when using
a pruned 3rd order approximation (outputs a "flag" that indicates that the model is

valid).
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9. GMMest_Wout_3rd.m. Generates the estimated moment conditions and outputs
the weighting matrix W = S for pruned 3rd order approximation.

10. numgrad2mod.m. Slightly modified subroutine to calculated numerical 2nd deriva-

tives (originally based on a program written by Chris Sims).

8 Model Variables and Parameters
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Table 1. Correspondence Between the Notation Used in the Paper and in the Dynare Code

Variables Paper Code

Main Macro Variables

Output ln (Yt) y

Household Consumption ln (Ct) c

Entrepreneurial Consumption ln (Ce
t ) ce

Capital Investment (Flow) ln (Xt) x

Stock of Capital ln (Kt) k

Household Labor ln (Ht) h

Entrepreneurial Labor ln (He
t ) he

Real Wage for Household Labor ln (W r
t ) wr

Real Wage for Entrepreneurial Labor ln (W er
t ) wer

Real Rental Rate on Capital ln (Rwr
t ) rwr

Real Net Worth of the Entrepreneurs ln (N r
t ) nr

Average Nominal Return on Capital Accrued to the Entrepreneurs ln (Re
t ) Re

Tobin’s Q (Real Price of Investment) ln (Qt) q

Real Resale Value of Capital After Production ln
(
Qt

)
qbar

Real Price of the Wholesale Good ln (Pwr
t ) pwr

Gross Inflation Rate ln (Πt) dp

Gross Nominal Interest Rate ln (It) i

Lagrange Multiplier on the Household’s Real Budget Constraint (Auxiliary) Λt Lambdamult

Variables Related to the Financial Contract

Threshold That Defines Whether Entrepreneur Defaults or Not ωt obar

Fraction of Entrepreneurs that Default Every Period Φ
(
ωt | µω,t, σω,t

)
phio

Fraction of Nominal Capital Return for Entrepreneurs f (ωt, σω,t) f

Fraction of Nominal Capital Return for Financial Intermediaries g (ωt, σω,t) g

Fraction of Nominal Capital Return Lost on Monitoring Costs (µG (ωt, σω,t)) G (ωt, σω,t) Gfun

Lagrange Multiplier on the Lender’s Participation Constraint λ (ωt, σω,t) Lambdafun

Derivative of f (ωt, σω,t) with Respect to ωt fω (ωt, σω,t) fw

Derivative of G (ωt, σω,t) with Respect to ωt Gω (ωt, σω,t) Gfunw

Auxiliary Variable: Ψ (ωt, σω,t) = f (ωt, σω,t) + λ (ωt, σω,t) g (ωt, σω,t) Ψ (ωt, σω,t) PSIfun
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Table 2. Correspondence Between the Notation Used in the Paper and in the Dynare Code

Variables Paper Code

Exogenous TFP and Macro-uncertainty Shocks

Log-TFP Shock at ≡ ln (At) a

Time-Varying Unconditional Mean of the TFP Shock µa,t mua

Time-Varying Unconditional Volatility of the TFP Shock (σa,t = σae
σ̂a,t) σ̂a,t siga

Shock Innovations to the Mean TFP Shock εa,t ea

Shock Innovations to the Volatility TFP Shock ua,t ua

Auxiliary Variable: At ≡ eat At A

Exogenous Micro-uncertainty Shock

Unconditional Mean of the Idiosyncratic Risk Shock µω,t muo

Time-Varying Unconditional Volatility of the Idiosyncratic Risk Shock (σω,t = σωe
σ̂ω,t) σ̂ω,t sigo

Shock Innovations to the Volatility of the Idiosyncratic Risk Shock uω,t uo

Auxiliary Variable: Ot ≡ E (ωt) = eµω,t+
(σωeσ̂ω,t)

2

2 Ot ≡ E (ωt) O

Exogenous Monetary Policy and Policy-uncertainty Shocks

Monetary Policy Shock mt m

Time-Varying Unconditional Mean of the Monetary Policy Shock µm,t mum

Time-Varying Unconditional Volatility of the Monetary Policy Shock (σm,t = σme
σ̂m,t) σ̂m,t sigi

Shock Innovations to the Mean Monetary Policy Shock εm,t ei

Shock Innovations to the Volatility Monetary Policy Shock um,t ui

Auxiliary Variable: Mt ≡ 1 +mt Mt M
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Table 3. Correspondence Between the Notation Used in the Paper and in the Dynare Code

Variables Paper Code

Auxiliary Variables for Plotting the GIRFs

Output (In Logs, Annualized %) 400∗ ln (Yt) P_y=400*y

Household Consumption (In Logs, Annualized %) 400∗ ln (Ct) P_c=400*c

Entrepreneurial Consumption (In Logs, Annualized %) 400∗ ln (Ce
t ) P_ce=400*ce

Household and Entrepreneurial Consumption (In Logs, Annualized %) 400∗ (ln (Ct) + ln (Ce
t )) P_c_all=P_c+P_ce

Capital Investment (Flow) (In Logs, Annualized %) 400∗ ln (Xt) P_x=400*x

Household Labor (In Logs, Annualized %) 400∗ ln (Ht) P_h=400*h

Inflation Rate (Quarter-Over-Quarter Changes, Annualized %) 400∗ ln (Πt) P_dp=400*dp

Nominal One-period Risk-Free Interest Rate (Annualized %) 400∗ ln (It) P_i=400*i

Entrepreneurs’Net Worth Over Total Capital (%) 100∗ Nr
t

QtKt+1

P_lev=

100*exp(nr)/exp(q)*exp(k(+1))

External Finance Premium (Annualized %) 400∗Et
(

ln
(
Ret+1
It

)) P_spread=

400*ln(Lambdafun(+1)/PSIfun(+1))

Fraction of Entrepreneurs that Default in Each Period 100 ∗ Φ
(
ωt | µω,t, σω,t

)
P_phio=100*phio

Stock of Capital (In Logs, Annualized %) 400∗ ln (Kt+1) P_k=400*k(+1)

Real Net Worth of the Entrepreneurs (In Logs, Annualized %) 400∗ ln (N r
t ) P_nr=400*nr

Tobin’s q (In Logs, Annualized %) 400∗ ln (Qt) P_q=400*q

Real Resale Value of Capital (In Logs, Annualized %) 400∗ ln
(
Qt

)
P_qbar=400*qbar

Real One-period Risk-Free Interest Rate (Annualized %) 400∗Et
(

ln
(

It
Πt+1

))
P_realrate=400*i-400*dp(+1)

Household’s Real Wages 400∗ ln (W r
t ) P_wr=400*wr

Entrepreneur’s Real Wages 400∗ ln (W er
t ) P_wer=400*wer
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Table 4. Parameters Used in the Model Simulations

Preference and Technological Parameters code

Households’Intertemporal Discount Factor 0 < β < 1 beta 0.99 (Bernanke et al. (1999))

Households’Inverse of the Intertemporal Elasticity of Substitution χ ≥ 0 chi 1 (Bernanke et al. (1999), Christiano et al. (2014))

Households’Inverse of the Frisch Elasticity of Labor Supply ξ ≥ 0 xi 1
3
(Bernanke et al. (1999))

Households’Scaling Parameter on Labor Disutility κ ≥ 0 kappa 0.738 (Simulated Method of Moments)

Households’Habit Parameter 0 ≤ b ≤ 1 b 0.738 (Simulated Method of Moments)

Elasticity of Substitution Across Varieties ε > 1 eps 10 (Basu (1996))

Capital Share 0 ≤ α ≤ 1 alpha 0.35 (Bernanke et al. (1999))

Entrepreneurial Labor Share 0 ≤ ϑ ≤ 1 vartheta 0.01 (Bernanke et al. (1999))

Depreciation Rate 0 < δ ≤ 1 delta 0.025 (Bernanke et al. (1999))

Adjustment Cost & Agency Cost Parameters

Capital Adjustment Cost ϕk > 0 phik 3.369 (Simulated Method of Moments)

Rotemberg (1982) Price Adjustment Cost ϕp ≥ 0 phip 121.73 (Simulated Method of Moments)

phipstar 0 (without price stickiness)

Monitoring Cost 0 ≤ µ < 1 mu 0.145 (Simulated Method of Moments)

0 (without monitoring costs)

Survival Rate of Entrepreneurs 0 < γ < 1 gamma 0.978 (Simulated Method of Moments)

Taylor Rule Policy Parameters

Interest Rate Smoothing 0 ≤ ρi < 1 rhoi 0.836 (Born and Pfeifer (2014))

Sensitivity to Inflation Deviations from Target ψπ > 1 psidp 1.777 (Born and Pfeifer (2014))

Sensitivity to Output Gap ψx > 0 psix 0.319 (Born and Pfeifer (2014))

Exogenous Shock Parameters

Unconditional Std. Dev. of Idiosyncratic Risk Shock σω > 0 stdevo 0.300 (Simulated Method of Moments)

Persistence of the Stochastic Volatility of Idiosyncratic Risk Shock 0 < υω < 1 rhosigo 0.966 (Simulated Method of Moments)

Std. Dev. of the Stochastic Volatility of Idiosyncratic Risk Shock ηω ≥ 0 stdevsigo 0.0254 (Simulated Method of Moments)

TFP Shock Persistence 0 < ρa < 1 rhoa 0.814 (Born and Pfeifer (2014))

TFP Shock Unconditional Standard Deviation σa > 0 stdeva e−5.233 = 0.0054 (Born and Pfeifer (2014))

Persistence of the Stochastic Volatility on TFP 0 < υa < 1 rhosiga 0.632 (Born and Pfeifer (2014))

Std. Dev. of the Stochastic Volatility on TFP ηa ≥ 0 stdevsiga 0.312 (Born and Pfeifer (2014))

Monetary Shock Persistence 0 < ρm < 1 rhom 0.367 (Born and Pfeifer (2014))

Monetary Shock Unconditional Standard Deviation σm > 0 stdevi e−6.551 = 0.0014 (Born and Pfeifer (2014))

Persistence of the Stochastic Volatility of Monetary Shock 0 < υm < 1 rhosigi 0.921 (Born and Pfeifer (2014))

Std. Dev. of the Stochastic Volatility of Monetary Shock ηm ≥ 0 stdevsigi 0.363 (Born and Pfeifer (2014))
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9 Quantitative Findings

1. Figure 1. We explore the responses of output, the credit spread, and the nominal
interest rate to a +1 shock, conditional on high uncertainty (micro-uncertainty, TFP

uncertainty and monetary policy uncertainty, individually), Figure 1A captures the

non-normalized responses while Figure 1B describes the response normalized by the

size of each shock innovation. We show here that TFP uncertainty and monetary

policy uncertainty effects are largely driven by the size of their volatility. Figure 1C

shows the normalized responses for the case where we eliminate the monitoring costs

(µ = 0) which shuts down the financial accelerator channel. This shows that the

propagation of shocks through the credit spread is no longer present– only micro-

uncertainty matters to explain movements of the credit spread. Finally, Figure 1D

represents the generalized impulse responses of output to all shocks conditional on the

values of macro- and policy-uncertainty showcasing the scalability of TFP shocks and

monetary policy shocks (both level shocks) to their own uncertainty.

2. Figure 2. We explore the responses of output, the credit spread, the nominal interest
rate and other key macro-finance variables (inflation, Tobin’s Q, investment, the default

probability, aggregate net-worth-to-asset ratio or equity ratio, and real net worth) to

a +1/ − 1 standard deviation shock conditional on high, mid, and low values of the

endogenous credit spread. Figure 2A plots those responses to a TFP shock, Figure 2B

to a TFP stochastic volatility shock, Figure 2C to a micro-uncertainty shock, Figure 2D

to an interest rate rule shock, and Figure 2E to an interest rate rule stochastic volatility

shock. The evidence shows that the propagation of one standard deviation shocks is

largely symmetric. We also note that micro-uncertainty shocks tend to have much

larger effects than other stochastic volatility shocks (TFP uncertainty and monetary

policy uncertainty)– yet monetary policy uncertainty can have stronger real effects

than TFP uncertainty.14

3. Figure 3. We explore the responses of output, the credit spread, the nominal interest
rate and other key macro-finance variables (inflation, Tobin’s Q, investment, the default

probability, aggregate net-worth-to-asset ratio or equity ratio, and real net worth) to

14Credit spreads introduce an important nonlinearity that arises from the credit friction with which we
have augmented the standard medium-scale New Keynesian setup. Still, as the time-varying stochastic
volatility on TFP and monetary policy shocks shows up in the higher order (3rd and above) approximation
terms, the lack of substantial nonlinearities in the neighborhood of the deterministic steady state other than
that embedded in the credit spread means these higher-order terms are relatively small. Hence, the direct
effects of macro- and policy-uncertainty shocks remain relatively small with and without credit frictions.
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a +2/ − 2 standard deviation shock conditional on high, mid, and low values of the

endogenous credit spread. Figure 3A plots those responses to a TFP shock, Figure 3B

to a TFP stochastic volatility shock, Figure 3C to a micro-uncertainty shock, Figure 3D

to an interest rate rule shock, and Figure 3E to an interest rate rule stochastic volatility

shock. The evidence complements that of Figure 2 showing that shocks that are twice

as large (which occur less frequently too) have more sizeable effects, but generally those

effects are approximately twice bigger. Therefore, findings do not appear to show that

larger (and less frequent) shocks will have an effect above and beyond what one would

expect given the increase in the size of the shock.

4. Figure 4. We explore the responses of output, the credit spread, the nominal interest
rate and other key macro-finance variables (inflation, Tobin’s Q, investment, the de-

fault probability, aggregate net-worth-to-asset ratio or equity ratio, and real net worth)

to a +1/− 1 standard deviation shock conditional on high, mid, and low values of the

micro-uncertainty shock. Figure 4A plots those responses to a TFP shock, Figure 4B to

a TFP stochastic volatility shock, Figure 4C to a micro-uncertainty shock, Figure 4D

to an interest rate rule shock, and Figure 4E to an interest rate rule stochastic volatil-

ity shock. The evidence shows that the propagation of one standard deviation shocks

is largely symmetric. We also note that micro-uncertainty shocks tend to have much

larger effects than other stochastic volatility shocks (TFP and the monetary policy

rule)– yet monetary policy uncertainty can have stronger real effects than TFP uncer-

tainty. Finally, we find that the results conditional on the level of micro-uncertainty

are very similar to those reported based on the level of the endogenous credit spread

(Figure 2).

5. Figure 5. We illustrate in Figure 5A the responses of output, the credit spread, the
nominal interest rate and other key macro-finance variables (investment, Tobin’s Q,

inflation, consumption, hours worked, and net-worth-to-asset ratio or equity ratio) to

a +1/− 1 standard deviation shock (TFP shock, TFP uncertainty, micro-uncertainty,

monetary policy shock, monetary policy uncertainty) whenever the initial conditions

are set equal to the unconditional mean. We illustrate in Figure 5B and Figure 5C

the responses of output, the credit spread, the nominal interest rate to a +1/ − 1

standard deviation shock (TFP shock, TFP uncertainty, micro-uncertainty, monetary

policy shock, monetary policy uncertainty) whenever we consider setting the initial

conditions conditional on the 5th, 50th, and 95th percentiles of the endogenous credit

spread (Figure 5B) and whenever we consider setting the initial conditions conditional
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on the 1st, 50th, and 99th percentiles of the endogenous credit spread (Figure 5C). Our

results show that the initial conditions have a modest effect on the propagation of the

shocks.

6. Figure 6. We show in Figure 6A the responses of output, the credit spread, and

the nominal interest rate to a +1 standard deviation of the shocks (TFP shock, TFP

uncertainty, micro-uncertainty, monetary policy shock, monetary policy uncertainty)

conditional on high credit spreads, under alternative specifications: the baseline com-

pared against a model with high relative risk aversion or low intertemporal elasticity of

substitution (χ = 7), with no monitoring costs and no financial accelerator (µ = 0), and

with no nominal rigidities (ϕp = 0). There findings indicate that the monitoring costs

and the risk aversion parameter play a significant role in the propagation of shocks and

their effectiveness through the financial accelerator channel (nominal rates and credit

spreads). In turn, nominal rigidities appear particularly important for the propagation

of monetary policy and even monetary policy uncertainty shocks. Figure 6B conducts

the same exercise plotting the responses of output, the credit spread, and the nominal

interest rate to a +1 standard deviation of the shocks (TFP shock, TFP uncertainty,

micro-uncertainty, monetary policy shock, monetary policy uncertainty) conditional on

high and low credit spreads, under the baseline specification and an alternative spec-

ification without micro-uncertainty stochastic volatility. This exercise comes to show

that the addition of micro-uncertainty shocks adds another source of fluctuations to

the model, but has otherwise only modest effects on the propagation path for the rest

of the shocks (except perhaps on the effects it has on the credit spread). We interpret

this as showing that augmenting the model with micro-uncertainty does not alter all

that much what we know about the propagation of other shocks. Figure 6C considers

another experiment where we report the responses of output, the credit spread, and

the nominal interest rate to a +1 standard deviation of the shocks (TFP shock, TFP

uncertainty, micro-uncertainty, monetary policy shock, monetary policy uncertainty)

conditional on high credit spreads, and high uncertainty (micro-uncertainty, TFP un-

certainty, and monetary policy uncertainty) individually. Our findings most notably

reveal that periods of high macro (TFP) uncertainty lead to significantly larger effects

of TFP level shocks on real economic activity than in any other circumstance. Simi-

larly, periods of high monetary policy uncertainty lead to significantly larger effects of

the monetary policy shock on real economic activity (almost twice as large on impact)

than in any other circumstance. Figure 6D provides another illustrative experiment
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where the responses of output, the credit spread, and the nominal interest rate to a

+1 standard deviation of the shocks (TFP shock, TFP uncertainty, micro-uncertainty,

monetary policy shock, monetary policy uncertainty) conditional on all three stochas-

tic volatility shocks (micro-uncertainty, TFP, and monetary policy) being either high

(> 80th percentile) or low (< 20th percentile) simultaneously. Our findings show that

periods of high uncertainty across all stochastic volatility shocks and low uncertainty

have only modest effects on the propagation of uncertainty shocks themselves. How-

ever, our evidence suggests that the response of real economic activity to TFP level

shocks is markedly stronger in periods of high overall uncertainty and, similarly, that

the response to monetary policy shocks can be more than twice as large during periods

of high overall uncertainty.

7. Figure 7. We show in Figure 7 the responses of output, the credit spread, the nominal
interest rate, and other macro-finance variables (investment, Tobin’s Q, inflation, con-

sumption, hours worked, and net-worth-to-asset ratio or equity ratio) to a +1 standard

deviation of each one of the shocks (TFP shock, TFP uncertainty, micro-uncertainty,

monetary policy shock, monetary policy uncertainty) conditional on mid-values of the

endogenous credit spreads, under alternative specifications: the baseline compared

against a model with high relative risk aversion or low intertemporal elasticity of sub-

stitution (χ = 7), with no monitoring costs and no financial accelerator (µ = 0), and

with no nominal rigidities (ϕp = 0). Our findings show that reducing nominal rigidities

tends to mitigate the real effects of TFP shocks while high risk-aversion amplifies those

effects for mid-values of the endogenous credit spread (Figure 7A), while the responses

to TFP uncertainty are rather modest across model specifications (Figure 7B). We also

show that micro-uncertainty and its propagation depends crucially on the presence of

a financial accelerator channel (Figure 7C)– hence, the interaction between credit fric-

tions and micro-uncertainty is a crucial aspect of our model. Not surprisingly, the

propagation of monetary policy shocks depends critically on the presence of nominal

rigidities in the model (Figure 7D) and similarly for the propagation of monetary policy

uncertainty (Figure 7E). The propagation of monetary policy uncertainty and its real

effects appear to become amplified whenever the risk aversion is high– interestingly,

the monetary policy uncertainty shock appears to have some effect even when there are

no nominal rigidities mainly because it still influences the endogenous credit spreads

implied by the nominal financial contract.

8. Figure 8. We show in Figure 8 the responses of output, the credit spread, the nominal
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interest rate, and other macro-finance variables (investment, Tobin’s Q, inflation, con-

sumption, hours worked, and net-worth-to-asset ratio or equity ratio) to a +1 standard

deviation of each one of the shocks (TFP shock, TFP uncertainty, micro-uncertainty,

monetary policy shock, monetary policy uncertainty) conditional on high-values of

the endogenous credit spreads, under alternative specifications: the baseline compared

against a model with high relative risk aversion or low intertemporal elasticity of sub-

stitution (χ = 7), with no monitoring costs and no financial accelerator (µ = 0), and

with no nominal rigidities (ϕp = 0). Our findings show that reducing nominal rigidities

tends to mitigate the real effects of TFP shocks while high risk-aversion amplifies those

effects for mid-values of the endogenous credit spread (Figure 8A), while the responses

to TFP uncertainty are rather modest across model specifications (Figure 8B). We also

show that micro-uncertainty and its propagation depends crucially on the presence of

a financial accelerator channel (Figure 8C)– hence, the interaction between credit fric-

tions and micro-uncertainty is a crucial aspect of our model. Not surprisingly, the

propagation of monetary policy shocks depends critically on the presence of nominal

rigidities in the model (Figure 8D) and similarly for the propagation of monetary pol-

icy uncertainty (Figure 7E). Qualitatively these results are the same as those reported

in Figure 7 conditional on mid-values of the endogenous credit spread, except that

we observe high credit spreads tend to attenuate the effect of TFP level shocks and

amplify somewhat the effect of the monetary policy shock itself. In turn, the effect of

high credit spreads on the propagation of all forms of uncertainty is rather modest.

9. Figure 9. We show in Figure 9 the responses of output, the credit spread, the nominal
interest rate, and other macro-finance variables (investment, Tobin’s Q, inflation, con-

sumption, hours worked, and net-worth-to-asset ratio or equity ratio) to a +1 standard

deviation of each one of the shocks (TFP shock, TFP uncertainty, micro-uncertainty,

monetary policy shock, monetary policy uncertainty) conditional on high-values of the

endogenous credit spread, high-values of the nominal interest rate, and high-values of

the net-worth-to-asset ratio (or equity ratio). Figure 9A suggests that the response of

the credit spread to TFP level shocks might be somewhat muted with high interest

rates, while Figure 9B indicates that there are only small differences in the transmission

of TFP uncertainty shocks. Figure 9C shows that the propagation of micro-uncertainty

shocks is somewhat more muted with high net-worth-to-asset ratio (or equity ratio)

and particularly with high interest rates. Figure 9D suggests that monetary policy

shocks are amplified with high interest rates and dampened somewhat with high net-
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worth-to-asset ratio (or equity ratio), while Figure 9E indicates that the differences in

the transmission of monetary policy uncertainty are rather modest.

10. Figure 10. We show in Figure 10 the responses of output, the credit spread, the

nominal interest rate, and other macro-finance variables (investment, Tobin’s Q, in-

flation, consumption, hours worked, and net-worth-to-asset ratio or equity ratio) to

a +1 standard deviation of each one of the shocks (TFP shock, TFP uncertainty,

micro-uncertainty, monetary policy shock, monetary policy uncertainty) conditional

on high-values of the endogenous credit spread, high-values of TFP uncertainty, high-

values of interest rate uncertainty, and high-values of the micro-uncertainty. Figure

10A suggests that the real effects of a TFP level shock might be amplified with high

TFP uncertainty, while Figure 10B indicates that there are only small differences in

the transmission of TFP uncertainty shocks. Figure 10C shows that the propagation

of micro-uncertainty shocks through the endogenous credit spread is somewhat more

muted with high interest rate uncertainty and high TFP uncertainty. Figure 10D sug-

gests that monetary policy shocks are significantly amplified with high interest rate

uncertainty, while Figure 10E indicates that the differences in the transmission of mon-

etary policy uncertainty are rather modest with small amplification effects arising from

high interest rate uncertainty.

11. Figure 11. We show in Figure 11 the probability density of the volatility of TFP, the
TFP level, the micro-uncertainty volatility, the net-worth-to-asset ratio or equity ratio,

the monetary policy rule volatility, and the interest rate, all of them conditional on the

endogenous credit spread: unconditional, conditional on 5th percentile of the endoge-

nous credit spread, and conditional on the 95th percentile of the credit spread. The

density is smoothed by the Epanechnikov kernel. Our findings illustrate the differences

between the different percentiles of the conditioning variable (the credit spread)– most

notably, we show that the distribution of the micro-uncertainty volatility is shifted to

the left and that of the nominal interest rate is shifted to the right whenever the

endogenous credit spread is conditioned at the 5th percentile.

12. Figure 12. We show in Figure 12 the joint distribution of the endogenous credit

spread with a number of relevant macro-finance variables. Figure 12A illustrates the

joint distribution between the endogenous credit spread and TFP, Figure 12B the joint

distribution between the endogenous credit spread and the nominal interest rate, Figure

12C the joint distribution of the endogenous credit spread and TFP stochastic volatility
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(TFP uncertainty), Figure 12D the joint distribution of the endogenous credit spread

and the interest rate stochastic volatility (monetary policy uncertainty), Figure 12E the

joint distribution of the endogenous credit spread and micro-uncertainty, Figure 12F

the joint distribution of the endogenous credit spread and capital, Figure 12G the joint

distribution of the endogenous credit spread and real net worth, and Figure 12H the

joint distribution of the endogenous credit spread and output. We observe that there is

a noticeable nonlinearity in the relationship between the endogenous credit spread and

the nominal interest rate as well as in the relationship between the endogenous credit

spread and micro-uncertainty. Moreover, we also find nonlinearities in the relationship

between the endogenous credit spread and both capital and output.

13. Figure 13. We show in Figure 13 the joint distribution of the endogenous credit

spread with a number of relevant macro-finance variables whenever the households’

inverse of the intertemporal elasticity of substitution is increased to χ = 7. Figure

13A illustrates the joint distribution between the endogenous credit spread and TFP,

Figure 13B the joint distribution between the endogenous credit spread and the nominal

interest rate, Figure 13C the joint distribution of the endogenous credit spread and

TFP stochastic volatility (TFP uncertainty), Figure 13D the joint distribution of the

endogenous credit spread and the interest rate stochastic volatility (monetary policy

uncertainty), Figure 13E the joint distribution of the endogenous credit spread and

micro-uncertainty, Figure 13F the joint distribution of the endogenous credit spread

and capital, Figure 13G the joint distribution of the endogenous credit spread and real

net worth, and Figure 13H the joint distribution of the endogenous credit spread and

output. We note that the increase in the parameter χ (which also determines the risk

aversion) produces similar results to those reported under the baseline in Figure 12.

It’s worth noticing that higher values of χ lead to a higher frequency of zero-lower

bound occurrences whereby the interest rate may fall near or below zero. Moreover,

we also see that low interest rate episodes tend to be more strongly associated with

periods of high endogenous credit spreads.

On the Direct Effects of Uncertainty: Second Moment Shocks, First-Order Ef-
fects? We obtain relatively small effects from fluctuations in aggregate uncertainty (mod-

eled as stochastic volatility in TFP and monetary policy). Aside from implying that macro

shocks are on average larger in magnitude when aggregate uncertainty is high, this type of

uncertainty is of second-order importance in the baseline model. Increasing risk aversion
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increases the effects of these uncertainty shocks, but they are still relatively small compared

to shocks that affect the level of TFP or monetary policy directly.

Why are the macro- and policy-uncertainty effects relatively small?

It is because the primary effect of aggregate uncertainty in our model appears to work

through the precautionary saving motive which is generally modest. Even though we have

adjustment costs for changing the prices and the capital stock, the option value of waiting

when making decisions that are costly to undo still doesn’t appear to have large quantitative

effects. Another way to think about why uncertainty has relatively small effects is there is

simply not a lot of curvature in the model. The standard neoclassical medium-size DSGE

model– and even the New Keynesian variant that we consider here– is not that far from

being log-linear, and the addition of quadratic adjustment costs for price changes as well

as adjustment costs on capital (real rigidities that introduce a real options value of wait-

ing motive) does not add much more nonlinear structure. As the time-varying stochastic

volatility shows up in the higher order (3rd and above) approximation terms, the lack of

substantial nonlinearities in the neighborhood of the deterministic steady state means these

higher-order terms are relatively small. Perhaps, additional adjustment costs such as the

costs of changing labor input might provide greater avenues for uncertainty to matter. Alter-

natively, adding additional sources of uncertainty might increase the quantitative influence

of aggregate uncertainty. However, given the results of Born and Pfeifer (2014), other forms

of uncertainty (such as on taxes) are not likely to have large effects either.

In contrast, we find that micro-uncertainty is important both qualitatively and quantita-

tively in our analysis– we would say of first-order importance. It is not the micro-uncertainty

in and of itself that matters, but the fact that this form of uncertainty exacerbates the credit

frictions that arise because of asymmetric information. In our benchmark model, taking

away the credit frictions kills the financial accelerator channel and removes any role that

micro-uncertainty can play on economic activity. If there are other frictions that are related

to micro-uncertainty (e.g., firm hiring decisions or firm-specific adjustment costs), then in-

creases in micro-uncertainty could have an additional effect independent of credit frictions.

While micro-uncertainty and credit frictions interact with one another, the interactions

between aggregate uncertainty (on TFP or on monetary policy) and credit frictions are rel-

atively small. The effects of aggregate uncertainty shocks do not depend on the current

credit conditions, nor does the effect of a credit friction shock (micro-uncertainty) depend

significantly on current aggregate uncertainty (neither related to TFP nor to monetary pol-

icy). In fact, credit spread fluctuations appear to be driven primarily by exogenous shocks in

micro-uncertainty. All the macro (TFP and monetary policy) shocks including to the level
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and to uncertainty have relatively small effects on the credit spread.

What accounts for the minimal interaction between credit frictions and the macro shocks?

The only way for macroeconomic conditions to affect the credit spread is through their

effect on the net-worth-to-asset ratio (100× Nt
PtQtKt+1

). It turns out that while macro shocks

can have a large effect on individual components of the net-worth-to-asset ratio ratio, these

affect the numerator and denominator of the net-worth-to-asset ratio ratio roughly in the

same proportion (through their effect on the price of capital or Tobin’s q). As a result, the

net-worth-to-asset ratio moves very little which in turn implies a small response by the credit

spread. Consequently, only changes in the exogenous micro-uncertainty have substantial

effects on the credit spread and on the extent of credit frictions.

The inverse relationship between the endogenous external finance premium and the nom-

inal interest rate found in Balke et al. (2017) suggests that low nominal short-term inter-

est rates tend to be associated with periods of high spreads (due to high financial risk or

micro-uncertainty). Hence, our research shows that periods of high financial risk (or micro-

uncertainty) like those experienced during the Great Recession of 2008 − 2009 tend to be

associated with high endogenous credit spreads and low interest rates. The message is clear:

financial risks can be a major drag on economic activity while they also partly contribute

to account for the low interest rate environment that has characterized the aftermath of the

2008− 2009 recession.
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Figure 1A. Generalized Impulse Response Functions: Response to a +1 Shock,
Conditional on High Uncertainty, Individually (Non-Normalized).
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Figure 1B. Generalized Impulse Response Functions: Response to a +1 Shock,
Conditional on High Uncertainty, Individually (Normalized by Initial Size of

the Underlying Shock).
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Figure 1C. Generalized Impulse Response Functions: Response to a +1 Shock,
Conditional on High Uncertainty, Individually (Normalized by Initial Size of
the Underlying Shock) whenever Default Costs Are Set to Zero (µ=0) in Order

to Abstract from the Financial Accelerator Mechanism in the Model.
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Figure 1D. Generalized Impulse Response Functions: Response of Output to a
+1 Shock, Conditional on the Values (High and Low) of Macro- and

Policy-Uncertainty, Individually (Non-Normalized).

0 5 10 15 20
0

0.5

1

1.5

0 5 10 15 20
-0.01

-0.005

0

0.005

0.01

0.015

0.02

0 5 10 15 20
-1.5

-1

-0.5

0

0 5 10 15 20
-8

-6

-4

-2

0

0 5 10 15 20
0

0.05

0.1

0.15

0.2

52



Figure 2A. Generalized Impulse Response Functions: Response to a +1/-1
Standard Deviation TFP Shock, Conditional on High, Mid, Low Values of the

Endogenous Spread.
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Figure 2B. Generalized Impulse Response Functions: Response to a +1/-1
Standard Deviation TFP Stochastic Volatility Shock, Conditional on High,

Mid, Low Values of the Endogenous Spread.
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Figure 2C. Generalized Impulse Response Functions: Response to a +1/-1
Standard Deviation Micro-Uncertainty Shock, Conditional on High, Mid, Low

Values of the Endogenous Spread.
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Figure 2D. Generalized Impulse Response Functions: Response to a +1/-1
Standard Deviation Interest Rate Rule Shock, Conditional on High, Mid, Low

Values of the Endogenous Spread.
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Figure 2E. Generalized Impulse Response Functions: Response to a +1/-1
Standard Deviation Interest Rate Rule Stochastic Volatility Shock, Conditional

on High, Mid, Low Values of the Endogenous Spread.
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Figure 3A. Generalized Impulse Response Functions: Response to a +2/-2
Standard Deviation TFP Shock, Conditional on High, Mid, Low Values of the

Endogenous Spread.
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Figure 3B. Generalized Impulse Response Functions: Response to a +2/-2
Standard Deviation TFP Stochastic Volatility Shock, Conditional on High,

Mid, Low Values of the Endogenous Spread.
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Figure 3C. Generalized Impulse Response Functions: Response to a +2/-2
Standard Deviation Micro-Uncertainty Shock, Conditional on High, Mid, Low

Values of the Endogenous Spread.
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Figure 3D. Generalized Impulse Response Functions: Response to a +2/-2
Standard Deviation Interest Rate Rule Shock, Conditional on High, Mid, Low

Values of the Endogenous Spread.
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Figure 3E. Generalized Impulse Response Functions: Response to a +2/-2
Standard Deviation Interest Rate Rule Stochastic Volatility Shock, Conditional

on High, Mid, Low Values of the Endogenous Spread.
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Figure 4A. Generalized Impulse Response Functions: Response to a +1
Standard Deviation TFP Shock, Conditional on the Level of Micro-Uncertainty.
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Figure 4B. Generalized Impulse Response Functions: Response to a +1
Standard Deviation TFP Stochastic Volatility Shock, Conditional on the Level

of Micro-Uncertainty.
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Figure 4C. Generalized Impulse Response Functions: Response to a +1
Standard Deviation Micro-Uncertainty Shock, Conditional on the Level of

Micro-Uncertainty.
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Figure 4D. Generalized Impulse Response Functions: Response to a +1
Standard Deviation Interest Rate Rule Shock, Conditional on the Level of

Micro-Uncertainty.
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Figure 4E. Generalized Impulse Response Functions: Response to a +1
Standard Deviation Interest Rate Rule Stochastic Volatility Shock, Conditional

on the Level of Micro-Uncertainty.
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Figure 5A. Generalized Impulse Response Functions: Response to a +1 Shock,
Initial Condition: Unconditional Mean.
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Figure 5B. Generalized Impulse Response Functions: Response to a +1 Shock,
Initial Condition: Conditional on 5th and 95th Percentiles on Spread.
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Figure 5C. Generalized Impulse Response Functions: Response to a +1 Shock,
Initial Condition: Conditional on 1st and 99th Percentiles on Spread.
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Figure 6A. Generalized Impulse Response Functions: Response to a +1 Shock,
For Alternative Model Specifications, Conditional on High Spreads.
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Figure 6B. Generalized Impulse Response Functions: Response to a +1 Shock,
Conditional on High and Low Spreads, With and Without Micro-Uncertainty.
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Figure 6C. Generalized Impulse Response Functions: Response to a +1 Shock,
Conditional on High Uncertainty (Individually).

0 10 20
0

0.5
1

0 10 20
0

0.01

0.02

0 10 20
-0.2

-0.1

0

0 10 20
-0.01

0

0.01

0 10 20
-0.01

0

0.01

0 10 20
-0.01

0

0.01

0 10 20

-1

-0.5

0

0 10 20
0

0.2

0.4

0 10 20

-0.1

-0.05

0

0 10 20

-5

0

0 10 20
0

0.01

0.02

0 10 20
0

0.5

0 10 20
0.05

0.1

0.15

0 10 20
-0.01

0

0.01

0 10 20
0

0.01

High spread High micro uncertainty High TFP uncertainty High monetary uncertainty

73



Figure 6D. Generalized Impulse Response Functions: Response to a +1 Shock,
When All Three Stochastic Volatility Shocks are High or Low Simultaneously

(>80th Percentile or <20th Percentile).
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Figure 7A. Generalized Impulse Response Functions: Response to a +1
Standard Deviation TFP Shock, Various Model Specifications, Conditional on

Mid-Values of the Endogenous Spread.
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Figure 7B. Generalized Impulse Response Functions: Response to a +1
Standard Deviation TFP Stochastic VolatilityShock, Various Model
Specifications, Conditional on Mid-Values of the Endogenous Spread.
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Figure 7C. Generalized Impulse Response Functions: Response to a +1
Standard Deviation Micro-Uncertainty Shock, Various Model Specifications,

Conditional on Mid-Values of the Endogenous Spread.
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Figure 7D. Generalized Impulse Response Functions: Response to a +1
Standard Deviation Interest Rate Rule Shock, Various Model Specifications,

Conditional on Mid-Values of the Endogenous Spread.
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Figure 7E. Generalized Impulse Response Functions: Response to a +1
Standard Deviation Interest Rate Stochastic Volatility Shock, Various Model

Specifications, Conditional on Mid-Values of the Endogenous Spread.
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Figure 8A. Generalized Impulse Response Functions: Response to a +1
Standard Deviation TFP Shock, Various Model Specifications, Conditional on

High-Values of the Endogenous Spread.
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Figure 8B. Generalized Impulse Response Functions: Response to a +1
Standard Deviation TFP Stochastic VolatilityShock, Various Model
Specifications, Conditional on Hih-Values of the Endogenous Spread.
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Figure 8C. Generalized Impulse Response Functions: Response to a +1
Standard Deviation Micro-Uncertainty Shock, Various Model Specifications,

Conditional on High-Values of the Endogenous Spread.

0 10 20

-1

-0.5

0

0 10 20
0

0.5

1

0 10 20
-1

-0.5

0

0 10 20

0

0.1

0.2

0.3

0 10 20

-6

-4

-2

0

0 10 20

-0.2

-0.1

0

0 10 20
0

0.2

0.4

0 10 20

-2

-1

0

0 10 20

-2

0

2

Baseline =7 =0 p
=0

82



Figure 8D. Generalized Impulse Response Functions: Response to a +1
Standard Deviation Interest Rate Rule Shock, Various Model Specifications,

Conditional on High-Values of the Endogenous Spread.
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Figure 8E. Generalized Impulse Response Functions: Response to a +1
Standard Deviation Interest Rate Stochastic Volatility Shock, Various Model

Specifications, Conditional on High-Values of the Endogenous Spread.
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Figure 9A. Generalized Impulse Response Functions: Response to a +1
Standard Deviation TFP Shock, Conditional on High-Values of Spread,

Interest Rate, and Equity Ratio.
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Figure 9B. Generalized Impulse Response Functions: Response to a +1
Standard Deviation TFP Stochastic Volatility Shock, Conditional on

High-Values of Spread, Interest Rate, and Equity Ratio.
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Figure 9C. Generalized Impulse Response Functions: Response to a +1
Standard Deviation Micro-Uncertainty Shock, Conditional on High-Values of

Spread, Interest Rate, and Equity Ratio.
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Figure 9D. Generalized Impulse Response Functions: Response to a +1
Standard Deviation Interest Rate Rule Shock, Conditional on High-Values of

Spread, Interest Rate, and Equity Ratio.

0 10 20
-4

-2

0

0 10 20
-1

-0.5

0

0 10 20
-20

-10

0

0 10 20

-4

-2

0

0 10 20
-2

-1

0

0 10 20
0

0.2

0.4

0 10 20
0

0.01

0.02

0 10 20

-4

-2

0

0 10 20

-0.02

-0.01

0

High spread High interest rate High equity ratio

88



Figure 9E. Generalized Impulse Response Functions: Response to a +1
Standard Deviation Interest Rate Stochastic Volatility Shock, Conditional on

High-Values of Spread, Interest Rate, and Equity Ratio.
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Figure 10A. Generalized Impulse Response Functions: Response to a +1
Standard Deviation TFP Shock, Conditional on High-Values of Spread, TFP

Stochastic Volatility, Interest Rate Stochastic Volatility, and
Micro-Uncertainty.
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Figure 10B. Generalized Impulse Response Functions: Response to a +1
Standard Deviation TFP Stochastic Volatility Shock, Conditional on

High-Values of Spread, TFP Stochastic Volatility, Interest Rate Stochastic
Volatility, and Micro-Uncertainty.

0 10 20
-0.01

0

0.01

0 10 20
-0.01

0

0.01

0 10 20

-0.02

-0.01

0

0 10 20
0

0.01

0.02

0.03

0 10 20
-0.01

0

0.01

0 10 20
-0.01

0

0.01

0 10 20
-0.01

0

0.01

0 10 20
-0.01

0

0.01

0 10 20
-0.01

0

0.01

High spread High micro uncertainty High policy uncertainty High TFP uncertainty

91



Figure 10C. Generalized Impulse Response Functions: Response to a +1
Standard Deviation Micro-Uncertainty Shock, Conditional on High-Values of
Spread, TFP Stochastic Volatility, Interest Rate Stochastic Volatility, and

Micro-Uncertainty.
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Figure 10D. Generalized Impulse Response Functions: Response to a +1
Standard Deviation Interest Rate Rule Shock, Conditional on High-Values of
Spread, TFP Stochastic Volatility, Interest Rate Stochastic Volatility, and

Micro-Uncertainty.
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Figure 10E. Generalized Impulse Response Functions: Response to a +1
Standard Deviation Interest Rate Stochastic Volatility Shock, Conditional on
High-Values of Spread, TFP Stochastic Volatility, Interest Rate Stochastic

Volatility, and Micro-Uncertainty.
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Figure 11. Probability Density Conditional on the Endogenous Spread:
Unconditional, Conditional (5th and 95th percentile of Conditioning Variable).

Density Smoothed by Epanechnikov Kernel.
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Figure 12A. Joint Distribution of the Endogenous Spread and TFP.
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Figure 12B. Joint Distribution of the Endogenous Spread and Interest Rate.
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Figure 12C. Joint Distribution of the Endogenous Spread and TFP Stochastic
Volatility.
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Figure 12D. Joint Distribution of the Endogenous Spread and Interest Rate
Stochastic Volatility.
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Figure 12E. Joint Distribution of the Endogenous Spread and
Micro-Uncertainty.
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Figure 12F. Joint Distribution of the Endogenous Spread and Capital.
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Figure 12G. Joint Distribution of the Endogenous Spread and Real Net Worth.
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Figure 12H. Joint Distribution of the Endogenous Spread and Output.
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Figure 13A. Joint Distribution of the Endogenous Spread and TFP when
Households’Inverse of the Intertemporal Elasticity of Substitution is Increased

to χ=7.
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Figure 13B. Joint Distribution of the Endogenous Spread and Interest Rate
when Households’Inverse of the Intertemporal Elasticity of Substitution is

Increased to χ=7.
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Figure 13C. Joint Distribution of the Endogenous Spread and TFP Stochastic
Volatility when Households’Inverse of the Intertemporal Elasticity of

Substitution is Increased to χ=7.
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Figure 13D. Joint Distribution of the Endogenous Spread and Interest Rate
Stochastic Volatility when Households’Inverse of the Intertemporal Elasticity

of Substitution is Increased to χ=7.
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Figure 13E. Joint Distribution of the Endogenous Spread and
Micro-Uncertainty when Households’Inverse of the Intertemporal Elasticity of

Substitution is Increased to χ=7.
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Figure 13F. Joint Distribution of the Endogenous Spread and Capital when
Households’Inverse of the Intertemporal Elasticity of Substitution is Increased

to χ=7.
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Figure 13G. Joint Distribution of the Endogenous Spread and Real Net Worth
when Households’Inverse of the Intertemporal Elasticity of Substitution is

Increased to χ=7.
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Figure 13H. Joint Distribution of the Endogenous Spread and Output when
Households’Inverse of the Intertemporal Elasticity of Substitution is Increased

to χ=7.
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