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1 Introduction

This paper contains a brief description of the equilibrium conditions that characterize the solution to the
model used in Balke et al. (2017). The framework we employ is a medium-scale New Keynesian DSGE
model with credit frictions and uncertainty (stochastic volatility). We also include an overview of the data
utilized for the paper, an explanation of the codes developed for the estimation and for the quantitative
simulation of the model, and a comprehensive list of the main results obtained from the model and the

additional experiments conducted for robustness.

2 Summary of Equilibrium Conditions

2.1 Benchmark Model
2.1.1 Habit Preferences
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where A, is the Lagrange multiplier on the household’s budget constraint expressed in units of the final good.
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where the gross inflation rate on final goods is given as II; = %, A; is the Lagrange multiplier on the
household’s budget constraint expressed in units of the final good, and a; = a; — a with a = f% 1:(751 Lk
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- P'U)T’Yt
Wt = (1 —a— 19) th (6)
Per't
er — 9 t
Hi =1 (8)
. _ BH}
Wt - At (9)
where households’ real wages are defined as W, = %‘ and entrepreneurial real wages as W™ = %. The

relative price of the wholesale good in units of the final good is given by P*" = %ﬂ.



2.1.4 Capital Market
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where RY" = % defines the real rental rate on capital in units of the final good paid by the wholesale
producers to the entrepreneurs for the capital rented, and N} = % denotes the real net worth of the
entrepreneurs in units of the final good.
2.1.5 Credit Market
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where the stochastic volatility of the idiosyncratic technology shock o, is computed as o, ; = oper,

2.1.6 Monetary Policy Rule
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where my = my —m and m = 3T We also impose that the monetary authority targets zero

net-inflation, i.e. IIf = 1.

2.2 Exogenous Shocks with Stochastic Volatility

Denoting 6.+ =lno,;—Ino,, 6, =Ino, —Ino, and 6y, = Inoy,  —In o, we define the shock processes

as follows:

Aggregate Productivity (TFP) Shock (with Macro-Uncertainty)
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where the stochastic volatility of the TFP shock o, is computed as o, = Tae%t .

Micro-Uncertainty Shock
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where the stochastic volatility of the idiosyncratic technology shock o, ; is computed as o, ; = T,e7%t .
Monetary Policy Shock (with Policy-Uncertainty)
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Om,t = UnmOm,t—1 + NmUm,t

M,; ~ 1+ m, (auxiliary equation)

where the stochastic volatility of the monetary policy shock oy, + is computed as o, ¢+ = O™t

3 Deterministic Steady State

3.1 Habit Preferences
(1-b8)(1—b)XCx=A

3.2 Goods Market
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3.3 Labor Market
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3.5 Credit Market
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3.6 Monetary Policy Rule
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where m = 0.

3.7 Exogenous Shocks with Stochastic Volatility

Aggregate Productivity (TFP) Shock (with Macro-Uncertainty)
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Monetary Policy Shock (with Policy-Uncertainty)
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3.8 Steady State and Structural Parameters

The zero-inflation deterministic steady state of the model can be specified as follows:
=1 =1. (77)

Let us impose @ = m = 0 and let’s ignore the exogenous show equations in (66) — (76) for now. This ensures
that the monetary policy rule in (65) is satisfied in steady state. We also assume that the characterization

of the steady state implies that,

X = 0K, (78)
Q=1 (79)

This satisfies (48) and (52) trivially, but it also implies from (49) that,

Q=1 (80)
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while (46) simply says,
H® =1. (83)

Then, we can re-write (39) in the following terms,
A=(1-8)(1—-b*XC™X (84)

All these steady state conditions hold in equilibrium and are straightforward to characterize in setting up
the deterministic steady state for the model.
The deterministic steady state of the different shock processes described in (66) — (76) can be summarized

now as follows,
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Finally, the reminder of the steady state conditions not related to the loan contract—i.e., (40), (41), (44),
(45), (47), (50), (51), (53) and (54)—can be re-written as,
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The deterministic steady state is then complete with the corresponding equations that characterize the terms

of the loan contract under log-normality in (55) — (64), i.e. with
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We solve this subset of equations to characterize the deterministic steady state of the model with frictions

using the nonlinear solver fsolve in Matlab.

Remark: On Matters of Implementation. The deterministic steady state for the model can be ex-

pressed in a somewhat more tractable manner using equation (55)—which defines the probability of default



in steady state ® (W | o,,) under log-normality—as follows,

From here, we get that,
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As aresult, the steady state default threshold w can be expressed as a function of the steady state probability

of default ® (w | 0,,). This is useful to facilitate the parameterization of the model.

4 Data

Through the Federal Reserve Bank of St. Louis’ FRED database, we collect data on real GDP, consumption,
investment and hours worked in per capita terms, together with time series for the real wage, the leverage
of nonfinancial corporations, the inflation rate, the short-term nominal interest rate and the interest rate
spread for the U.S. economy. The data we use is quarterly and covers the period from 1984:Q1 to 2014:Q4.

Our measure of output is the real GDP from the U.S. Bureau of Economic Analysis’ (BEA) National
Income and Product Accounts (NIPA) in billions of Chained 2009 Dollars. Our measure of consumption is
the sum of nondurable and services consumption, also in billions of Chained 2009 Dollars from the BEA’s
NIPA accounts. Investment is calculated as gross private fixed investment plus consumption expenditures
on durable goods (since durable goods behave more similar to investment than to nondurable goods con-
sumption). Durable consumption and investment data are also expressed in billions of Chained 2009 Dollars
and reported in the BEA’s NIPA accounts.

These national account series (GDP, consumption and investment) are then expressed in per capita terms
after dividing them by the civilian non-institutionalized population aged 16 and over from the U.S. Bureau
of Labor Statistics (BLS). This population series is simply a quarterly average of monthly data. The three
of them are already reported in real terms, but we also index them to 2009 = 100 and express them in
logs times 400. With these transformations we help express their cylical component in percentages at an
annualized rate after filtering each of them (consistently with what we do to the corresponding endogenous
variables in the simulated model).

Total hours worked refers to the index series (2009 = 100) on hours of all persons in the non-farm
business sector reported by the BLS. This series is expressed in per capita terms divided by the civilian
non-institutionalized population aged 16 and over from the BLS and re-based to 2009 = 100. Then, the

series is expressed in logs times 400 prior to filtering to maintain consistency with its simulated counterpart.



Real wages are measured as real compensation per hour in the non-farm business sector, with the index
series (2009 = 100) obtained from the BLS. This wage series is already reported in real terms, but we also
express it in logs times 400 to make it consistent with the corresponding definition in the simulated model.

The price level is measured as the implicit price deflator for GDP (2009 = 100), obtained from the
BEA. The implicit GDP deflator is expressed in logs times 400 to keep it consistent with the corresponding
model definition. We then calculate the inflation rate by simply computing the first differences of the series.
The nominal short term interest rate corresponds to the three month Treasury Bill (secondary market) rate
(henceforth, T-bill rate), obtained from the Board of Governors of the Federal Reserve System (H.15 Selected
Interest Rates). The three-month T-bill rate is a quarterly average of daily data calculated on a discount
basis, and reported annualized and in percentage terms. Therefore, the three-month T-bill rate does not
have to be logged times 400 to keep it consistent with its counterpart in the model.

The interest rate spread is measured with the seasoned Baa corporate bond yield from Moody’s relative
to the yield on the 10-Year Treasury constant maturity, obtained from the Federal Reserve Bank of St. Louis.
This spread is calculated as a quarterly average from monthly data, but does not have to be transformed
in logs and multiplied by 400 to make it comparable with its endogenous counterpart from the model. The
nonfinancial corporate leverage is computed as the ratio of the net worth (level) of the nonfinancial corporate
business sector over its total assets (level) times 100, using data from the Board of Governors of the Federal
Reserve System (Z.1 Financial Accounts of the U.S.). This data is reported as end-of-period, at quarterly

frequency. No further adjustment of the leverage ratio series is needed.

The Business Cycle Component and its Features. We extract the cyclical component of all these
series by HP-filtering them with a one-sided filter using a lambda of 1600 and a power of 2, except for the
leverage ratio that is demeaned instead. We apply the same filtering to the corresponding endogenous data
simulated by the model to ensure the comparability between simulated and empirical moments. Some of
the selected business cycle moments reported below are used for estimation with our simulated method of
moment (SMM) approach and, more generally, they provide us with an empirical point of reference for the
parameterization of the model.

Main files to replicate the data and examine the business cycle moments used to parameterize the model:

1. BusinessCyclesStylizedFacts.xlsx. This excel file contains links to the data downloaded from the
Federal Reserve Bank of St. Louis’ FRED database as well as the necessary calculations to compute

the business cycle moments reported in the paper.

2. one_sided hp _filter serial.m. This matlab program extracts the cyclical component from a time
series using the one-sided HP-filter based on spare matrices and exploiting their pattern. This code
follows the approach described in Mehra (2004). The code was written by Alexander Meyer-Gohde.

3. one_sided hp filter kalman.m. This matlab program extracts the cyclical component from a
time series using the one-sided HP-filter based on implementing the Kalman filter. This code follows
the approach described in page 301 of Stock and Watson (1999), as written by Alexander Meyer-Gohde.
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5 Codes

Driver files for simulating, estimating, and examining the benchmark model and the alternative model

parameterizations considered in the paper.

1. BMZ credit moments cases.m. This programs simulates the pruned 374 order approximation
in order to generate stationary distribution and the model moment statistics. There are lines in the
code that allows one to change specific parameter values. The results are saved to an external file
(this is actually commented out in copy of the program so that existing results are not inadvertently

overwritten).

2. BMZ credit conditional GIRF positive.m. This program generates conditional GIRF. To
run this program one must first have generated the stationary distribution for the relevant model (see
BMZ credit _moments cases.m). The default take the conditional at the approximately the 5th
and 95th percentiles

3. BMZ credit unconditional GIRF positive.m. This program generates unconditional GIRF.
To run this program one must first have generated the stationary distribution for the relevant model
(see BMZ credit moments cases.m). Here 500 starting values, randomly drawn from the un-

conditional distribution, are fed is an initial conditions for the IRF calculations.

4. BMZ credit esitmate.m. This program that estimates a select number of model parameters by
SMM. The current version of the program calls initial parameter values from a file (the final estimated

values). If you want to start from scratch, this would need to be commented out.
Files used for printing out and plotting results:

1. BMZ credit conditional GIRF plot.m. This graphs out various impulse response experi-
ments. The program calls external files that contain the results of previously generated IRF experi-

ments (both unconditional and conditional).

2. BMZ _credit conditional dist.m. This file graphs out various scatterplots and conditional den-
sity functions based on the unconditional distribution for a specific model. Draws from the uncondi-

tional distribution are read in from an external file.

3. BMZ credit moments load print.m. This file prints out a table with various moment statis-

tics for the alternative models. The statistics are read in from various external data files.
To run these programs the "current folder" in MATLAB must be the same folder that bgg with SV.mod
is in.
Supplementary files that are called by the driver programs and other subroutines. These files are specific

for the project in this paper:

1. bgg with SV.mod. This is the main Dynare file for the code. This initializes Dynare and creates

the global variables that will be used later to solve for the pruned 3" order approximation.

2. bgg with SV SS.m. This matlab file is auxiliary external code needed to calculate the steady

state of the model for Dynare. This program finds initial estimate of the steady state.

11



3. bgg with SV Rev.m. This file allows the user to modify parameter values and to call modified
Dynare subroutines that are then used to solve for 2"¢ and 37¢ order approximations. These will be

used to construct the pruned 3"% order approximation.

4. bgg with SV _SS Rev.m. This code solves for steady state (called from the bgg with SS Rev.m

subroutine).

The file bgg with SV.mod contains the compact set of equations that we use to simulate the model
in our Dynare code (written for Dynare version 4.3.2 and Matlab R2012a (7.14.0.739)). Some preliminary
considerations about the model and the Dynare code:

e Special cases of the model without frictions: The frictionless version of the model can be described
with the same set of equilibrium conditions imposing certain restrictions on the parameterization of
the code: ¢, = 0 (no price adjustment costs), 14 = 0 (no monitoring costs) and a policy rule that
targets ﬁ: = 1 (setting the net inflation target to zero and the gross to one). This alone suffices to

characterize the dynamics of the model without nominal rigidities and without the financial friction.

e Pre-determined variables and state variables in the model: There are two endogenous state variables
in the model: capital, K;, and real net worth, N} = %‘. We use the predetermined variables option
in Dynare to change the default convention which is that the timing of a variable reflects when this
variable is actually decided. Hence, the endogenous variables declared as predetermined are decided
one period ahead of all other endogenous variables. The convention is that K; is actually decided prior
to t with the investment decisions made at time ¢ — 1 and in previous periods, so it is declared as
predetermined. In turn, the real net worth of entrepreneurs N/ used to fund capital purchases at time
t depends on past decisions but also depends on the entrepreneurial income earned at time t. Given

this timing, real net worth is not treated as a predetermined variable.

The following subroutines are from the "sim_folder." These subroutines are called with simulating the

pruned 3rd order approximation or when generating impulse responses from the 37¢ order approximation.

1. postGIRFsim_3rd aux.m. This subroutine generates pruned 374 order approximation and then

calculates IRFs (given an initial condition).

2. postmoment 3rd aux.m. This subroutine generates pruned 374 order approximation and the

simulates and does moment calculations for the pruned 3"¢ order approximation.

3. particle3rd setup aux.m. This subroutine constructs the components of the pruned 374 order

approximation.
4. SIM3rd.m. Simulates the pruned 3"¢ order approximation.
5. IRFSIM3rd.m. Calculates simulated estimates of the impulse responses (not currently used).

6. GIRF3rd.m. This subroutine calculates the analytical impulse responses (given an initial condi-

tional).

7. Statemoments3rdvar.m. Calculates the unconditional mean of the model variables for pruned 37¢

order approximation.

12



10.

11.

12.

13.

14.

15.

16.

17.

18.

stoch simul2.m. Custom modified Dynare subroutine.

dynare solve2.m. Custom modified Dynare subroutine.
resol2.m. Custom modified Dynare subroutine.

evaluate steady state2.m. Custom modified Dynare subroutine.
k order pert2.m. Custom modified Dynare subroutine.
stochastic__solvers2.m. Custom modified Dynare subroutine.
mykron2.m. Custom kronecker product subroutine.

mykron.m. Custom kronecker product subroutine.

hpfilter.m. Regular 2-sided hp filter.

one sided hp filter kalman.m. One sided HP filter.

one_ sided hp_filter serial.m. One sided HP filter.

The following files are from the GMM _folder. They are called when estimating the model by GMM /SMM.

1.

2.

10.

SIM3rdSMM.m. This program simulates pruned 3"¢ order approximation when doing SMM.
Estmoment.m. This subroutine calculates the empirical moment conditions used in estimation.

Estmoment Wout.m. This subroutine calculates the empirical moment conditions as well as out-

puts the weighting matrix W = S.

GMMest Moment 3rd.m. This subroutine generates pruned 37? order approximation and then

calculates various moment conditions implied by the model.

GMMest loss 3rd.m. Generates the empirical loss function for the GMM/SMM when using a

pruned 3" order approximation.

GMMest loss 3rd exact.m. Generates the estimated moment conditions when using a pruned

374 order approximation.
GMDMloss.m. Calculates the loss function for the moment conditions for a specific weighting matrix.

GMMest Mout_3rd.m. Generates the estimated moment conditions when using a pruned 3rd

order approximation (outputs a "flag" that indicates that the model is valid).

GMMest Wout 3rd.m. Generates the estimated moment conditions and outputs the weighting

matrix W = S for pruned 3"¢ order approximation.
numgrad2mod.m. Slightly modified subroutine to calculated numerical 2" derivatives (originally

based on a program written by Chris Sims).

Model Variables and Parameters
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1.

Quantitative Findings

Figure 1. We explore the responses of output, the spread and the nominal interest rate to a +1 shock,
conditional on high uncertainty (micro-uncertainty, TFP uncertainty and monetary policy uncertainty,
individually), Figure 1A captures the non-normalized responses while Figure 1B describes the response
normalized by the size of each shock innovation. We show here that TFP uncertainty and monetary
policy uncertainty effects are largely driven by the size of their volatility. Finally, Figure 1C shows the
normalized responses for the case where we eliminate the monitoring costs (1 = 0) which shuts down
the financial accelerator channel. This shows that the propagation of shocks through the spread is no

longer present—only micro-uncertainty matters to explain movements of the spread.

Figure 2. We explore the responses of output, the spread, the nominal interest rate and other key
macro-finance variables (inflation, Tobin’s Q, investment, the default probability, aggregate leverage,
and real net worth) to a +1/ — 1 standard deviation shock conditional on high, mid, and low values of
the endogenous spread. Figure 2A plots those responses to a TFP shock, Figure 2B to a TFP stochastic
volatility shock, Figure 2C to a micro-uncertainty shock, Figure 2D to an interest rate rule shock, and
Figure 2E to an interest rate rule stochastic volatility shock. The evidence shows that the propagation
of one standard deviation shocks is largely symmetric. We also note that micro-uncertainty shocks
tend to have much larger effects than other stochastic volatility shocks (TFP and the monetary policy

rule)—yet monetary policy uncertainty can have stronger real effects than TFP uncertainty.

Figure 3. We explore the responses of output, the spread, the nominal interest rate and other key
macro-finance variables (inflation, Tobin’s Q, investment, the default probability, aggregate leverage,
and real net worth) to a +2/ — 2 standard deviation shock conditional on high, mid, and low values
of the endogenous spread. Figure 3A plots those responses to a TFP shock, Figure 3B to a TFP
stochastic volatility shock, Figure 3C to a micro-uncertainty shock, Figure 3D to an interest rate rule
shock, and Figure 3E to an interest rate rule stochastic volatility shock. The evidence complements
that of Figure 2 showing that shocks that are twice as large (which occur less frequently too) have
more sizeable effects, but generally those effects are approximately twice bigger. Therefore, findings do
not appear to show that larger (and less frequent) shocks will have an effect above and beyond what

one would expect given the increase in the size of the shock.

. Figure 4. We explore the responses of output, the spread, the nominal interest rate and other key

macro-finance variables (inflation, Tobin’s @, investment, the default probability, aggregate leverage,
and real net worth) to a +1/ — 1 standard deviation shock conditional on high, mid, and low values
of the micro-uncertainty shock. Figure 4A plots those responses to a TFP shock, Figure 4B to a TFP
stochastic volatility shock, Figure 4C to a micro-uncertainty shock, Figure 4D to an interest rate rule
shock, and Figure 4E to an interest rate rule stochastic volatility shock. The evidence shows that the
propagation of one standard deviation shocks is largely symmetric. We also note that micro-uncertainty
shocks tend to have much larger effects than other stochastic volatility shocks (TFP and the monetary
policy rule)—yet monetary policy uncertainty can have stronger real effects than TFP uncertainty.
Finally, we find that the results conditional on the level of micro-uncertainty are very similar to those

reported based on the level of the endogenous spread (Figure 2).
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5. Figure 5. We illustrate in Figure 5A the responses of output, the spread, the nominal interest rate
and other key macro-finance variables (investment, Tobin’s Q, inflation, consumption, hours worked,
and leverage) to a +1/ — 1 standard deviation shock (TFP shock, TFP uncertainty, micro-uncertainty,
monetary policy shock, monetary policy uncertainty) whenever the initial conditions are set equal to
the unconditional mean. We illustrate in Figure 5B and Figure 5C the responses of output, the spread,
the nominal interest rate to a +1/ — 1 standard deviation shock (TFP shock, TFP uncertainty, micro-
uncertainty, monetary policy shock, monetary policy uncertainty) whenever we consider setting the
initial conditions conditional on the 5th, 50th, and 95th percentiles of the endogenous spread (Figure
5B) and whenever we consider setting the initial conditions conditional on the 1st, 50th, and 99th
percentiles of the endogenous spread (Figure 5C). Our results show that the initial conditions have a

modest effect on the propagation of the shocks.

6. Figure 6. We show in Figure 6A the responses of output, the spread, and the nominal interest rate
to a +1 standard deviation of the shocks (TFP shock, TFP uncertainty, micro-uncertainty, monetary
policy shock, monetary policy uncertainty) conditional on high spreads, under alternative specifica-
tions: the baseline compared against a model with high relative risk aversion or low intertemporal
elasticity of substitution (x = 7), with no monitoring costs and no financial accelerator (1 = 0), and
with no nominal rigidities (¢, = 0). There findings indicate that the monitoring costs and the risk
aversion parameter play a significant role in the propagation of shocks and their effectiveness through
the financial accelerator channel (nominal rates and spreads). In turn, nominal rigidities appear partic-
ularly important for the propagation of monetary policy and even monetary policy uncertainty shocks.
Figure 6B conducts the same exercise plotting the responses of output, the spread, and the nominal
interest rate to a +1 standard deviation of the shocks (TFP shock, TFP uncertainty, micro-uncertainty,
monetary policy shock, monetary policy uncertainty) conditional on high and low spreads, under the
baseline specification and an alternative specification without micro-uncertainty stochastic volatility.
This exercise comes to show that the addition of micro-uncertainty shocks adds another source of
fluctuations to the model, but has otherwise only modest effects on the propagation path for the rest
of the shocks (except perhaps on the effects it has on the spread). We interpret this as showing that
augmenting the model with micro-uncertainty does not alter all that much what we know about the
propagation of other shocks. Figure 6C considers another experiment where we report the responses
of output, the spread, and the nominal interest rate to a +1 standard deviation of the shocks (TFP
shock, TFP uncertainty, micro-uncertainty, monetary policy shock, monetary policy uncertainty) con-
ditional on high spreads, and high uncertainty (micro-uncertainty, TFP uncertainty, and monetary
policy uncertainty) individually. Our findings most notably reveal that periods of high macro (TFP)
uncertainty lead to significantly larger effects of TFP level shocks on real economic activity than in any
other circumstance. Similarly, periods of high monetary policy uncertainty lead to significantly larger
effects of the monetary policy shock on real economic activity (almost twice as large on impact) than
in any other circumstance. Figure 6D provides another illustrative experiment where the responses of
output, the spread, and the nominal interest rate to a +1 standard deviation of the shocks (TFP shock,
TFP uncertainty, micro-uncertainty, monetary policy shock, monetary policy uncertainty) conditional
on all three stochastic volatility shocks (micro-uncertainty, TFP, and monetary policy) being either

high (> 80th percentile) or low (< 20th percentile) simultaneously. Our findings show that periods of
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high uncertainty across all stochastic volatility shocks and low uncertainty have only modest effects on
the propagation of uncertainty shocks themselves. However, our evidence suggests that the response of
real economic activity to TFP level shocks is markedly stronger in periods of high overall uncertainty
and, similarly, that the response to monetary policy shocks can be more than twice as large during

periods of high overall uncertainty.

. Figure 7. We show in Figure 7 the responses of output, the spread, the nominal interest rate,
and other macro-finance variables (investment, Tobin’s Q, inflation, consumption, hours worked, and
leverage) to a +1 standard deviation of each one of the shocks (TFP shock, TFP uncertainty, micro-
uncertainty, monetary policy shock, monetary policy uncertainty) conditional on mid-values of the
endogenous spreads, under alternative specifications: the baseline compared against a model with
high relative risk aversion or low intertemporal elasticity of substitution (xy = 7), with no monitoring
costs and no financial accelerator (¢ = 0), and with no nominal rigidities (¢, = 0). Our findings
show that reducing nominal rigidities tends to mitigate the real effects of TFP shocks while high
risk-aversion amplifies those effects for mid-values of the endogenous spread (Figure 7A), while the
responses to TFP uncertainty are rather modest across model specifications (Figure 7B). We also show
that micro-uncertainty and its propagation depends crucially on the presence of a financial accelerator
channel (Figure 7C)—hence, the interaction between credit frictions and micro-uncertainty is a crucial
aspect of our model. Not surprisingly, the propagation of monetary policy shocks depends critically
on the presence of nominal rigidities in the model (Figure 7D) and similarly for the propagation of
monetary policy uncertainty (Figure 7E). The propagation of monetary policy uncertainty and its real
effects appear to become amplified whenever the risk aversion is high—interestingly, the monetary
policy uncertainty shock appears to have some effect even when there are no nominal rigidities mainly

because it still influences the endogenous spreads implied by the nominal financial contract.

. Figure 8. We show in Figure 8 the responses of output, the spread, the nominal interest rate, and other
macro-finance variables (investment, Tobin’s Q, inflation, consumption, hours worked, and leverage)
to a +1 standard deviation of each one of the shocks (TFP shock, TFP uncertainty, micro-uncertainty,
monetary policy shock, monetary policy uncertainty) conditional on high-values of the endogenous
spreads, under alternative specifications: the baseline compared against a model with high relative
risk aversion or low intertemporal elasticity of substitution (x = 7), with no monitoring costs and
no financial accelerator (¢ = 0), and with no nominal rigidities (¢, = 0). Our findings show that
reducing nominal rigidities tends to mitigate the real effects of TFP shocks while high risk-aversion
amplifies those effects for mid-values of the endogenous spread (Figure 8A), while the responses to
TFP uncertainty are rather modest across model specifications (Figure 8B). We also show that micro-
uncertainty and its propagation depends crucially on the presence of a financial accelerator channel
(Figure 8C)—hence, the interaction between credit frictions and micro-uncertainty is a crucial aspect
of our model. Not surprisingly, the propagation of monetary policy shocks depends critically on the
presence of nominal rigidities in the model (Figure 8D) and similarly for the propagation of monetary
policy uncertainty (Figure 7E). Qualitatively these results are the same as those reported in Figure
7 conditional on mid-values of the endogenous spread, except that we observe high spreads tend to
attenuate the effect of TFP level shocks and amplify somewhat the effect of the monetary policy shock

itself. In turn, the effect of high spreads on the propagation of all forms of uncertainty is rather modest.
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9.

10.

11.

12.

Figure 9. We show in Figure 9 the responses of output, the spread, the nominal interest rate, and other
macro-finance variables (investment, Tobin’s Q, inflation, consumption, hours worked, and leverage)
to a +1 standard deviation of each one of the shocks (TFP shock, TFP uncertainty, micro-uncertainty,
monetary policy shock, monetary policy uncertainty) conditional on high-values of the endogenous
spread, high-values of the nominal interest rate, and high-values of the leverage ratio. Figure 9A
suggests that the response of the spread to TFP level shocks might be somewhat muted with high
interest rates, while Figure 9B indicates that there are only small differences in the transmission
of TFP uncertainty shocks. Figure 9C shows that the propagation of micro-uncertainty shocks is
somewhat more muted with high leverage and particularly with high interest rates. Figure 9D suggests
that monetary policy shocks are amplified with high interest rates and dampened somewhat with
high leverage, while Figure 9E indicates that the differences in the transmission of monetary policy

uncertainty are rather modest.

Figure 10. We show in Figure 10 the responses of output, the spread, the nominal interest rate,
and other macro-finance variables (investment, Tobin’s Q, inflation, consumption, hours worked, and
leverage) to a +1 standard deviation of each one of the shocks (TFP shock, TFP uncertainty, micro-
uncertainty, monetary policy shock, monetary policy uncertainty) conditional on high-values of the
endogenous spread, high-values of TFP uncertainty, high-values of interest rate uncertainty, and high-
values of the micro-uncertainty. Figure 10A suggests that the real effects of a TFP level shock might
be amplified with high TFP uncertainty, while Figure 10B indicates that there are only small dif-
ferences in the transmission of TFP uncertainty shocks. Figure 10C shows that the propagation of
micro-uncertainty shocks through the endogenous spread is somewhat more muted with high interest
rate uncertainty and high TFP uncertainty. Figure 10D suggests that monetary policy shocks are sig-
nificantly amplified with high interest rate uncertainty, while Figure 10E indicates that the differences
in the transmission of monetary policy uncertainty are rather modest with small amplification effects

arising from high interest rate uncertainty.

Figure 11. We show in Figure 11 the probability density of the volatility of TFP, the TFP level,
the micro-uncertainty volatility, the leverage ratio, the monetary policy rule volatility, and the interest
rate, all of them conditional on the endogenous spread: unconditional, conditional on 5th percentile of
the endogenous spread, and conditional on the 95th percentile of the spread. The density is smoothed
by the Epanechnikov kernel. Our findings illustrate the differences between the different percentiles
of the conditioning variable (the spread)—most notably, we show that the distribution of the micro-
uncertainty volatility is shifted to the left and that of the nominal interest rate is shifted to the right

whenever the endogenous spread is conditioned at the 5th percentile.

Figure 12. We show in Figure 12 the joint distribution of the endogenous spread with a number of
relevant macro-finance variables. Figure 12A illustrates the joint distribution between the endogenous
spread and TFP, Figure 12B the joint distribution between the endogenous spread and the nominal
interest rate, Figure 12C the joint distribution of the endogenous spread and TFP stochastic volatility
(TFP uncertainty), Figure 12D the joint distribution of the endogenous spread and the interest rate
stochastic volatility (monetary policy uncertainty), Figure 12E the joint distribution of the endoge-

nous spread and micro-uncertainty, Figure 12F the joint distribution of the endogenous spread and
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13.

capital, Figure 12G the joint distribution of the endogenous spread and real net worth, and Figure
12H the joint distribution of the endogenous spread and output. We observe that there is a noticeable
nonlinearity in the relationship between the endogenous spread and the nominal interest rate as well
as in the relationship between the endogenous spread and micro-uncertainty. Moreover, we also find

nonlinearities in the relationship between the endogenous spread and both capital and output.

Figure 13. We show in Figure 13 the joint distribution of the endogenous spread with a number
of relevant macro-finance variables whenever the households’ inverse of the intertemporal elasticity of
substitution is increased to x = 7. Figure 13A illustrates the joint distribution between the endogenous
spread and TFP, Figure 13B the joint distribution between the endogenous spread and the nominal
interest rate, Figure 13C the joint distribution of the endogenous spread and TFP stochastic volatility
(TFP uncertainty), Figure 13D the joint distribution of the endogenous spread and the interest rate
stochastic volatility (monetary policy uncertainty), Figure 13E the joint distribution of the endogenous
spread and micro-uncertainty, Figure 13F the joint distribution of the endogenous spread and capital,
Figure 13G the joint distribution of the endogenous spread and real net worth, and Figure 13H the
joint distribution of the endogenous spread and output. We note that the increase in the parameter x
(which also determines the risk aversion) produces similar results to those reported under the baseline
in Figure 12. It’s worth noticing that higher values of y lead to a higher frequency of zero-lower bound
occurrences whereby the interest rate may fall near or below zero. Moreover, we also see that low

interest rate episodes tend to be more strongly associated with periods of high endogenous spreads.
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Figure 1A. Generalized Impulse Response Functions: Response to a +1 Shock, Conditional
on High Uncertainty, Individually (Non-Normalized).
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Figure 1B. Generalized Impulse Response Functions: Response to a +1 Shock, Conditional
on High Uncertainty, Individually (Normalized by Initial Size of the Underlying Shock).
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Figure 1C. Generalized Impulse Response Functions: Response to a +1 Shock, Conditional
on High Uncertainty, Individually (Normalized by Initial Size of the Underlying Shock)
whenever Default Costs Are Set to Zero (¢=0) in Order to Abstract from the Financial

Accelerator Mechanism in the Model.

Response of 400 * [n(Y;) Response of 400 * l'n.(E,.(R;_L/I,_L) Response of 400  In(1;)
1 0.02 0
0 0 -0.1
0 “ 10 20 0 5 0.5 1 0 = 10 20
2 x10 0 10 4 %10
-2 -2 0
0 10 20 0 10 20 0 10 20
0 0.04 0.02
2-0.1 0.02 0
-0.2 0 -0.02
0 10 20 0 10 20 0 10 20
0 f 0.02 0.5
&5 0.01 k
-10 0 0
0 4 10 20 0 » 10 20 @ 20
2 %10 5 %10 2 % 10
0 0 0

0 10 20 0 10 20 20

| w= High micro uncertainty High TFP uncertainty High monetary uncertainty

25



Figure 2A. Generalized Impulse Response Functions: Response to a +1/-1 Standard
Deviation TFP Shock, Conditional on High, Mid, Low Values of the Endogenous Spread.
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Figure 2B. Generalized Impulse Response Functions: Response to a +1/-1 Standard
Deviation TFP Stochastic Volatility Shock, Conditional on High, Mid, Low Values of the

Endogenous Spread.
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Figure 2C. Generalized Impulse Response Functions: Response to a +1/-1 Standard
Deviation Micro-Uncertainty Shock, Conditional on High, Mid, Low Values of the
Endogenous Spread.
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Figure 2D. Generalized Impulse Response Functions: Response to a +1/-1 Standard
Deviation Interest Rate Rule Shock, Conditional on High, Mid, Low Values of the
Endogenous Spread.
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Figure 2E. Generalized Impulse Response Functions: Response to a +1/-1 Standard
Deviation Interest Rate Rule Stochastic Volatility Shock, Conditional on High, Mid, Low
Values of the Endogenous Spread.
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Figure 3A. Generalized Impulse Response Functions: Response to a +2/-2 Standard
Deviation TFP Shock, Conditional on High, Mid, Low Values of the Endogenous Spread.
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Figure 3B. Generalized Impulse Response Functions: Response to a +2/-2 Standard
Deviation TFP Stochastic Volatility Shock, Conditional on High, Mid, Low Values of the
Endogenous Spread.
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Figure 3C. Generalized Impulse Response Functions: Response to a +2/-2 Standard
Deviation Micro-Uncertainty Shock, Conditional on High, Mid, Low Values of the
Endogenous Spread.
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Figure 3D. Generalized Impulse Response Functions: Response to a +2/-2 Standard
Deviation Interest Rate Rule Shock, Conditional on High, Mid, Low Values of the
Endogenous Spread.
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Figure 3E. Generalized Impulse Response Functions: Response to a +2/-2 Standard
Deviation Interest Rate Rule Stochastic Volatility Shock, Conditional on High, Mid, Low
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Figure 4A. Generalized Impulse Response Functions: Response to a +1 Standard Deviation
TFP Shock, Conditional on the Level of Micro-Uncertainty.
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Figure 4B. Generalized Impulse Response Functions: Response to a +1 Standard Deviation
TFP Stochastic Volatility Shock, Conditional on the Level of Micro-Uncertainty.
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Figure 4C. Generalized Impulse Response Functions: Response to a +1 Standard Deviation
Micro-Uncertainty Shock, Conditional on the Level of Micro-Uncertainty.

Response of 400 = [n(Y;)

10
Response of 400 = In(I1;)

20

Ol%vspunse of 400 = In(E,(Ry, /1))

Response of 400 = In({;)

ZL__

10 20

Response of 400 * In(X;)

-0.2
0 10 20 0 10 20 0 10 20
0 12{(!':;[)0115(! of 100 * ®(@w|p ¢, 00 ) . 51?(‘!-‘.])011:-;[‘. of 100 * N/ /Q: K,y Response of 400 * In(N])
. -0.5 -5
0 10 20 0 10 20 0 10 20
| m— +1 sd - high === +1 sd - low == +1 sd - medium -1 sd - high -1 sd - low -1 sd - medium

38



Figure 4D. Generalized Impulse Response Functions: Response to a +1 Standard Deviation
Interest Rate Rule Shock, Conditional on the Level of Micro-Uncertainty.
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Figure 4E. Generalized Impulse Response Functions: Response to a 41 Standard Deviation
Interest Rate Rule Stochastic Volatility Shock, Conditional on the Level of
Micro-Uncertainty.
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Figure 5A. Generalized Impulse Response Functions: Response to a +1 Shock, Initial
Condition: Unconditional Mean.
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Figure 5B. Generalized Impulse Response Functions: Response to a +1 Shock, Initial
Condition: Conditional on 5th and 95th Percentiles on Spread.
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Figure 5C. Generalized Impulse Response Functions: Response to a +1 Shock, Initial
Condition: Conditional on 1st and 99th Percentiles on Spread.
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Figure 6A. Generalized Impulse Response Functions: Response to a +1 Shock, For
Alternative Model Specifications, Conditional on High Spreads.
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Figure 6B. Generalized Impulse Response Functions: Response to a +1 Shock, Conditional
on High and Low Spreads, With and Without Micro-Uncertainty.
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Figure 6C. Generalized Impulse Response Functions: Response to a +1 Shock, Conditional
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Figure 6D. Generalized Impulse Response Functions: Response to a +1 Shock, When All
Three Stochastic Volatility Shocks are High or Low Simultaneously (>80th Percentile or
<20th Percentile).
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Figure 7TA. Generalized Impulse Response Functions: Response to a +1 Standard Deviation
TFP Shock, Various Model Specifications, Conditional on Mid-Values of the Endogenous
Spread.
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Figure 7B. Generalized Impulse Response Functions: Response to a +1 Standard Deviation
TFP Stochastic VolatilityShock, Various Model Specifications, Conditional on Mid-Values of
the Endogenous Spread.
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Figure 7C. Generalized Impulse Response Functions: Response to a +1 Standard Deviation
Micro-Uncertainty Shock, Various Model Specifications, Conditional on Mid-Values of the
Endogenous Spread.
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Figure 7D. Generalized Impulse Response Functions: Response to a +1 Standard Deviation
Interest Rate Rule Shock, Various Model Specifications, Conditional on Mid-Values of the
Endogenous Spread.
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Figure TE. Generalized Impulse Response Functions: Response to a 41 Standard Deviation
Interest Rate Stochastic Volatility Shock, Various Model Specifications, Conditional on
Mid-Values of the Endogenous Spread.
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Figure 8 A. Generalized Impulse Response Functions: Response to a +1 Standard Deviation
TFP Shock, Various Model Specifications, Conditional on High-Values of the Endogenous
Spread.
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Figure 8B. Generalized Impulse Response Functions: Response to a +1 Standard Deviation
TFP Stochastic VolatilityShock, Various Model Specifications, Conditional on Hih-Values of
the Endogenous Spread.
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Figure 8C. Generalized Impulse Response Functions: Response to a +1 Standard Deviation
Micro-Uncertainty Shock, Various Model Specifications, Conditional on High-Values of the
Endogenous Spread.

Response of 400 = In(Y;) Response of 400 * In(E£,(R¢, | /1;)) i Response of 400 * In(1;)
0.6 = 4
0 0.4 0
-1 ’ 0.2 \ 0.2
-2 0 -0.4
0 10 20 0 10 20 0 10 20
Response of 400 * In(I1;) Response of 400 * In(Q);) % Response of 400 = In(X;)
2
0 0
-5
-05 -2
1 -4 -10
0 10 20 0 10 20 0 10 20
!ﬁ.esponso of 100 * ®(w;|p, 1,0 4) 0 41{[351)01130 of 100 N/ /Q Ky, Response of 400 = In(N])
; 5
0.2
0.5 0
0P
) \. e =
0 10 20 0 10 20 0 10 20
‘ Baseline x=7 =0 4”p=0

95



Figure 8D. Generalized Impulse Response Functions: Response to a +1 Standard Deviation
Interest Rate Rule Shock, Various Model Specifications, Conditional on High-Values of the
Endogenous Spread.
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Figure 8E. Generalized Impulse Response Functions: Response to a 41 Standard Deviation
Interest Rate Stochastic Volatility Shock, Various Model Specifications, Conditional on
High-Values of the Endogenous Spread.
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Figure 9A. Generalized Impulse Response Functions: Response to a +1 Standard Deviation
TFP Shock, Conditional on High-Values of Spread, Interest Rate, and Leverage Ratio.
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Figure 9B. Generalized Impulse Response Functions: Response to a +1 Standard Deviation
TFP Stochastic Volatility Shock, Conditional on High-Values of Spread, Interest Rate, and
Leverage Ratio.

Response of 400 = [n(Y;) Ruspolls}f of 400 = In(E,(R¢_, /1)) RUngUllHU of 400 * In(;)
- 10
0.02 o ;10 30
0.01 -1 2
0 -2 1
-0.01 -3 0O 0 5
0 10 20 0 10 20
Response of 400 * In(X;) Rcsg()nsc of 400 % In(Q,) Rus%onsu of 400 * In(I1;)
0.01 5 %10 5 =10
0 0
0
-0.01 -5
-0.02 -10 -5
0 10 20 0 19 20 0 10 20
RUE-}._\)I){)IISU of 400 * In(C}) Response of 400 * In(H,) R.uspozlilsu of 100 * N /Q K,
0 %10 0.04 8 %10
-2 0.02 6
-4 0 4
-6 -0.02 2
0 10 20 0 10 20 0 10 20

= high spread === high interest rate === high leverage

59



Figure 9C. Generalized Impulse Response Functions: Response to a +1 Standard Deviation
Micro-Uncertainty Shock, Conditional on High-Values of Spread, Interest Rate, and
Leverage Ratio.
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Figure 9D. Generalized Impulse Response Functions: Response to a +1 Standard Deviation
Interest Rate Rule Shock, Conditional on High-Values of Spread, Interest Rate, and
Leverage Ratio.
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Figure 9E. Generalized Impulse Response Functions: Response to a 41 Standard Deviation
Interest Rate Stochastic Volatility Shock, Conditional on High-Values of Spread, Interest
Rate, and Leverage Ratio.
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Figure 10A. Generalized Impulse Response Functions: Response to a +1 Standard Deviation
TFP Shock, Conditional on High-Values of Spread, TFP Stochastic Volatility, Interest Rate
Stochastic Volatility, and Micro-Uncertainty.
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Figure 10B. Generalized Impulse Response Functions: Response to a +1 Standard Deviation
TFP Stochastic Volatility Shock, Conditional on High-Values of Spread, TFP Stochastic
Volatility, Interest Rate Stochastic Volatility, and Micro-Uncertainty.
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Figure 10C. Generalized Impulse Response Functions: Response to a +1 Standard Deviation
Micro-Uncertainty Shock, Conditional on High-Values of Spread, TFP Stochastic Volatility,
Interest Rate Stochastic Volatility, and Micro-Uncertainty.
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Figure 10D. Generalized Impulse Response Functions: Response to a +1 Standard Deviation
Interest Rate Rule Shock, Conditional on High-Values of Spread, TFP Stochastic Volatility,
Interest Rate Stochastic Volatility, and Micro-Uncertainty.
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Figure 10E. Generalized Impulse Response Functions: Response to a +1 Standard Deviation
Interest Rate Stochastic Volatility Shock, Conditional on High-Values of Spread, TFP
Stochastic Volatility, Interest Rate Stochastic Volatility, and Micro-Uncertainty.
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Figure 11. Probability Density Conditional on the Endogenous Spread: Unconditional,
Conditional (5th and 95th percentile of Conditioning Variable). Density Smoothed by
Epanechnikov Kernel.
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Figure 12A. Joint Distribution of the Endogenous Spread and TFP.
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Figure 12B. Joint Distribution of the Endogenous Spread and Interest Rate.

Joint distribution of 400 = In(E,(Ry, /1)) and 400 = In(1;)

400

200

10 7 5
5 3 4
400 * In(1,) 0 1 400 * In(Ey(Re /1))

N W U

—_

400+ In(E, (R /1)

0 2 4 6 8 10 12
400 * In(1})

400 = In(E( R /1))

400 * In(1;)

70



Figure 12C. Joint Distribution of the Endogenous Spread and TFP Stochastic Volatility.
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Figure 12D. Joint Distribution of the Endogenous Spread and Interest Rate Stochastic
Volatility.
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Figure 12E. Joint Distribution of the Endogenous Spread and Micro-Uncertainty.
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Figure 12F. Joint Distribution of the Endogenous Spread and Capital.
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Figure 12G. Joint Distribution of the Endogenous Spread and Real Net Worth.
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Figure 12H. Joint Distribution of the Endogenous Spread and Output.
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Figure 13A. Joint Distribution of the Endogenous Spread and TFP when Households’
Inverse of the Intertemporal Elasticity of Substitution is Increased to x=7.
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Figure 13B. Joint Distribution of the Endogenous Spread and Interest Rate when
Households’ Inverse of the Intertemporal Elasticity of Substitution is Increased to x=7.
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Figure 13C. Joint Distribution of the Endogenous Spread and TFP Stochastic Volatility
when Households’ Inverse of the Intertemporal Elasticity of Substitution is Increased to x=7.
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Figure 13D. Joint Distribution of the Endogenous Spread and Interest Rate Stochastic
Volatility when Households’ Inverse of the Intertemporal Elasticity of Substitution is
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Figure 13E. Joint Distribution of the Endogenous Spread and Micro-Uncertainty when
Households’ Inverse of the Intertemporal Elasticity of Substitution is Increased to x=7.
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Figure 13F. Joint Distribution of the Endogenous Spread and Capital when Households’
Inverse of the Intertemporal Elasticity of Substitution is Increased to x=7.
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Figure 13G. Joint Distribution of the Endogenous Spread and Real Net Worth when
Households’ Inverse of the Intertemporal Elasticity of Substitution is Increased to x=7.
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Figure 13H. Joint Distribution of the Endogenous Spread and Output when Households
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