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Abstract

We document the forecasting gains achieved by incorporating measures of signed, finite
and infinite jumps in forecasting the volatility of equity prices, using high-frequency data
from 2000 to 2016. We consider the SPY and 20 stocks that vary by sector, volume and
degree of jump activity. We use extended HAR-RV models, and consider
different frequencies (5, 60 and 300 seconds), forecast horizons (1, 5, 22 and 66 days)
and the use of standard and robust-to-noise volatility and threshold bipower variation
measures. Incorporating signed finite and infinite jumps generates significantly better
real-time forecasts than the HAR-RV model, although no single extended model
dominates. In general, standard volatility measures at the 300-second frequency
generate the smallest real-time mean squared forecast errors. Finally, the forecasts from
simple model averages generally outperform forecasts from the single best model.
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1 Introduction

Modeling and forecasting asset return volatility is central to asset pricing, portfolio op-
timization and risk management. As volatility is an unobservable variable, its estimation
is a challenge for both researchers and practitioners. Popular approaches to modeling and
forecasting volatility include the (G)ARCH family of models proposed by Engle (1982)
and Bollerslev (1986), as well as stochastic volatility (SV) models originally proposed by
Taylor (1986). However, these models fail to capture certain stylized facts, including the
long-memory aspect of volatility.

The introduction and use of high-frequency data provided a framework for directly
measuring and capturing the main stylized facts of volatility. This enables us to calculate
a non-parametric measure of volatility, realized volatility or RV, given as the sum of the
intra-day squared returns. Early adoption of RV in modeling and forecasting was featured
in the work of Andersen and Bollerslev (1998), Andersen, Bollerslev, Diebold, and Labys
(2001, 2003); Andersen, Bollerslev, and Lange (1999); Andersen, Bollerslev, and Meddahi
(2005), O. E. Barndorff-Nielsen and Shephard (2002a, 2002b), and Meddahi (2002) inter
alios.

In these early studies, the implicit or explicit assumption was that the underlying
asset return process was best described by a continuous, diffusion process which can-
not generate the fat tails observed in the distribution of returns. For that reason, the
literature has advocated the use of jump diffusion processes to explain the behavior of
stocks returns (see Chernov, Gallant, Ghysels, & Tauchen, 2003; Christoffersen, Jacobs,
Ornthanalai, & Wang, 2008; Duan, Ritchken, & Sun, 2006; Eraker, Johannes, & Polson,
2003, among others). Recent developments using threshold and multi-power variation
estimators dissect the components of realized variance into its continuous and jump parts
(see, for instance, Ait-Sahalia, 2004; O. E. Barndorff-Nielsen & Shephard, 2002a, 2004;
Corsi, Pirino, & Reno, 2010; Mancini, 2001, 2009). These estimators were further uti-
lized to build daily and intra-daily jump tests that are capable of detecting significant
jumps (see Andersen, Bollerslev, & Dobrev, 2007; Huang & Tauchen, 2005). Moreover,

the work of Ait-Sahalia and Jacod (2012) provide a unified framework that allows the



finer characterizations of jumps into finite and infinite activity components.

As a consequence of these developments, the literature has explored the use of jumps
to forecast RV. These studies have generally employed a Heterogeneous Autoregressive
(HAR) framework, as proposed by Miiller et al. (1997), and subsequently popularized
by Corsi (2009) as the HAR-RV. For instance, Andersen, Bollerslev, and Diebold (2007)
introduce the HAR-RV-J and HAR-RV-CJ specifications that extend the HAR-RV model
using a daily measure of the jump component, and lagged values of the continuous
and discontinuous components. Whilst jumps based on the bipower variation (BPV)
of O. E. Barndorff-Nielsen and Shephard (2004) improve the out-of-sample performance,
the threshold bipower variation (TBPV) of Corsi et al. (2010) generates the largest out-
of-sample forecasting gains. The reason is that TBPV is a more robust estimator of the
integrated variance than the BPV, which tends to be upwardly biased.

Further developments were subsequently made using signed jumps. O. Barndorff-
Nielsen, Kinnebrock, and Shephard (2010) propose the estimation of realized semivari-
ances, which are constructed as the sum of the squares of the positive and negative returns
in a fixed interval of time. The difference between the two semivariances is the so-called
signed jumps, which are only present when the distribution of returns is asymmetric.
Several studies have considered the use of jumps and signed jumps to forecast realized
volatility. (See, for instance, Andersen, Bollerslev, & Diebold, 2007; Busch, Christensen,
& Nielsen, 2011; Corsi et al., 2010; Duong & Swanson, 2015; Forsberg & Ghysels, 2007;
Ghysels & Sohn, 2009; Giot & Laurent, 2007; Martens, Van Dijk, & De Pooter, 2009;
Patton & Sheppard, 2015; Prokopczuk, Symeonidis, & Wese Simen, 2016; Sévi, 2014, and
references therein. ).

Whether we consider jumps or signed jumps, the literature generally provides mixed
evidence regarding their value added in forecasting. There are two strands here. The first
reports gains in forecasting from incorporating jumps. Andersen, Bollerslev, and Diebold
(2007) find that separating the jump component from volatility improves out-of-sample
volatility forecasts, and that jumps are closely related to macroeconomic news. Corsi et al.

(2010) show that the use of a threshold bipower estimator to obtain the jump component



leads to greater out-of-sample performance. Patton and Sheppard (2015) argue that
volatility is strongly related to the volatility of past negative returns, and report that
negative jumps produce better out-of-sample performance. Duong and Swanson (2015)
study the importance of large and small jumps using higher-order power variations, and
find that small jumps are more important for forecasting volatility than large jumps.

In contrast to these positive findings, many researchers report that jumps do not
significantly improve volatility forecasts. For instance, Forsberg and Ghysels (2007),
Giot and Laurent (2007), Martens et al. (2009), Busch et al. (2011), Sévi (2014), and
Prokopczuk et al. (2016) consider the use of both total and signed jumps to forecast
future volatility. Their results suggest that the inclusion of jumps produces a better
fitting in-sample model, but does not generate any significant out-of-sample forecasting
gains.

This paper contributes to the literature in a number of ways. First, we address the
general question of whether incorporating information on jumps significantly improves
forecasts of the volatility of stock prices. We then study the gains in forecasting per-
formance obtained by dissecting jumps by activity (finite/infinite) and by sign (posi-
tive/negative). Finite jumps are generally linked to macroeconomic announcements and
so almost certainly play an important role, whereas infinite jumps may or may not be
relevant to financial decision making and asset allocation. To the best of our knowledge
only Duong and Swanson (2015) have attempted to use jump components in the form of
large and small jumps using higher-order power variations. Here, we have two reserva-
tions. First, as shown by Ghysels and Sohn (2009), this class of models works best with
volatility measures which are not based on squared returns, even though these measures
are ones researchers and practitioners care about the most. Second, a drawback in disen-
tangling jumps using higher-order power variation is the choice of the power value. High

power values can generate inaccurate estimates.’

LAit-Sahalia and Jacod (2014) show that, when using power values (p) below(above) 2, the limit
of the power variation converges to the continuous(jump) component, while for p = 2, we obtain the
RV estimator. In the absence of a clear choice for p, the user must arbitrarily select a value of p > 2.
For values of p close to 2, say p = 2.5, the jump component will retain some Brownian increments and
infinite jumps. Finite jumps are isolated when the value of p is sufficiently large, say p > 4. However,
this method exaggerates big jumps and when they are used to predict volatility using linear regression,
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We isolate and dissect jumps by their level of activity and sign using recent theoret-
ical advances in the areas of jump testing and the characterization of continuous time
processes with jumps. We use the so-called ABD test in Andersen, Bollerslev, and Do-
brev (2007), to test for jumps in the asset returns process. The idea underlying this
method is to normalize the intra-day returns and then evaluate the normalized returns
using the Sidak approach. A day is further classified as a jump day if at least one of
the intra-day returns exceeds the Sidak based threshold.>* Additionally, we use the SFA
test in Alt-Sahalia and Jacod (2011), to determine whether a day is driven mainly by
finite or infinite activity jumps.* The SFA test has a null of finite activity. Hence, when
the null is rejected, we do not know whether the rejection is driven by the presence of
finite jumps and/or Brownian motion increments. To address this issue, we combine the
ABD and SFA tests, thereby identifying days with infinite jumps (when both tests are
rejected) and days with finite jumps (when only the ABD test is rejected). To obtain
signed jumps, we intersect the ABD and SFA test with an indicator function for the sign
of the jumps.

It is well established in the literature that the characterization of jumps varies by sam-
pling frequency. At higher frequencies, say 5 seconds, infinite jumps are more abundant
than at lower frequencies, say 300 seconds. However, the presence of market micro-
structure at higher frequencies may cast doubt on this characterization since we do not
observe the true price. Instead, we observe a contaminated price, so making the re-
alized volatility a very noisy estimator (see Bandi & Russell, 2006; Zhang, Mykland,
& Ait-Sahalia, 2005). In order to correctly capture the characterization of jumps at
higher frequencies, we use the work of Jacod, Li, Mykland, Podolskij, and Vetter (2009)

and Christensen, Oomen, and Podolskij (2014) to estimate noise-robust estimators of

the future volatility is either over or under-estimated depending on the sign of the coefficient.

2For other examples of work in this area see Ait-Sahalia and Jacod (2009b), O. E. Barndorff-Nielsen
and Shephard (2006), Jiang and Oomen (2008), Huang and Tauchen (2005). For a survey of jump tests,
see Dumitru and Urga (2012) and the references therein.

3We choose the ABD test after testing the power of several jump tests under an alpha stable DGP
that allows for infinite jumps (alpha-stable process).

1Using individual stocks, Ait-Sahalia and Jacod (2012, 2014) show that the degree of jump activity
at higher-frequencies is in the range of [1.4,1.6], which implies the existence of both finite and infinite
jumps activity.



quadratic and integrated variation. We introduce two methodological innovations. First,
we modify the ABD test to obtain a version that is noise-robust. Second, we use a
two-time scale realized semivariance, which is a modification of the work of Zhang et al.
(2005).

Our application uses high-frequency, TickData data from 2000 to 2016. We forecast
the volatility of the SPY and 20 stocks, which vary by sector and volume, using extended
HAR-RV models. We consider different frequencies (5, 60, and 300 seconds), forecast
horizons (1, 5, 22, and 66 days) and the use of noise-robust measures. We find evidence
that jumps characterize the structure of both SPY and the 20 individual stocks under
examination.

Our results suggest improvements in performance, in both in- and out-of-sample, when
jumps are used as additional predictors in the extended HAR-RV models. We focus on
the mean squared prediction error (MSPE) results from real time, pseudo out-of-sample
forecasts using rolling window regressions. The classification of jumps by activity shows
that infinite jumps are relatively more important at shorter horizons, whereas finite jumps
are superior at longer horizons. We find little difference in jump asymmetry. Incorporat-
ing signed finite and infinite jumps generates significantly better real-time forecasts than
the HAR-RV model, although no single extended model dominates.

The use of noise-robust estimators substantially improves the out-of-sample perfor-
mance of our extended HAR-RV models, especially at very high frequencies. The gains
are greater for the individual stocks than for SPY. However, the greatest gains in real-time
forecast performance are generally found using returns sampled at 300 seconds intervals,
rather than at 5 or 60 second intervals. At the 300 second frequency, the forecast-
ing performance of standard and noise-robust measures is similar. In line with Ghysels
and Sinko (2011), robust-to-noise measures only improve the forecasting performance at
higher frequencies when market micro-structure noise is important.

Finally, since no single model dominates in terms of forecasting performance, we show
that simple model averaging generally results in economically significant out-of-sample

forecasting performance. These gains are documented using both the SPY and individual



stocks across horizons. The gains are greatest using returns sampled every 300 seconds.
We assess the predictive accuracy of the model averaging using the pair-wise DM test
of Diebold and Mariano (2002). The results show that the model averaging produces
significantly smaller MSPEs, even at long horizons of 66 days / three months.

The remainder of the paper is as follows: Section 2 introduces the theoretical back-
ground. Section 3 describes the estimation of jumps and their decomposition. Robust-
to-noise volatility measures are also discussed. Section 4 highlights the forecasting frame-
work, and sets out the forecasting models and forecast evaluation criteria. The data used
in this study are described in Section 5, where the incidence of various types of jumps
are detailed. The real-time forecasting results are discussed in Section 6, where the gains
from adding the different types of jumps to extended HAR-RV models are documented. A
range of model averaging results are presented in Section 7. Finally, Section 8 summarizes

the paper and presents out conclusions.

2 Theoretical Background

Let X be an It6-semimartingale defined on some filtered probability space (€2, F, (Ft)e>0, P),

with the following representation
t t
X, =Xy +/ asds —I—/ o dWs+ Jy, te [0,T)] (1)
0 0

where a is a locally bounded and predictable drift term, o is the spot volatility, being
both adapted and cadlag. In the current context, X; is the log of the price of an equity or
an equity index. Additionally, W is a standard Brownian motion and J; is a pure jump
process given by JI" + JI, where JI has finite activity and J! has infinite activity and is

a Lévy process.

i t /|  enldr,ds) = fjv 2)
Jl = /Ot/gcgex(u(dx, ds) — v(dzr)ds), (3)



where p is a Poisson random measure with compensator v, and € > 0 is an arbitrary
number. N, is a Poisson process with constant intensity A, jumping at times denoted
by (71)i=1,..n,, and where each 7; denotes the size of the jump occurring at 7. All
are i.i.d. and independent from N,;. For more details on [to-semi-martingale processes,
see Alt-Sahalia and Jacod (2014) and the references therein.

Since volatility is a latent variable, realized measures are often employed to give
consistent estimates of the quadratic variation (QV) of the process on a fixed interval
[0, T'], using high-frequency data. The quadratic variation of the price process is defined

as

QV, = /0 olds 4+ ) (AX) (4)

N , 0<s<t
Integrated Variation (IV) v

Contribution from Jumps

where A, X = X, — X,_ # 0, if and only if X jumps at time s. ZO<3§t(A3X)2 is the
total number of discontinuities on the interval [0,¢]. A widely used realized measure is
the realized volatility (RV), which converges in probability to the quadratic variation as
A, — 0. The RV is defined as
[1/An]
RV;= )  (AIX)* 5 QV, (5)
i=1

where |-] is the integer part. The log-returns are defined as ATX = Xjn, — X(-1)a,, i =
1,2,...,1/A,(= M), where A, is the equally-spaced sampling interval. To separate the
integrated variation from the jump part, we use the threshold bipower variation (TBPV)
— which is a modified version of the so-called bipower variation of O. E. Barndorff-Nielsen
and Shephard (2004) — proposed by Corsi et al. (2010). The TBPV, which is robust to

jumps in both the stochastic limit and the asymptotic distribution, is defined as follows

[1/An]

¢
TBPV, = MIQM_l ; |AF XL anxy2<o 3 |AT X ar  x)2<0, 1) 5/0 aids, (6)
where 1y = E|Z| = /2/7, Z ~ N(0,1), M/(M — 1) is a small sample correction,



V= 0129\7“ c3 =3, and V, is an auxiliary estimator of 0.
O. Barndorff-Nielsen et al. (2010) introduce the realized semivariance (RSV) estima-
tor. The RSV captures the variation of only positive or negative returns and is defined

as

[1/An]

1 t
RSVE = 3 (AIX)arxso) & 5 / s+ ) (AX Laxsg  (7)
i=1 0 0<s<t
[1/An) e
RSV; = > (A!X)’Tiarx<o) & 5/ olds+ Y (AX,)*T{ax,<oy. (8)
i=1 0 0<s<t

O. Barndorff-Nielsen et al. (2010) show that the difference of the two semivariances is
equal to the signed jumps, obtained by subtracting the positive and negative semivari-

ances; i.e. the halves integrated variations canceled out.

3 Realized Jumps

3.1 Jump test statistics

To identify days with significant jumps, we employ the intra-day jump test proposed
by Andersen, Bollerslev, and Dobrev (2007), and select the highest intra-daily value of
the test within a day. If this value is greater than the cut-off, we classify the day as a

jump day. The jump test is defined as

ABDyi = [A! X [Lyapxpsart, ,vaTBPT} 9)

where @()1 is the inverse of the standard normal cumulative distribution function, § =
1 — (1 — a)? is the Sidak approach, and « is the significance level. The indicator for a
day with a significant jumps is estimated as follows

1, if max (M) > ¢!

K — VALTBPV; 1-8/2
=

0, otherwise.



3.2 Infinite/Finite Jump Test

To identify whether the days with significant jumps are mainly driven by infinite or
finite activity, we employ the SF A; test proposed by Ait-Sahalia and Jacod (2011). The

SF A; test statistic, with £ = 2, and p = 4 is defined as

B(p,vn, kAL » kP/2=1 i f X, has finitely many jumps on [0, ¢]
B<p7 Un,, An)z‘,

1

_ jp/21
(SEA, Akp >£>N(0,1), (12)
N

where B(p, v,, Ay) = ZZLL/IA"J AT X PLjarx<v,}, Un = 0AT, 0> 0, @ € (0,1/2). The

if X, has infinitely many jumps on [0, ¢]

SF A, test statistic uses truncated returns to eliminate large jumps. The variance of the

test is defined as

B(Qp, Un, An)t

V, = N(p, k 13
=N B, 0, A2 1)
1
N(p, k) = o (kp/2(1 + k)may + kP (k — 1)ym2 — 2kp/2_1mk’p)

B o 2P p+1

mi,p = E[|Z|P|1Z + Vk + 1U|?]

2p 147\ pp+1 1 -1
= k—1)P°T Foy | —3; - :
F(1/2)( ) < 2 ) 2’1( 27 2 "2 k-1

For more details and settings, see Ait-Sahalia and Jacod (2011). The null hypothesis
is that jumps are finite. The indicator C; = {SFAt < kP21 q);_la Vt} is used to
identify days with finite/infinite activity jumps. <I>(_.)1 is the standard normal quantile,

and « is the significance level.

3.3 Jumps Classification and Identification

The partitioning of variation due to continuous and jump components can be done

by taking the difference between measures of realized volatility and integrated variation.
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Andersen, Bollerslev, and Diebold (2007) use this approach to construct measures of the
variation of daily jump and continuous component. In this paper, we follow their method
to disentangle the jump from the diffusive component, where we extend this methodology
to construct measures for infinite and finite jumps. Following Andersen, Bollerslev, and

Diebold (2007) we disentangle the jump and continuous component as follows

C, =RV, K, +TBPV,-(1-K,)
R (14)
J, = max(RV, — TBPV,,0) - K,.

The intersection of the ABD and the SFA tests enable jumps to be classified by activity.
Infinite jumps are obtained when both tests reject their null of no jumps and finite activity

of jumps, respectively. When only the ABD test rejects its null, we classify this jump as

a finite jump. This new jump classification is outlined as follows

p

- T, if Ki=1nC =1
1J, = (15)

0, otherwise.

o~ Jt7 ZflCtzlﬂCt:O
FJ, = (16)

0, otherwise.

We classify a jump day as an infinite jump day when the ABD and SFA test respectively
reject the nulls of no jumps and finite activity jumps. In the same fashion, we classify a
day as finite activity jump day when the ABD test identifies a jump and the SFA test
fails to reject its null of finite activity jumps.

O. Barndorff-Nielsen et al. (2010) show that by taking the difference between the

positive and negative semivariance it is possible to obtain the so-called signed jumps,
AR, = RSV," — RSV, & (AX,)*Liax,>0; — (AX,)*1{ax,<0}- (17)

Using the intersection of the ABD and SF tests along with an indicator function high-

lighting the sign of the signed jumps provide a further classification of jump by activity
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and sign as follows

~

J;m = AR (AR >0nki=1} Ji = AR AR, <onk,=1}
—~ —
FJ, = AR {aRr>onk=1nci=0}, F'Jy = AR AR, <onk=1nCi=0} (18)

—~+ o~ —
IJ, = AR aRsorki=1nci=1}, 1J; = AR (AR, <onki=1nCi=1}-

3.4 Contribution of Jumps to Quadratic Variation

Following Ait-Sahalia and Jacod (2012), we estimate the relative contribution of jumps

to the quadratic variation (Q) as follows

~ ~

Jr

CV (%) = 50—Tj x 100, JV(%) = 5 100. (19)
T+ Jr T+ Jr

We can also obtain the relative contribution of the jumps dissected by activity and sign

to the total jump component as follows

GBIV = ?—;X%JV, %IV~ — ?ix%Jv
T T
%EJV = %x%ﬂ/, %ITV = {;Z—TX%JV
=T, o (20)
REJVT = %Tx%FJV, REJV- = %X%FJV
/\+ o~
RITVT = {}I—TTX%IJV, RITV— = {;—TTX%JJV,

where zp = S| =z, and z = {C., T, FJ,, 1T, g I ﬁ]j, F/’\Jt_, f]:, ﬁt_} Using
those measures, we may obtain a better understanding of the contribution of jumps to
quadratic variation, as well as the composition of these jumps in terms of level of activity
and sign. For instance, our prior is that infinite jumps are more important at higher
frequencies than at lower frequencies. In addition, using these measures, we can also see

if the level of activity and sign of the jumps matter in modeling and forecasting volatility.

3.5 Market Microstructure Noise

We now examine how the market micro-structure distorts the estimation of realized

volatility measures, and hence the identification of jumps. From Table 4, we know that
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the contribution of jumps varies across frequencies, and as A, — 0 the level of market
micro-structure noise increases. As a result, standard realized volatility measures tend to
be biased upward, distorting the jump test statistics.” Robust-to-noise volatility measures
should be used instead. We assume that the observed prices are contaminated by additive,

micro structure noise

)/;t = Xt + Ug, (21)

where X is the process described in equation (1), w; is an i.i.d. noise process with
Efw] = 0 and E[u?] = w?, and w; Il X;. Jacod et al. (2009) and Christensen et al. (2014)
propose pre-averaging the returns and using the following robust-to-noise estimators for

the realized variance and the bi power variation in this case.’

M—-L+1 w @2
Rv* AnX* 2 T1FAC 29
C T M- L+2L¢L Z T (22)
M—-2L+1 ~
M 1 Rrate
BPV* = ATXF||AL X — 23

where L = 0v/M + o(M~Y*%), M/(M — L +2), and M/(M — 2 + 2) are small sample
corrections,” while 1”912 ﬁc is a bias-correction to remove a leftover effect of noise that is
not eliminated by the pre-averaging estimator. The unknown noise variance w? can be
approximated using either the Bandi and Russell (2006) estimator W%, = 1 Zi‘il(AlN Y)?,
or Oomen (2006) estimator &3 = — 7 >y AV, VANY. In this paper we use the

latter procedure.

The pre-averaging returns are estimated as follows

APX* = Lzl ( ) ALY, (24)

J=1

5Since E[|A?|] < E[|A? + ;] where ; = u; — u;_1, (see Hansen & Lunde, 2006; Huang & Tauchen,
2005, for more details).

6We also tried the threshold bipower variation measure proposed by Christensen, Hounyo, and Podol-
skij (2018) but the differences were negligible.

"We try 6 = {1/3, 1} following Christensen et al. (2014).
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where g = (z A1 —2z), and AYY =Y;n, — Y;_1)a,. The constants associated with g are
defined as

Sl E) (o [ RTES S P R

=1

For estimating the up and downside volatilities in a noise-robust framework, we modify
the two-time scale realized variance of Zhang et al. (2005) to obtain the two-time scale

realized semivariance as follows.

Proposition 1 (Robust semivariances). Assume that the true log-price process is con-
taminated by an additive noise, so that we only observe a log-price as in (21); then the

two-time scale realized semivariances are described as

1 |1/An]—k+1 Wi [1/An]
TSRVt+ = E Z (Y(k+iAn)_EAn)2]l{(Y(k+mn)—iﬁAn)>0}—M Z (A?Y)Q]I{Aglyw}
i=1 =1
p. 11
— 5/ O'gdé’ + Z (AXS)QH{AXS>0} (26)
0 0<s<t
1 |1/An|—k+1 =7 [1/An]
TSRV =3 > (Mewinn =Y, "Liorigas,-van<o— 3 2 (A7Y ) Lgarv<o)
i=1 i=1

1 t
z 2 /0 otds+ 3 (AX.)ax,cop (27)
0<s<t
where M = (M —k+1)/k, M, = NN—/’“k ~ k, where Ny represents the number of observations
after using the scale k. k = [CMQ/?’], and c 15 the bandundth stated as in Zhang et al.

(2005).

Table 1 presents the finite sample performance exercise using the simulation design
with finite jumps described in appendix B. The entries in Table 1 are MSEs. The results
indicate that the realized semivariance is very sensitive to market micro-structure noise,
resulting in large MSEs even when the level of noise-to-signal ratio is moderate. On the
other hand, the performance of the two-scale realized semivariance is excellent when the

noise-to-signal ratio is moderate, even though the performance deteriorates a little when
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both the frequency and noise-to-signal level are higher.

3.5.1 Robust-to-Noise Jump Test Statistics

The ABD test in Andersen, Bollerslev, and Dobrev (2007) can be modified to give a
test that is robust to the presence of additive market microstructure noise. This is done
by replacing raw returns by pre-averaged returns, and using the pre-averaged bipower
variation without the bias correction. The bias correction is not required since the re-
maining noise from the pre-averaged returns and pre-averaged bipower variation cancel

out.

Proposition 2 (Robust ABD test). Assume that the observed log-price process is (21);
then using robust measures of volatility and pre-averaged returns we obtain the following

daily-jump test statistics

1, 4f max (—A? | > > ¢!
) * * —B/2
K; = V/ALBY; / (28)

0, otherwise

M—-2L+1
Yo IANXT|IAY X,

1=0

M 1
M — 2L + 2 Lk 2

BV} =

Finally, we employ the methodology outlined in Section 3.3 to decompose the noise-
robust RV into its continuous and discontinuous components, and dissect the jump com-
ponent by activity (finite/infinite) and sign (positive/negative).

Table 2 shows the results of a small Monte Carlo exercise that explores the size
and power of the two versions of the ABD test under finite and infinite jumps, with a
moderate and higher level of noise-to-signal ratio. Our simulation design is described in
Appendix B. As expected the size and power of the noise-robust ABD test is much closer
to the theoretical values when the magnitude of noise is greater, i.e. at higher frequencies.
At lower frequencies the ABD test provides more accurate size and power. When testing
for infinite jumps in the presence of moderate noise levels, the power of both tests is

good, but the power of the standard ABD test is badly affected by noise-to-signal levels.
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4 Forecasting Models and Methodology

The basic HAR-RV in Corsi (2009) models current and future RV as a linear function
of lagged values of the RV at the daily, weekly and monthly levels. Our forecasting
models extend the HAR-RV models by including finite and infinite jumps and signed
jumps. Andersen, Bollerslev, and Diebold (2007) and Corsi et al. (2010) originally added
jumps to the HAR-RV model. Our baseline HAR-RV model is

RV, iin = Bo + BaRV, + BuRVis s + B RVi—o24 + €1y, (29)

where RV, ;1 = h"}[RV,y1 + RV,yo + - - + RV,y;] aggregates information between {t +
1,t+ h} in order to present the coefficients values at the same scale with daily measures.
h is an integer specifying the forecasting horizon. Our benchmark HAR-RV takes the
original specification proposed by Corsi (2009) where future RV depends only on its
lagged values. We extend the HAR-RV framework using a family of nine different HAR

models.

Total Jumps Models:

RV, 4n = Bo + BCdat + Be, 6t—5,1t + Be,, 6t—22,t + ﬁ]dj; + B, j;—B,t + B, jt—22,t + €t tn

RViyon = Bo + ﬁcd@ + Be, at75,t + Be,, 5t722,t + Byt T+ B ’ZJ:E),t + B+ :];t22,t + €tttn

RV i4n = Po + ﬁcdét + Be., ét—S,t + Be,, 6t—22,t + 67 I+ By jt_—5,t + 8- jt_—m,t + €t itn

Finite Jumps Models:

RV 14 = Po + Bcdét + Be., at—5,1t + B, atfzz,t + BFJdﬁ]t + BrJ., Z??]t—smt + BE g ﬁ]t722,t + €tin
RV 4in = Bo + Bcd@ + 5Cw6t—5,t + ﬁcmat—m,t + BFJ; ﬁ\]: + Bryt ﬁ]:_—&t + BFJ,;ﬁ]:—m,t + €ttth
RVigin = Po+ 5Cd6t + Be., at—5,t + BC’mat—QQ,t + Bpy- ﬁ]; + Br; F‘\]tiB,t + 5FJ;LF<\];22¢ + Ettvn
Infinite Jumps Models:

RViiin = Bo + BCdé\t + Be., 615—5,1& + ﬁcmat—zzt + BIde]t + BIwa]t—B,t + BIJmf]t—QQ,t + €tt1h
RVigin = Bo+ 5@@ + Be, azt4>,t + chatfﬂ,t + BIJ;' ﬁ: + Bry f‘\]:;E),t + ﬂuﬁgﬁ;m,t + Ettth

RVion = Bo+ BosCr+ BouCrsa + BonCronng + Brys 1Ty + Bryp Iy + Brys 1Ty oy + €rtin
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The continuous and jump components in the models were estimated as in equation (14).
We respectively estimate finite and infinite jumps as in equation (16) and (15), while the
estimation of signed jump activity follows from equation (18). We also have an additional
nine models where all the right-hand volatility measures are the noise-robust measures

discussed in Section 3.5.

4.1 Forecast Evaluation

Our primary interest is in the performance of real-time, pseudo out-of-sample fore-
casts. We consider horizons h = 1, 5, ,22, and 66, corresponding to one day, one week,
one month, and one quarter ahead. We also use rolling window regressions of size 1000,
or approximately four years, to estimate the models.

The out-of-sample performance is evaluated using the mean squared prediction error
(MSPE) loss function and the out-of-sample R?. The MSPE has been shown to be robust

to noise in the proxy for volatility in Patton (2011).

MSPE = 5! ZS: (RVS _ Ex75>2 , (30)
s=1

where RV, and fﬂ\/s are respectively the estimated and forecasted RV} ;. for the pseudo
out-of-sample period. S =T — RW refers to the total number of out-of-sample observa-
tions and RW is the rolling window size. Additionally, we carry out pair-wise DM test,
(see Diebold & Mariano, 2002), which have a null of equal predictive ability based on the
MSPE loss criterion. We use robust HAC standard errors for the DM tests. The Model
Confidence Set (MCS) procedure of Hansen, Lunde, and Nason (2011) is used to identify
the subset of models that significantly outperform the others. We denote by M the set
of all the HAR models. We define dj,;; = L(RV 1, BV y14p) — LIRV yyon, BV ypyp) as
the difference in the loss of model 7 and model 5. We use a quadratic loss function as L.

Finally, we construct the average loss difference, Jh,i,j, and define the test statistics as
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follows

dh,iy -
th = /\h—”i, Vi,j € M (31)
Var(dh,m)

The MCS test statistics are given by Th, = mg/\)fl |ti’J| and have the null hypothesis, Hy
that all models have the same expected loss. The alternative hypotheses is that there
is some model ¢ with a MSPE that is greater than the MSPE’s of all the other models
j € M\i. When the null is rejected the worst performing model is eliminated, and
this process is iterated until no further model can be eliminated. The surviving models

denoted by M ;¢ are retained with a confidence level o = 0.05. We implement the MCS

via a block bootstrap using a block length of 10 days and 5000 bootstrap replications.®

5 Data

We use the SPDR S&P 500 ETF (SPY) and 20 individual stocks constituents of the
S&P 500 for the period 2000 — 2016, comprising 4277 trading days. The individual stocks
were chosen based on their jump activity index, allowing for different levels of both finite
and infinite jumps. The data source is TickData database. We employ the previous tick
interpolation for aggregating down the data to the required sampling frequency.” Table 3
reports the descriptive statistics and average volume of the stocks under examination.
This table highlights the heterogeneous composition of our dataset, with great variation
in the trading volume, yet still active enough to avoid higher levels of price staleness,
and different levels of volatility which ensures a great variety of jump activity across our

stocks.

8We tried different block sizes representing 20 and 50 days, and we also use 10000 and 20000 bootstrap
replications, however, the results are qualitatively similar.

9TickData provides pre-cleaned and filtered price series which usually undergo a series of algorithmic
data filters to identify bad prints, decimal errors, transposition errors and other data irregularities. These
filters take advantage of the fact that since we are not producing data in real time, we have the capacity
to look at the tick following a suspected bad tick before we decide whether or not the tick is valid. The
filters are proprietary and are based upon recent tick volatility, moving standard deviation windows, and
time day. For a more detailed explanation refer to TickData. We use the previous tick interpolation
following Hansen and Lunde (2006) who suggest that in applications using quadratic variation, the
interpolation method leads to realized volatilities with value 0.
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As this paper studies the role of the different types of jumps and the effect of market
micro-structure noise in forecasting realized volatility, we sample our data every 5, 60,
and 300 seconds. The choice of 300 seconds is standard in high-frequency finance studies,
and is motivated by the trade-off between bias and variance (see Ait-Sahalia, Mykland, &
Zhang, 2005; Bandi & Russell, 2006; Zhang et al., 2005, for a more detailed discussion).

Table 4 reports the contribution of different types of jumps to the quadratic varia-
tion across frequencies estimated as in equation (19). The contribution of total jumps
decreases as the sampling interval increases, i.e. from 5 to 300 seconds. This means that
aggregating the data reduces the identification of jumps, since longer intervals of time
make the data look more continuous. This is why the continuous component in the SPY
increases from 56% to 85% as the sampling interval increases from 5 to 300 seconds. At
higher frequencies, most jumps in SPY are infinite activity jumps. For the 20 individual
stocks, the share of infinite jumps is somewhat higher. The contribution of infinite jumps
decreases in line with the total jumps as the sampling interval increases, suggesting that
data aggregation reduces the estimated contribution of infinite jumps faster than that of
finite jumps. This result is expected since, at longer sampling intervals, the small vari-
ations that characterize infinite jumps are closer to Brownian increments (or completely
disappear).

Figure 1 plots the RV of the SPY and three individual stocks — AMZN, HD and KO —
over our sample period 2000 to 2016. Days with jumps are shown in red and other days
in blue, so the contribution of the jump component of RV can be identified. Note the
different scales of the time series plots. The highest spikes in volatility occur around the
dot-com and sub-prime crises (shaded areas), but many other spikes in volatility do not
always coincide across stocks, so there is considerable heterogeneity in the level and timing
of volatility. The autocorrelation function of the SPY 5 (left panel) and 300 (right panel)
second realized measures are shown in Figure 2. In the right panel the autocorrelation of
the continuous component start at 0.6, fall steady for about two months and then levels
out at about 0.3, whereas the autocorrelation of the jump component are low throughout.

By contrast, the left panel indicates that the RV is more persistence than the continuous
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component, and also infinite jumps present signs of persistence throughout the 70 days
period. The greater level of persistence in the RV is due to infinite jumps, and implies
that jumps at higher frequencies might contain predictive information power.

The index of jump activity, B[ J4, measures the activity of small increments. The
estimated values are in line up with the estimated contribution of finite and infinite jump
components. At higher frequencies, the index is 1.45 for both the SPY and the average
of the stocks. This implies that infinite jumps determine most of the jump component
at higher frequencies. At 300 seconds, the estimated BI g4 18 0.78 for SPY and 0.72 for
the 20 stocks, suggesting that both types of jumps are present, but finite jumps are more
important. Finally, little evidence of asymmetry is observed in signed jumps, even though
the percentage contribution of positive jumps is marginally higher. Similarly, we find that
positive/negative jumps are marginally more abundant in finite/infinite jumps.

Table 5 presents the correlations of the realized measures for SPY in the entries
below the diagonal, and the average correlations for the 20 stocks in the entries above
the diagonal. We find that jumps, finite jumps, and infinite jumps are relatively highly
correlated with both RV, and C;. However, the level of correlation is somewhat greater
for the average of the stocks. Interestingly, correlations of finite and infinite jumps with
total jumps are 0.939 and 0.293, respectively. The Correlation between the signed jumps
is very low, around 0.05. The difference levels of correlations observed in jumps dissected
by sign and activity suggest that there is novel information in this decomposition that

might help in predicting future realized volatility.

6 Empirical Findings

6.1 RV Prediction: SPY and Individual Stocks

Table 6-9 presents the in-sample coefficients, as well as the in- and out-of-sample
R?, of the baseline HAR-RV and extended HAR-RV models for SPY for four forecast
horizons — h = 1 (day), h = 5 (week), h = 22 (month), h = 66 (three months) using

returns sampled every 300 seconds. The baseline HAR-RV is presented in Table 6, while
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the HAR-CJ (jumps), HAR-CFJ (finite jumps), and the HAR-CIJ (infinite jumps) models
are presented in the subsequent tables. The significance of the coefficients is evaluated
using Newey-West HAC robust standard errors, allowing for serial correlation of up to
order 5 (h=1), 10 (h =5), 44 (h = 22), and 132 (h = 66), since the random error term
in the models is serially correlated at least up to order h — 1. We follow Andersen et al.
(1999) and Patton and Sheppard (2015) and estimate R?OOS) as 1 minus the ratio of the
out-of-sample models-based MSPE to the out-of-sample MSPE from a forecast including
only a constant.

Table 6 reports the baseline HAR-RV estimates, which are all significant at even
h = 66, confirming the existence of highly persistent volatility dependence. The mag-
nitude of the daily and weekly coefficients decrease as we lengthen the forecast horizon.
The magnitude of the monthly coefficient changes little with the horizons, although its
relatively importance increases at longer horizons.'’

Table 7-9 report the coefficients for various specifications including the total, finite
and infinite jumps, respectively. The results are in line with those found in the previous
literature: substantial persistence, with the sum of the coefficients on the daily, weekly
and monthly integrated variation (continuous volatility) measures ¢, + Be,, + e, close
to 1. The importance of recent information also decreases with the forecast horizon. The
daily and weekly continuous estimates are significant for all of the specifications, across
the four forecast horizons, suggesting that the daily and weekly continuous components
are important to forecast future volatility. On the other hand, the estimated coefficient
on the monthly continuous volatility is generally insignificant in Tables 7 (jumps) and 8
(finite jumps), even though the estimates increase with the forecast horizons. However, in
the specification using infinite jumps (Table 9), the estimated coefficients on the monthly
continuous component is highly significant and quite large for all horizons.

If the level of activity of the jumps does not matter when forecasting volatility, then

we should expect that 8; = Br; = B1;. We easily reject this restriction for 8; = ;.

Looking at signed jumps, we also reject the hypothesis that 8; = 55+ = 8;- at the 5%

0These results have been well-documented in the literature, (see Andersen, Bollerslev, & Diebold,
2007; Corsi, 2009; Corsi et al., 2010, among others).
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for all horizons. This means that dissecting jumps by their nature and sign do help to
predict future volatility. Of course, we ideally need to show that the real-time, pseudo
out-of-sample results from HAR type models with finite and infinite jumps, and/or signed
and unsigned jumps generate significantly better out-of-sample forecasts using a standard
loss function such as the MSPE.

Negative/positive jumps usually increase/decrease the level of future volatility, whereas
unsigned total jumps also reduce the estimation of future volatility. These results are line
with those of Andersen, Bollerslev, and Diebold (2007) and Patton and Sheppard (2015).
Turning to the nature of jumps we find that infinite jumps increase the level of future
volatility, whereas finite jumps act like unsigned jumps reducing the value of the expected
future volatility. The daily jump component is potentially important in predicting future
volatility when total and positive jumps are used. On the other hand, the weekly and
monthly jump components are more important for positive and negative jumps, respec-
tively. Infinite jump estimates are usually insignificant, except for the daily negative and
weekly positive infinite jumps which are significant across horizons.

The in-sample R-squared, R?m), suggests that incorporating jumps as predictors re-
sults in a better fit for our models outperforming the baseline HAR-RV across the four
horizons we have examined. The out-of-sample R-squared, R?OOS), shows that all models
based on finite and total jumps outperform the baseline model across horizons, whereas

specifications based on infinite jumps outperform the HAR-RV for 1- and 5-day ahead

2

(005) indicates that specifications

predictions. Taking the nature of jumps results, the R
based on total and finite jumps perform better at longer horizons. For instance, the

HAR-CFJ* has an increment of 11.89% and 3.82% in terms of R?

(oos

) for h = 5 and
h = 22, respectively. Infinite jump specifications perform best at shorter horizons only.

For instance, adding infinite jumps at h = 1 and A = 5 result in an improvement in the

R? . of 16% and 5%, whilst at h = 22 the R?

(00s) (00s

) reduces by 8%, suggesting that the
information power of infinite jumps is only important at shorter horizons. Infinite jumps
contribute very little to the QV(%) at lower frequencies, yet its information is very rich.

However, the use of moving averages to construct the measures for h > 1 presumably
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reduces the importance of infinite jumps at longer horizons.

6.2 Rolling Regression Forecast Results

Tables 10 and 11 report the relative MSPE and the Model Confidence Set (MCS) for
SPY and our selection of 20 stocks. Average results for all the 20 stocks are tabulated
in Table 11. The results are based on real-time, pseudo out-of-sample rolling regression
forecast using a 1000 day window. We use the Diebold and Mariano (DM, 2002) test to
identify extended HAR jump models with significantly lower MSPE’s than the benchmark
HAR-RV models. We identify the set of retained models — models with MSPE’s that are
not significantly higher than the MSPE of other retained models — using the Model
Confidence Set (MCS) procedure of Hansen et al. (2011).

The bottom row of the two tables are the MSPEs for the baseline HAR-RV model using
standard or raw volatility measures. The remaining MSPE entries are relative MSPEs;,
i.e. the ratio of the proposed models to the MSPE of the benchmark model. Values below
one generate better forecasts than baseline HAR-RV, and vice versa for values above one.
The entries in the top panel are based on forecasts using standard volatility measures as
explanatory variables; the bottom panel entries using robust-to-noise volatility measures.
The MCS entries in Table 10 are the MCS rankings while entries in Table 11 are the
number of times (out of 20 stocks) each extended HAR model is retained in the MCS.

Taking the SPY results (Table 10) first, the starred MSPE entries and the bold MCS
rank entries indicate that many of the extended HAR models with jumps forecast as well
as, or better, than the baseline HAR-RV models. Based on the DM and MCS tests, the
MSPEs of these models are similar or lower than the MSPEs of the baseline models.
Infinite jumps are more persistent than finite jumps at high frequencies than at low
frequencies, and tend to only improve the one-day ahead out-of-sample forecasts.

Comparing the results from Panel A and B, we find that on average the MSPE’s of
the noise-robust based forecasts are about 1/12" smaller than the standard forecasts
at the 5 and 60 second frequencies. As expected, models using 5 and 60 second raw

volatility measures are usually excluded for the MCS at longer horizons, confirming the
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importance of accounting for micro-structure noise at higher frequencies (Ghysels and
Sinko (2011)). Nevertheless, the MSPE numbers for the baseline HAR-RV model in the
final row of Table 10 suggest that models using 300-second volatility measures tend to
forecast better than models using 5 or 60-second returns, irrespective of whether standard
or robust-to-noise volatility measures are used.

Turning now to Table 11, recall that the MSPE entries are averages across the 20
stocks, while the MCS entries are counts of the number of times (out of 20 stocks) each
baseline HAR-RV or extended HAR model with jumps is retained in the MCS. The
relative MSPE entries are more clustered around one than in Table 10.'' In addition,
many of the MCS entries, including entries for the baseline HAR-RV models, are close
to or equal to 20. Thus, the improvement in the forecasting performance of extended
models with jumps is less obvious for the 20 stocks, than it is for the SPY index.

At the 5 and 60-second frequencies, the MCS procedure tends to exclude more models
using standard than noise-robust volatility measures, again confirming the results that
the latter work best at finer frequencies. We also find evidence that infinite jumps based
on noise-robust estimators are more important for forecasting long-horizon volatility at
higher frequencies.

Nevertheless, consistent with the results for SPY, we show that forecasts using 300
second volatility measures are generally better than the forecast using 5 or 60 second
measures, and that the relative MSPEs of the raw volatility measures tend to be somewhat
lower than the relative MSPEs of the robust-to-noise measures. Since no single extended
HAR model with jumps dominates the others, and given that the gains obtained are small
at the aggregate level, we now examine whether or not model averaging does generate

forecasting gains.

7 The Gains from Model Averaging

So far we have shown that a variety of HAR type volatility models that account for the

nature and sign of jumps generate significant improvements in forecasting performance.

U The entries are also less dispersed, in part because we are reporting averages.
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However, there is little to choose when it comes to selecting the best approach, since no
specification consistently outperforms the other models across horizons and frequencies.

This section employs four simple approaches to assigning model averaging weights.
We experimented using more complicated averaging procedures, but the results were sim-
ilar to those we present below. The aim of model averaging is to capture the different
information embedded in the various jump specifications, hopefully producing an ensem-
ble model that outperforms the benchmark HAR-RV model and, more importantly, the
best single jump model. Our approaches follow the literature closely (see, for instance
Aiolfi, Capistran, & Timmermann, 2011; Aiolfi & Timmermann, 2006; Bates & Granger,
1969; Elliott & Timmermann, 2016, and references therein). We present model averaging
results for the four sets of weights tabulated below — weights minimizing the estimated
variance of the prediction errors, inverse MSPE weights, inverse MSPE rank weights and
equal weights. In the first three cases, the weights are recalculated every time a new set
of rolling window forecasts are generated, and we prune the set of models under consid-

eration by only averaging models which are retained in the Model Confidence Set.

Weight Formula Models
Min. Prediction Error Variance w! = argmin w’ ii‘w st. /w=1 MCS
h w_ (MSPE},)~!
Inverse MSPE wy; = ZieMJ(MftPEﬁi)’l MCS
ho_ (1-30,7114375,1)*1
Inverse Rank wy; = S e (Renk )T MCS
Equal Weights wl, =+ All

Note: f]? is the estimated, rolling window variance-covariance matrix of the set of
MCS retained horizon h volatility forecasting models at time ¢. ¢ is a vector of ones
representing each retained model. M SPEZZ- and Rankﬁi are the rolling window MSPEs
and MCS Ranks for the MCS retained horizon h forecasting model at time ¢. Finally,
N represents all the jump specifications used in this study.

We present model averaging results for SPY and four individual stocks that were
chosen based on their level of jump activity. All the stocks have estimated Blumenthal-
Getoor indices in the range 0 to 1, so their returns include both types of jump activity
with finite jumps dominating. BA and KO with jump activity of 0.58 and 0.91 are the

extreme cases.
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Table 12 reports the relative MSPE for the four different model averaging approaches,
the baseline model, and the best jump specification for each stock and horizon. Model
averages with significantly lower MSPEs than the baseline HAR-RV models are denoted
by the superscript *. Model averages with lower MSPEs than the baseline HAR-RV and
the best extended HAR model are shown in bold, while the superscript ** denotes model
averages with significantly lower MSPEs than the extended HAR models. We find that
the four model averaging schemes generate forecasts that significantly outperform the
benchmark model in most cases, for the four forecast horizons examined — h = 1 (one
day), h =5 (one week), h = 22 (one month) and h = 66 (three months). For example,
in the case of SPY with 300 second returns, the one-week relative MSPE of the best
extended HAR model is 0.753 versus 0.693 to 0.715 for the four model averages.

The largest MSPE reductions are generally found at the one-week horizons, followed
by the one-month horizon. We present model averaging results for SPY using 60 and 300
second returns. The SPY model averaging forecasts using 300 second returns dominate
the forecasts using 60 second returns, generating lower MSPEs. The mode averaging
forecasts using 300 second SPY returns also dominate the unreported model averaging
based on 5 second returns. This result also holds for the other stocks. The 300 second
model average MSPEs are mostly lower than the MSPEs of both the baseline HAR-RV
and the best extended HAR type model with jumps. In about a quarter of the cases,
the 300 second model average forecasts significantly outperform the best extended HAR
type model with jumps.

Model averaging forecasts from the extended HAR models generally result in lower
MSPE forecasts, although no single model averaging procedure stands out. Pruning
the models by only averaging the model in MCS, appears to help and the weights from
minimizing the prediction error variance do not predominate the other weighting schemes.
Overall, pruning dominated models and the use of inverse MSPE weights or inverse MSPE

ranks for model averaging work quite well.
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8 Conclusion

We examine the gains in forecasting the volatility of equity prices by decomposing
jumps by activity (finite/infinite) and by sign (positive/negative) using high-frequency
data for SPY and 20 individual stocks, which vary sector and volume. Our key findings
are as follows. Quadratic variation contains a significant jump component, even at the
300-second frequency. The contribution of infinite jumps is greater than that of finite
jumps at low frequencies. However, at the 300-second frequency, the jumps are mainly
finite jumps.

Extending the HAR-RV style models with a variety of jump measures helps to predict
future volatility, generating significant in- and out-of-sample improvements for both SPY
and the 20 individual stocks. We find that noise-robust estimators substantially improve
the estimation of future volatility at higher frequencies. However, since the level of market
micro-structure declines as the sampling interval increases, the forecasting advantage of
the noise-robust jump volatility also declines.

The real time, pseudo out-of-sample forecasting results using a rolling window suggest
that the lowest MSPE forecasts are obtained using the returns sampled every 300 seconds,
as opposed to every 5 or 60 seconds. This result holds for the horizons examined —one day,
one week, one month and three months— irrespective of whether robust-to-noise volatility
measures were, or were not, used. In terms of MSPEs, there is little to choose between
standard or robust-to-noise measure at this frequency.

Finally, since no single forecasting model dominates, we investigated whether various
model averaging procedures generated further real-time forecasting gains. We report
results for simple model averaging procedures, since the forecasting performance of more
complicated model averaging procedures were similar. In some cases, we pruned the set
of models using the model confidence set procedure of Hansen et al. (2011) to eliminate
dominated models. We find that simple model averaging procedures generally result in
significant gains in forecasting performance vis-a-vis the single best forecasting model,
which in turn outperforms our HAR-RV baseline. For example, model averaged results

using equal weights, or the rather ad hoc, normalized inverse MSPE weights in Bates and
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Granger (1969) perform as well as the model averaged results where the weights minimize
the variance of the prediction error. We hope that these findings will prove helpful for

practitioners.
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A The Index of Jump Activity, 8154

The index of jump activity denoted by (754 serves as an indicator of the activity of an
It6 semi-martingale processes, a rich class of stochastic processes which include diffusion,
jump diffusion, Lévy process, and others. The Blumenthal-Getoor index which is defined

as

Brja = inf {7‘ > 0; Z |AX]|" < oo} . (A.1)

0<s<t

The values of the ;4 range between 0 to 2. As shown by (Ait-Sahalia & Jacod, 2012,

2 and when

figure 7) when the ;774 is close to zero, the jumps resemble Poisson jumps,’
the Bry4 is close to two, the increments resemble a Brownian motion. Values in between
will behave as a combination of finite and infinite activity. Alt-Sahalia and Jacod (2009a),
Jing, Kong, Liu, and Mykland (2012), and Todorov and Tauchen (2010) provide evidence
using individual stocks at higher frequencies, that the S;;4 € [1.4,1.6]. This indicates
that both finite and infinite jumps are present in the data.

We follow Jing et al. (2012) and estimate the jump activity index as follows,

Braa = Brlt,,0,0) = log g7 =000 / g (%), (A2)
where
U(w,,9); = Uigj 9 (2;;) (A.3)
(c‘llxlp, 2| <a
g(z) = (ap + 2 (b a)? — (|| - b)2)> . a<lz|<b (A4)
1, x| > b,

\

where ¢ = a? + pa?~!(b—a)/2 and the following conditions must be satisfied: 0 < ¢ < ¢/,

we (0,1/2), 0 <a<b Weset w=1/5 ¢ =2¢, p=26,a=06/5 b= "7/5 This

12Gamma and Variance gamma processes also generate 3774 values of 0.
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estimator is a more efficient version of the jump activity index proposed by Ait-Sahalia
and Jacod (2009a). Ait-Sahalia and Jacod (2009a)’s estimator uses only large increments
ending with a very small effective sample size. By contrast. Jing et al. (2012)’s approach
reduces the measurement error by using both small and large increments of the data. For

more details, see Jing et al. (2012).

B Simulation Design

Our simulation is based on the Heston model augmented with finite and infinite jumps

as follows,

dXt - \/V_tth + eLst
(B.1)

dv, = K(nu - Vt)dt + '7VVt1/2dBt7

where E[dW;, dB;] = pdt, and L, is either a finite activity compound Poisson process or
an infinite activity Cauchy process (a [-stable process with 5 = 1).

We take k = 5, n, = 1/16, p = —0.5 following Ait-Sahalia and Jacod (2011). The
compound Poisson process has intensity A, and jumps that are uniformly distributed on
v P /m([=2,—1]U[1,2)). We set m = 0.7 and A = 0.5 such that there is on average one
jump every two days. When jumps are of finite activity we set 6, = 1, while for infinite
jumps we set 0, = 0.5. We follow O. E. Barndorff-Nielsen, Hansen, Lunde, and Shephard

(2008) and simulate the market micro-structure as follows

U g ™~ N(O,Wf)

t
w? = 52/ vyds.
0

This design enables the variance of the noise to be constant throughout the day, though

(B.2)

changing from day to day. This noise is then added to the X, ; price process to obtain the
time series of actual high-frequency simulate prices Y;; = X;;+u,;. £ is the noise-to-signal
ratio used to simulate the market micro-structure noise.

Finally, we simulate T' = 50 days, consisting of 6.5 hours of trading per second,

i.e., n = 23400. We then sample the data every 5, 60, and 300 seconds. We use 3000
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replications providing a total of 150,000 days, and the jump tests are evaluated at the
5% level.

C Tables and Figures

Table 1: Two-Scale Realized Semivariance — MSE Finite Sample Performance

5s 60s 300s 5s 60s 300s
£=0.01 £E=0.1

RSV*  9.680 0.067 0.003 963.848 6.718 0.277
RSV—= 9704 0.069 0.004 964.483 6.779 0.290
TSRV* 0.001 0.001 0.002 0.113 0.014 0.008
TSRV~ 0.001 0.001 0.002 0.112 0.015 0.009

Note: The table reports the finite sample mean squared er-
rors of the realized semivariances and two-scale realized semi-
variances in the simulation exercise described in Appendix B
with finite activity compound Poisson jumps. & represents
the noise-to-signal ratio used to simulate the market micro-
structure noise.

Table 2: Noise-Robust ABD Test — Size and Power

5s 60s 300s 5s 60s 300s

£=0.01 £=0.1
Size
ABD Noise-robust 0.070 0.041 0.015 0.049 0.011 0.006
ABD 0.030 0.055 0.128 0.029 0.045 0.082

Power — Compound Poisson (Finite Jumps)

ABD Noise-robust 1.000 0.991 0.703 0.963 0.905 0.458
ABD 0.985 0.989 0.986 0.337 0.484 0.586

Power — Cauchy Process (Infinite Jumps)

ABD Noise-robust 0.948 0.784 0.410 0.670 0.572 0.342
ABD 0.732 0.774 0.764 0.361 0.415 0.463

Note: This table report the empirical size and power of the ABD test
of Andersen, Bollerslev, and Dobrev (2007) and our modified version
that is noise-robust. The theoretical size is @ = 0.05, and the Monte
Carlo settings and models are described in Appendix B. £ represents the
noise-to-signal ratio used to simulate the market micro-structure noise.
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Table 3: Summary Daily Statistics for RV and Trading Volume

Stock / RV Average
Index Mean Std. Dev. P25 Median P75 Min Max Volume
SPY 1.037 2.259 0.240 0.485 1.030 0.013 59.863 98.972
AMZN 8.284 14.846 1.834 3.344 7.209 0.225 229.244 6.462
BA 2.812 3.900 0.908 1.602 3.232 0.086 55.570 4.347
BFB 1.920 4.861 0.752 1.152 1.912 0.074 240.414 0.875
CAT 3.239 4.889 1.116 1.873 3.486 0.185 105.908 5.826
CHL 2.052 3.608 0.511 1.063 2.245 0.082 65.965 1.078
COST 3.087 4.728 0.790 1.497 3.295 0.126 83.955 3.460
CVvX 2.113 4.181 0.752 1.263 2.244 0.112 137.535 7.188
DOW 3.976 7.353 1.176 2.039 4.251 0.146 216.937 6.556
EXC 2.635 4.791 0.875 1.429 2.643 0.158 130.875 3.917
GILD 6.308 10.469 1.570 2.839 5.889 0.198 187.286 17.587
GS 4.186 11.978 1.062 1.757 3.683 0.153  400.346 5.731
HD 3.121 4.938 0.877 1.573 3.475 0.156 103.477 9.746
JNJ 1.385 3.482 0.408 0.692 1.488 0.076 179.016 8.559
JPM 4.615 10.848 0.869 1.770 4.466 0.114 252.877 20.538
KO 1.561 2.535 0.494 0.836 1.630 0.046 58.808 13.275
OKE 3.402 8.590 0.954 1.668 3.469 0.160  411.055 1.289
SO 1.744 2.773 0.555 0.937 1.947 0.092 97.041 3.203
UPS 1.649 4.140 0.526 0.851 1.673 0.081 216.939 3.045
WMT 2.045 3.277 0.580 0.976 2.117 0.090 71.485 10.569

Note: The table reports the summary RV statistics and average daily trading volume for SPY and the 20
stocks listed. The sample period is Jan 3, 2000 to Dec 30, 2016, which consists of 4277 trading days, RV
is estimated using 300 second returns. P25 and P75 are the 25" and 75 percentiles of daily RV. Average
daily trading volume is reported in millions.
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Table 4: Contribution of Jumps to Total QV

SPY Avg. Stocks AMZN BA BFB CAT CHL CcOSsT CVX

5s 60s 300s 5s 60s 300s 300s 300s 300s 300s 300s 300s 300s

%CV 56.798 88.474 85.725 32.399 65.612 70.198 73.426 72.586 55.143 74.899 62.182 69.525 80.277
%IV 43.202 11.526 14.275 67.601 34.388 29.802 26.574 27.414 44.857 25.101 37.818 30.475 19.723
IV 21.847 .450 8.257 33.946 16.535 14.992 15.208 14.362 22.474 12.574 17.978 15.963 9.849
%IV~ 21.355 5.075 6.018 33.653 17.853 14.810 11.366 13.052 22.383 12.527 19.841 14.512 9.874
YFIV 10.602 10.419 14.156 33.394 32.417 29.597 26.410 27.228 44.649 24.852 37.314 30.357 19.576
1TV 32.600 1.106 0.118 34.207 1.971 0.205 0.165 0.187 0.208 0.249 0.504 0.118 0.147
QF IV 5.584 5.941 8.219 17.028 15.539 14.883 15.127 14.248 22.380 12.465 17.681 15.892 9.766
QFIV— 5.017 4.478 5.937 16.366 16.878 14.714 11.283 12.979 22.269 12.387 19.633 14.465 9.810
PIIV T+ 16.263  0.509 0.038 16.918 0.996 0.108 0.081 0.114 0.093 0.110 0.296 0.070 0.083
SIIV— 16.338  0.597 0.080 17.287 0.975 0.096 0.084 0.073 0.115 0.140 0.208 0.047 0.064
Brra 1.454 1.056 0.778 1.455 1.040 0.723 0.461 0.576 0.802 0.621 0.763 0.697 0.748
DOW EXC GILD GS HD JNJ JPM KO OKE PG SO uPsS WMT

300s 300s 300s 300s 300s 300s 300s 300s 300s 300s 300s 300s 300s

%CV 68.881 69.488 63.203 75.979 73.935 70.611 76.122 74.208 59.168 71.147 70.791 68.292 74.102
IV 31.119 30.512 36.797 24.021 26.065 29.389 23.878 25.792 40.832 28.853 29.209 31.708 25.898
IV 15.029 15.506 18.911 12.311 13.875 12.919 12.926 12.498 19.059 15.416 14.486 15.477 13.013
IV~ 16.090 15.006 17.886 11.710 12.190 16.470 10.952 13.294 21.773 13.438 14.723 16.231 12.885
YFIV 30.849 30.400 36.458 23.941 25.940 29.279 23.822 25.519 40.602 28.777 28.642 31.527 25.802
Q1IV 0.270 0.112 0.339 0.080 0.125 0.111 0.056 0.273 0.230 0.076 0.568 0.181 0.096
%FJVT  14.830 15.434 18.670 12.297 13.843 12.832 12.899 12.341 18.982 15.365 14.274 15.373 12.968
%FJIV—  16.019 14.966 17.788 11.644 12.097 16.447 10.923 13.178 21.620 13.413 14.368 16.154 12.834
PIIV 0.198 0.072 0.241 0.014 0.032 0.088 0.028 0.157 0.077 0.051 0.213 0.104 0.045
PIIV— 0.071 0.040 0.098 0.066 0.093 0.023 0.029 0.116 0.153 0.025 0.355 0.077 0.051
Brsa 0.579 0.725 0.522 0.610 0.665 0.971 0.606 0.913 0.645 0.955 0.878 0.895 0.824

Note: The table reports the contribution of the different jump measures to the total quadratic variation (QV) across
frequencies for SPY and the average of all the stocks using 5 second, 60 second and 300 second returns. The results for the
individual stocks were estimated using 300 second returns. Brsa is the estimated Blumenthal-Getoor index of jump activity
(Appendix A).

Table 5: Correlations of Volatility Measures
Twenty stock average correlations above, and SPY below, main diagonal

RV, c, J; FJ, 1, Ji FJf 1 Jr FJ; I
RV, 0614 0441 0352 0364 0228 0272 —0491  -0375  —0273
¢, 0713 0433 0301 0354 0263 0242  -03%  -0312  —0.101
J 0403 081 0798 0467 0350 0270 0174  —0513  -0454  —0.174
FJ, 0301 0217 0.939 —0057 0285 0355 —0.044 0488  —0561 0041
I, 03% 0212 0203 0054 0179 —0.048 0400 —0141 0040  —0.448
J50683 055 0431 0370 09222 0817 0464 0057 0043 0.047
FJF 0413 0605 0495 0536  —0.051 0704 ~0.037
LJF 054 0160 0105 -0.021 0365 0695
Jo 0309  -0334  —0112  —0085  —0.090 0068
FJ7 —0176  -0288  —0.107 0135 0064 0038
[J7 —0260  —-0157  —0.038 0046  —0238 0.6l

Note: The table reports the correlation of the different realized measures estimated at the 300 second frequency. The entries below the diagonal are
for SPY, and entries above the diagonal are average correlations for the 20 stocks.
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Table 6: HAR-RV Benchmark

RVit4n = Po+ BaRV:E + BwRVi—5t + Bm RVi—22t + €t t4n

HAR-RV
h=1 h=5 h=22 h=66
Bo 0.095* 0.148*  0.288*** 0.527***
Ba 0.246™*  0.184** 0.103*** 0.061***
Buw 0.422**  0.347* 0.322"* 0.200"**
Bm 0.238*  0.323"™* 0.290** 0.215™

R, 0512 0629 0562  0.337
R}, 0443 0673 0707  0.470

MSPE 3.102 1.322 0.944 1.262

Note: The table reports the OLS coefficient estimates
and in- and out-of-sample R-squared for HAR-RV forecast-
ing regressions for SPY RV at the daily (h = 1), weekly
(h = 5), monthly (A = 22) and quarterly (h = 66) hori-
zons. The RV measures are calculated using 300 second
returns. The significant of the coefficients are based on
Newey-West HAC standard errors, allowing for serial cor-
relation up to order 5 (h = 1), 10 (h = 5), 44 (h = 22),
and 132 (h = 66), respectively. The superscripts *,**, and
*** indicate that the coefficient is statistically significant at
the 10%, 5% or 1% level respectively. The out-of-sample
R-squared, R2

‘0087

is calculated as one minus the ratio of
the out-of-sample model-based MSPE to the out-of-sample
MSPE from a forecast that includes only a constant.
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Table 7: HAR type regressions using unsigned and signed total jumps

HAR-CJ: RVii4n = Bo + Bc,Ct + Bc, Ct—s,t + Bc,, Ct—22,t + By Jt + B, Jt—5.t + B, Jt—22,t + €t 4n
HAR-CJ*: RVy41h = Bo + Bc,Ct + Be,, Ce—s,t + B, Cr—22,¢ + 5Jd+ J+ B, Jtt5,t + B Jf_gu + €t,t+h

HAR-CJ™: RV, 141 = Bo + Bc,Ct + Bc,, Ci—s,t + B, Ce—22,¢ + BJd_ Jy +Buu 5t Bim oo+ €ttn

HAR-CJ HAR-CJ* HAR-CJ™
h=1 h=5 h=22 h=66 h=1 h=5 h=22 h=66 h=1 h=5 h=22 h=66
Bo 0.106*** (0.148*** 0.271*** 0.527*** 0.069 0.130**  0.291*** 0.524*** 0.003 —0.016 0.126™*  0.431***

B, 0.5029%F 0.340°% 018877 01007 037175 0.2325%% 0,148%%% 0.086%** 0.246** 0.1847% 0,107 0063
Ben  0.398%F 0.382°F 0.250%%  0.150%F 0.520%% 05625 042175 0.240%°F 0,365 02454 02227 0.141%%
Be. 0054 0111 0191%* 0214 0124 0137 0129 0160 0153  0.186* 0.170°  0.146*
By —0.634%%%-0.303% —0.218"0.118"
By —0.614* —0.725 0004  0.083
B8 0.848  1.266* 0934 —0.003
" —0.529%*% —0.229% —0.198%**—(.106***
B+ —0.922% —1.500%% —0.781%* —0.326**
0203  0.844 1225  0.333

0438  0.501* 0.242  0.118

/6’]; 0.980 0.151 —2.179 —1.376**
—6.741"* —9.834™**—(.705"* —3.789**

Rgm) 0.555 0.666 0572 0338 0.541 0.668 0.578 0.341 0523 0.664 0.612 0.362
R 0.493 0.747 0.728 0.465 0.450 0.754 0.739 0489 0511 0.724 0.690 0.445

(00s)

MSPE 2.821*  1.017% 0.872* 1.274 3.059 0.995*  0.840*  1.218  2.720* 1.110*  0.994 1.318

Note: See Notes to Table 6. Bold in-sample and out-of-sample R-squared entries indicate that the fit of the proposed models is
better than that of the baseline HAR-RV model in Table 6. The * indicates that the MSPE of the model is significantly lower
than the MSPE of the benchmark HAR-RV model in Table 6.

Table 8: HAR type regressions using unsigned and signed finite jumps
HAR-CFJ:  RViiin = Bo + Bc,Ct + Bc,, Ct—s5,t + Be,, Ct—22,t + Bri, FJe + Bra, FJi—s5.t + Bra,, FJi—22,t + €04n

HAR-CFJ*: RVipn = Bo + By Ct + Boy, Coms,t + Boy, Coat + Bp e FIS + Bray I g o+ Bran FI 500 + ctiin
HAR-CFJ™: RV, 44 = Bo + Bc,Ct + Bc, Ct—5,t + Bo,, Ct—22,t + ﬁF‘]d_ FJ +Bra,FJy 5+ Bra, FJy oo+ €itn

HAR-CFJ HAR-CFJ+ HAR-CFJ—
h=1 h=5 h=22 h=66 h=1 h=5 h=22 h=66 h=1 h=5 h=22 h=66
Bo 0.106™*  0.148*** (0.272*** 0.527*** 0.068 0.129**  0.290*** 0.523*** 0.007 —0.011 0.130**  (0.432%**

Bc, 0.502*** (0.340*** 0.188*** 0.109™** 0.371"** 0.232*** (0.148*** (0.086*** 0.246** 0.184*** 0.107*** 0.063***
By, 0.397**  0.382*** 0.249™* 0.150™** 0.519™*  0.562*** 0.420*** 0.241*** 0.363*** 0.242*** 0.219** 0.139***
Be,, 0.053 0.111 0.193**  0.216™** 0.125 0.138 0.132 0.164 0.155 0.188*  0.171*  0.145*
BrJ, —0.635"*%—0.393"* —0.218***—~(.118***

Br.j, —0.613" —0.723 0.008 0.084

Brj, 0.852 1.267*  0.923 —0.016
—0.530%* —0.229* —0.198***—().106***

FJr

/KFJ; —0.918* —1.496™* —0.776™* —0.326™*

/BFJ,TL 0.196 0.831 1.183 0.278

/BFJJ 0.448* 0.507* 0.244 0.118
ﬁFJ]; 0.988 0.149 —2.188 —1.378**
BFJ,T, —6.799** —9.915***-6.811** —3.949**

Rim) 0.555 0.666 0572 0.338 0.541 0.668 0.577 0.341 0523 0.665 0.614 0.363
R; 0.493 0.747 0.728 0.464 0449 0.753 0.734 0478 0511 0.724 0.684 0.446

(00s)

MSPE 2.822* 1.018° 0.874* 1.276 3.066 0.998*  0.857* 1.243 2.721*  1.112*  0.994 1.317

Note: See Notes to Table 6. Bold in-sample and out-of-sample R-squared entries indicate that the fit of the proposed models is
better than that of the baseline HAR-RV model in Table 6. The * indicates that the MSPE of the model is significantly lower
than the MSPE of the benchmark HAR-RV model in Table 6.
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Table 9: HAR type regression using unsigned and signed infinite jumps

HAR-CU:  RVj4q1n = Bo + Bco,Ct + Bc, Ct—s,t + Bc,, Ct—22,t + Bry IJe + Bry,IJi—s5.t + Bry, IJt—22,t + €t,e4n
HAR-CLJ*: RV, 141 = Bo + Bc,Ct + Bc, Ci—s,t + B, Ce—22,¢ + ’BUI 17t + /BIJU,IJ:F_W +Br17,, IJttzz,t + €t ,t+h

HAR-CHJ™: RV, 11p, = Bo + Bc,Ct + B, Ci—s,¢ + Be,, Ci—22,t + BUJ_ L), + Bry,ddy 54+ Bro, Iy _og y + €ttn

HAR-CIJ HAR-CLJ*t HAR-CIJ™
h=1 h=5 h=22 h=66 h=1 h=5 h=22 h=66 h=1 h=5 h=22 h=66
Bo 0.100**  0.154™** 0.280™** 0.506™** 0.090*  0.139** 0.257*** 0.478*** 0.099*  0.156™** 0.300*** (.544***

Be,  0.245%F 0.183"% 0103 0.061° 0.245™*  0.183° 0101 0.059% 0.246™  0.184*** 0.103** 0.061***
Be,  0.410%F 0.3427%F 0,324 0,200 0,421 0,345 0.319°%% 0.108"* 0.421"%* 0.345""* 0.320°"* 0.197**
B, 0.244%F  0.3327%F 0.280"*F 0.200%%F 0.238"%  0.324%% 0.286"%% 0.204* 0.230"F  0.327°"% 0.206"* 0.223%*
Brj, 1423 0.095 —0266 —0.202
Bry, —6.066* —7.153 —8.157 —2.585
Bry, —1841 —1708 15370  26.391

/BIJ; 2.731*  0.069 —0.284 —0.097

ﬂ].lqﬁ —10.826* —11.283**—13.030**  0.180**

ﬁlJ,ﬁ 21.886  33.708  99.050 133.553

ﬁIJd* —1.857" —1.106™* —0.400* —0.222*
/BIJ,,; 0.827 2.731 1.190 0.484**
BIJTZ 5.704 8.459  15.214  21.347

Rgm) 0.512 0630 0563 0340 0.512 0630 0.576 0.381 0512 0.629 0.563 0.339
R 0.511 0.709 0.644 0.452 0.509 0.711  0.652 0.475 0.512 0.712 0.651 0.454

(00s)

MSPE 2.722*  1.173* 1.151 1.316 2.731*  1.168*  1.125 1.264 2.714*  1.162*  1.121 1.299

Note: See Notes to Table 6. Bold in-sample and out-of-sample R-squared entries indicate that the fit of the proposed models is
better than that of the baseline HAR-RV model in Table 6. The * indicates that the MSPE of the model is significantly lower
than the MSPE of the benchmark HAR-RV model in Table 6.
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Table 12: Model Averaging Relative MSPEs

h=1 h=5 h =22 h =66 h=1 h=5 h =22 h =66

SPY - 300 seconds SPY - 60 seconds
HAR-RV Baseline 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Best Extended HAR 0.875* 0.753* 0.891* 0.965* 0.752* 0.969 0.877 0.940*

Avg. — Min Var Weights  0.987 0.693**  0.895* 0.966* 0.812* 0.977 0.940" 0.971*
Avg. — MSPE Weights 0.879* 0.706** 0.862** 0.919* 0.875" 0914 0.850" 0.965*
Avg. — Rank Weights 0.910* 0.715* 0.845"* 0.873"*  0.880" 0.923* 0.846" 0.986
Avg. — Equal Weights 0.873" 0.712* 0.876* 0.928* 0.877* 0914 0.852" 0.964*

Memo:

HAR-RV MSPE 3.102 1.322 0.944 1.262 4.550 1.350 1.025 1.344
BA — 300 seconds BFB - 300 seconds

HAR-RV Baseline 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Best Extended HAR 0.981 0.937 0.993 0.864* 0.924* 0.836* 0.822* 0.876*

Avg. — Min Var Weights ~ 0.992 0.905"*  1.083 1.001 0.969* 0.845* 0.751*  0.812*
Avg. — MSPE Weights 0.972* 0.906* 0.915"  0.959* 0.926* 0.823* 0.814* 0.856**
Avg. — Rank Weights 0.976* 0.923* 0.928"  0.980 0.936* 0.820" 0.810"*  0.847*
Avg. — Equal Weights 0.972* 0.906* 0.919*  0.961* 0.926* 0.823* 0.816" 0.878*

COST - 300 seconds KO - 300 seconds
HAR-RV Baseline 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Best Extended HAR 0.958* 0.879* 0.925* 0.957* 0.814* 0.709* 0.882* 0.939*

Avg. — Min Var Weights  1.016 0.985 0.881**  0.950" 0.923* 0.695* 0.837* 0.916"
Avg. — MSPE Weights 0.962* 0.871~ 0.920* 0.958* 0.817* 0.713" 0.888* 0.975
Avg. — Rank Weights 0.969* 0.856" 0.907**  0.945** 0.811" 0.686" 0.829**  0.950"
Avg. — Equal Weights 0.962* 0.873* 0.922* 0.960" 0.817* 0.723* 0.914* 0.983*

Note: The table reports the relative MSPE, the ratio of MSPE of the model indicated in the first column to the MSPE of
the baseline HAR-RV, in both cases using standard volatility measures as opposed to robust-to-noise measures. The best
models refers to the min MSPE model from the set of jump models presented in Section 4. The superscript * identifies
models with significantly lower MSPEs than the benchmark HAR-RV. The bold entries highlight models where the MSPE of
the model average is lower than the MSPEs of both the HAR-RV benchmark and the best model. The starred bold entries
(superscript **) identify models whose MSPEs are significantly lower than the MSPEs of both the benchmark HAR-RV and
the best extended HAR model.
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Figure 1: Time Series of Realized Volatility — Jump and Continuous Components
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Note: This figure depicts the elements of the realized volatility for SPY and three individual stocks
estimated at the 300 second frequency. The three individual stocks have the largest, smalles and average
RV. NBER dated U.S. recession are shaded grey.

Figure 2: Autocorrelation Function of SPY Realized Measures
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Note: The figure graphs the autocorrelation of the realized variance and its elements. The autocor-
relations at the 5 and 300 second frequencies were estimated using noise-robust and raw estimators,
respectively.
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