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Kapetanios and M. Hashem Pesaran

This online Supplement is organised as follows: Section A provides a proof of Theorem 3.
Section B provides a discussion of various results related to the case where both signal and
noise variables are mixing. Section C presents Lemmas related to mixing regressors. Section D
provides Lemmas for the case where the regressors are deterministic while Section E provides

some auxiliary Lemmas.

A. Proof of Theorem 3

We proceed as in the proof of (A.87) of Lemma 16. We have that
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) ormyoar )~ Ly implies 7"/ 10;| > Cs, for some Cs.

We further note that since ¢,(n) — oo

Then, noting that %= — § is the average of a martingale difference process, by Lemma 12,

for some positive constants, C1,Cs,C5,Cy, ¢, and for any ¢ > 0, we have

z”: . T eMy | ()| <C Z I (fe > 02)

1=k+1 \/(e/e/T) (Xél\;{qxi> i=k-+1

+ Oy i I (ﬁ@, < Cz) exp [_ ln(”)@} )

i=k+1
—a Y1 (\/Tei > 02) +o(n?) + O [exp(—CT*)] (B.1)

i=k+1
since exp [— In(n)] = o(n?), which follows by noting that CyIn(n)'/? = o (C; In(n)), for any
Co,Cy > 0. As a result, the crucial term for the behaviour of F'PR,, r is the first term on

the RHS of (B.1). Consider now the above probability bound under the two specifications
assumed for 6; as given by (26) and (27). Under (26), for any ¢ > 0,

S b || LEEMY | < Z 1(VTd' > Co/K:) + o(n).

So we need to determine the limiting property of 7" , (ﬁ o' > Cy/ Ki>. Then, without
loss of generality consider i = [n¢], n = T%, ¢ € [0,1], & > 0. Then, VT o' = VT o) = o(1)
for all k,( > 0. Therefore,

n

Cy Y I (ﬁd > OQ/KZ») = o(n®),

i=k+1
for all ¢ > 0. This implies that under (26), 6; = K;0', |o| < 1, and ¢,(n) = O [In(n)"/?], we
have

E|FPR, 7| = o(n*™') 4+ O [exp(—CT)],

for all ¢ > 0. Similarly, under (27), §; = K;i™, and setting i = [n¢], n = T*, {,x > 0, we
have v/T0; = T~"7+%/2 We need —k(y +1/2 < 0 or { > 55+ Then,
% I (\/Tei > cg/Ki) ~0 (T*—) -0 (n**)
i=k+1
So
E|FPR,r|=o(1) (B.2)

as long as 2x2?y > 1 or if v > ﬁ



Remark 22 Note that if k = 1, then the condition for (B.2) requires that vy > %

B. Some results for the case where either noise variables are mixing,
or both signal/pseudo-signal and noise variables are mixing

When only noise variables are mixing, all the results of the main paper go through since we
can use the results obtained under (D1)-(D3) of Lemma 22 to replace Lemma 12.

As discussed in Section 4.7, some weak results can be obtained if both signal /pseudo-signal
and noise variables are mixing processes, but only if ¢,(n) is allowed to grow faster than under
the assumption of a martingale difference. This case is covered under (D4) of Lemma 22 and
(B.30)-(B.31) of Lemma 23. There, it is shown that, for sufficiently large constants C; —C} for
Assumption 3, the martingale difference bound which is given by exp [—%%ci(n)] in Lemma
12 is replaced by the bound exp [—cp(n)s/ (5“)] where s is the exponent in the probability tail
in Assumption 3. It is important to note here that this bound seems to be sharp (see, e.g.,

Roussas (1996)) and so we need to understand its implications for our analysis. Given (see

o =0 [n (1))}
of B
Let f (n) = 2pexp(n®). Then,

s/2(s+1)
su G2/ R

To obtain the same bound as for the martingale difference case, we need to find a sequence
{a,}, such that n» = O (In(n)). Setting n“* = In(n), it follows that a,, = In (In(n)) /CInn.

result (i) of Lemma 1),

it follows that

exp [—cp(n)s/(s+1)] =0

Further, setting C' = s/2(s+1), we have a,, = W’ which leads to the following choice
for f(n)

/ (n) = 2pexp <HW> ~ 2pexp <1n<n) 2(ss+1)> ‘
Then,

C

»(n) =0 [ln (exp (ln(n)Q(ssﬂ)>>] =0 <1n(n) 2(3:1)> :

2(s+1)

which for n = O (T“"), C; > 0, implies that ¢,(n) = (ln(T) E >, and so, ¢,(n) = o (T'?),
for all C5 > 0, as long as s > 0.
We need to understand the implications of this result. For example, setting s = 2 which cor-

responds to the normal case gives exp (In(n)?) which makes the calculation of &1 (1 - #En))
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numerically problematic for n > 25. The fast rate at which f(n) grows basically implies
that we need s — oo which corresponds to f (n) = 2pexp (In(n)?). Even then, the analysis
becomes problematic for large n. s — oo corresponds for all practical purposes to assuming
boundedness for z;;. As a result, while the case of mixing x;; can be analysed theoretically,
its practical implications are limited. On the other hand our Monte Carlo study in Section
5 suggests that setting f (n) = n’, § > 1 provides quite good results for autoregressive z;; in

small samples.

C. Lemmas for mixing results

We consider the following assumptions that replace Assumption 4.

Assumption 6 z;;, i = 1,2,....k + k*, are martingale difference processes with respect to
Fr5L UF, where FP2, and F[™ are defined in Assumption 4. xi, © = 1,2,...k + k* are
independent of vy, i = k+k*+1,...,n. E (xitacjt — B (zqzj) ‘.ﬂmfl) =0,4,j=1,....k+k*.
Ty, t =k 4+ k* 4+ 1,...,n, are heterogeneous strongly mixing processes with mizring coefficients

given by oy, = Cip&* for some Cy, such that sup; 1, Cir < 00 and some 0 < § < 1.

Assumption 7 z;, ¢ = 1,2,....k + k¥ are independent of vy, i = k+ k*+1,...,n. x4,
1 = 1,...,n, are heterogeneous strongly mixing processes with mizring coefficients given by
ag, = Cipl® for some Cyj, such that sup, j, Ci, < 00 and some 0 < & < 1.

Lemma 21 Let & be a sequence of zero mean, mizing random variables with exponential
mixing coefficients given by o = app®, 0 < ¢ < 1. Assume, further, that Pr(|&] > a) <
Coexp [—Cia®], s > 1. Then, for some C >0, each 0 < J <1 and vy > €T, X > (1+9)/2, ,

T
Pr ( th
t=1

Proof. We reconsider the proof of Theorem 3.5 of White and Wooldridge (1991). Define
wy = &I(z < Dr) and vy = & — wy where Dy will be defined below. Using Theorem 3.4 of
White and Wooldridge (1991), we have that constants C; — Cy in Assumption 3 can be chosen
sufficiently large such that

> UT) < exp [— (UTT‘(1+5)/2)5/(5+1)]

o T—(148)/2
> UT) < exp {UT—} (B.3)

rather than

Dr

T

_ T71/2
Zwt — E (w)| > UT) < exp lvT—]
t=1

.




which uses Theorem 3.3 of White and Wooldridge (1991). We explore the effects this change
has on the final rate. We revisit the analysis of the bottom half of page 489 of White and
Wooldridge (1991). We need to determine Dy such that

D\ °* 1/q T (140)/2
e (- (5))] e |5

Take logs and we have
_ 1 DT y —UTT_(1+6)/2
1 ()= ) < ———
o () (2 <=

or
s — 2°qur
DT 2 2pq ln (’UTlT> —|— W+6—V2D11

For this it suffices that )

“qur 1

anp, = 2 (vr'T) (B.4)
and 5
s *qur

D3 > —T(”‘s)/?DT' (B.5)

Set

9s 1/(s+1)
Dy = ( qur )
T(1+6)/2 )

so that (B.5) holds with equality. But since vy > ¢T*, A > (1 +6)/2, (B.4) holds. Therefore,

2squ B QSQ'UT s/(s+1)
T(1+6)/2DT - T(146)/2 )

and the desired result follows. =

Remark 23 The above Lemma shows how one can relax the boundedness assumption in The-
orem 3.4 of White and Wooldridge (1991) to obtain an exponential inequality for mixing
processes with exponentially declining tail probabilities. It is important for the rest of the
Lemmas in this Appendix, and in particular, the results obtained under (D4) of Lemma 22, to
also note that Lemma 2 of Dendramis, Giraitis, and Kapetanios (2015) provides the result of
Lemma 21 when § = 0.

Lemma 22 Let xy, q, = (q1¢, Q2.4 - -, qlT,t)/, and u; be sequences of random variables and sup-
pose that there exist finite positive constants Cy and Cy, and s > 0 such that sup, Pr (|x;| > a) <
Coexp (—C1a®), sup, , Pr(|gis| > a) < Cyexp (—Chra®), and sup, Pr (Jus| > a) < Coexp (—Cra?),
for all « > 0. Let ¥, = %ZtT:l E(q.4q}) be a nonsingular matriz such that 0 < HE;}”F.
Suppose that Assumption 5 holds for the pairs x; and q,, and denote the corresponding projec-

tion residuals defined by (15) as uzs = T4 — Yoy 1Qy- Let Uy = (lg, ..., Uy ) denote the T x 1
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OLS residual vector of the regression of vy on q,. Let Fy = FF UF!, Ff =0 ({q,t}izl) and
assume either (D1) E (umut — Pt Fr—1 U ]:f_l) =0, where gyt = E(ugur), ©; and u; are
martingale difference processes, q, is an exponentially mizing process, and (r = o(T?), for
all \>1/2, or (D2) E (umut — Mt Fr—1 U .7-";1_1) =0, where g = E(ugu), u is a mar-
tingale difference processes, x; and q, are exponentially mixing processes, and (r = o(T?),
for all X > 1/2, or (D3) x;, u; and q., are exponentially mixing processes, and (r = o(T?),
for all X\ > 1, or (D4) x;, u; and q, are exponentially mixing processes, and and (r = o(T?),
for all X > 1/2. Then, we have the following. If (D1) or (D2) hold, then, for any 7 in the

range 0 < m < 1, there exist finite positive constants Cy and C, such that

T 2 2
—(1—
Pr ( thut — E(zyu)| > CT) < exp % + exp [—COTcl] (B.6)
t=1 Wo,1,T
and .
. — (1 — )% 2
Pr ( Z Ug tUt — Pgut| > CT) < exp # + exp [—OoTcl] , (B.7)
t=1 zu, T

as long as ly = o(TY?), where wiu’LT = % Zthl E [(:ctut — E(:ctut))g] , wﬁu’T = %ZL E [(ux,tut — /Lm,t)g] )

If (D3) holds

T
Pr < thut — E(zug)| > QT) < exp [—C’OTcl] , (B.8)
t=1
T
Pr < Zﬁx,t“t — Lyt > §T> < exp [—C’OTCI] , (B.9)
t=1

as long as ly = o(T"3). Finally, if (D4) holds,

T
Pr ( Zwtut - E(%Ut) > QT) < exp [—CO (CTT71/2)S/(S+2)] ) (B.lO)
t=1
and
a 2
Pr ( Zﬂmut — Pgut| > CT> < exp [— (C’TT_l/Q)S/(SJr )} + exp [—C’OTQ} , (B.11)
t=1

as long as lp = o(T'/3).

Proof. We first prove the Lemma under (D1) and then modify arguments to show results
under (D2)-(D4).The assumptions of the Lemma state that there exists a regression model

underlying 4, ; which is denoted by

/
Ty = B4+ Uay



for some [ x 1 vector, B,. Denoting w, = (uz1,...,us )", w = (ug, ..., up)’, fqu =T1(QQ),

Q = (q17 [RXD) ql)? and q;. = (qi1’Qi27 "'7QiT)Iu we have
au=u u— (T‘lu;Q) ﬁ);ql (Qu) = v, u— (T_lu’mQ) (2(1_(11 — E;ql) (Q'u)+
(771, Q) 3, (Q'w)
Noting that, since u; is a martingale difference process with respect to o ({us}i;ll ) {uw}z:l , {QS}Z:1> ,
by Lemma 10,

P "u| > <
(el > ) < exp |~

_(1_—7%] _ (B.12)

It therefore suffices to show that

() 5w
()

We explore (B.12) and (B.13). We start with (B.12). We have by Lemma 2 that, for some

sequence or,!
o (' (l ) (2&3 -5, @Qu)| > gT) -
(H QH H 2;q1>H||Q,U||F >§T) < Pr (“(2;(]1_2;11)“ - g_;) .

Pr ([|w,Qll ¢ [|Q"ull > 67T) (B.16)

> CT) < exp [—C’OTQ} (B.13)

and

> CT) < exp [~CoT] (B.14)

We consider the first term of the RHS of (B.16). Note that for all 1 <i,j <.

“(

'Tn what follows we use

T
Z Qitqjt — tath)]
t=1

> <T> < exp(=Co (TV2¢) "2, (B.17)

Pr(JAB| > ¢) < Pr (|A||B| > ¢) (B.15)

where A and B are random variables. To see this note that |AB| < |A||B|. Further note that for any random
variables A; > 0 and Ay > 0 for which As > A; the occurrence of the event {A; > ¢}, for any constant ¢ > 0,
implies the occurrence of the event {4y > c}. Therefore, Pr(As > ¢) > Pr(A; > ¢) proving the result.



since ¢itq;t — E(girq;t) is a mixing process and sup, Pr (|g;+| > ) < Cyexp (—Cha®), s > 0.
Then, by Lemma 28,

Py (H (2;]1 B E;;) H . g_T > < Pooxp Gy R 86+ N
’ S/ s 1 (125 + )
) Ts/2(s+2)
lTeXP< HE Hs/ (5+2) s/(s+2)> -
s/(s+2)
exp | —Co LS, +

et [t (122 + )

s/(s+2)
I3.exp | —Cy Lﬂ
(e X

We now consider the second term of the RHS of (B.16). By (A.34), we have
/ / ’ 1/21/2 / 1/21/2
Pr(lu,Qll ¢ [|Qullp > 6rT) < Pr (|, Qllp > 077777 ) + Pr ([ Qulp > 0,7T77).
12 Nl T 2
Note that [|Qu(} =322, (S0, gjiw) ', and

Pr (| Qull, > (6:7)""*) = Pr (| Qul. > 6rT)

j=1 | t=1
I s 1/2
orT
= ZPI‘ Zthut > (?) ,
7j=1 Ll t=1

Noting further that ¢;u; and ¢;u,; are martingale difference processes satisfying a result of

the usual form we obtain

522 el
Pr (Hu Qllr> 51/2T1/2> <lrPr <|uxqz| > T) <lrexp < T)

T I

or

1/2T1/2 5T 5/2(s+2)
<H“ Qllr > 51/2T1/2> < lrPr (’uxqzl U T ) < lrexp <( 5 ) )
1/ Iy

T

1/21/2

depending on the order of magnitude of ‘STll—z;, and a similar result for Pr (|| Q'ull, > &/*TY 2) :
T

Therefore,
Pr(||lu, Q| |Qul > drT) < exp [—COTcl] ) (B.18)
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T1/2CT T1/2
ortr |25 || (1= | +55) " [Fad [l

are of larger, polynomial in 7', order than . Then, the factors in I in (A.49) and (B.18) are
negligible. We let (p = T, Iy = T, || 2, ||F 1}/ = T%? and 67 = T*, where o > 0, can
be chosen freely. This is a complex analysis and we simplify it by considering relevant values
for our setting and, in particular, A > 1/2, A < 1/2 + ¢, for all ¢ > 1/2, and d < 1. We have

and

We wish to derive conditions for Iy under which ?—;

TV2¢, —~ _0 (T1/2+)\70ﬁ2d) L0 (T1/2’3d/2) (B.19)
ortr 1251 (1=, + )
T1/2
Ty presar (B.20)
male O
6T o a—d
g (7o) (B.21)
and 2
%T =0 (T* ) =0 (clnT) (B.22)

—1
aq

norm order than f);ql — X}, (B.14) follows similarly proving the result under (D1). For (D2)

Clearly d < 1/3. Setting ov = 1/3, ensures all conditions are satisfied. Since ¥_ ! is of lower

and (D3) we proceed as follows. Under (D3), noting that u; is a mixing process, then by
Lemma 21, we have that (B.12) is replaced by

Pr (Juu] > Gr) < exp [—Co (T00/2¢r) V2] (B.23)

else, under (D2), we have again that (B.12) holds. Further, by a similar analysis to that above,

s/(s+2)
—C6 T-%/25./
T> +lTeXp —O() <—1/2T
l

lr 7

T 19/2 8/2 S+2)
()
Iy

T1/2<T T1/2
ot |Za ||« (1% [ +52) " [Pad' [l e

and 5T are of larger, polynomial in T, order than . But this is the same requirement to that
T2

it is easily seen that, under (D2),

Pr(|w.Qll, |Qull, > 6:T) < Ly exp (
and under (D3),

Pr(||u,Qllp |Qulp > 6rT) < 2lr exp

Under (D2), we wish to derive conditions for l7 under which

under (D1). Under (D3), we wish to derive Condltlons for l7 under which
srtr [ Zag | (11 | 455
ﬁ, ‘;T and (TY2¢r) /(%) ore of positive polynomial in T, order. But again the same
conditions are needed as for (D1) and (D2). Finally, we consider (D4). But, noting Remark
23, the only difference to (D3) is that (7 > T2, rather than ¢(; > T. Then, as long as

(T~1%¢r )S/ 2 _, 5o the result follows. m



Lemma 23 Let y;, fort =1,2,...,T, be given by the data generating process (1) and suppose
that w; and @, = (14, Tat, ..., Tnr)' satisfy Assumptions 1-3. Let q, = (q1.t, @24, - Q) con-
tain a constant and a subset of x,;, and let n; = :L'g’t,ﬁ'b—i—ut, where xy; 15 ky x 1 dimensional vec-
tor of signal variables that do not belong to q.,, with the associated coefficients, 3,. Assume that
DI %23:1 E(q.q,) and Z,, = QQ/T are both invertible, where Q = (q,., qs., ..., q,.)
and q; = (qi1, Qi -, @), for i = 1,2, ....lp. Moreover, let ly = o(TY*) and suppose that
Assumption 5 holds for all the pairs x; and q,, and y; and (¢, x;), where x; is a generic
element of {x1s, Toy, ..., Tnt} that does not belong to q,, and denote the corresponding projec-
tion residuals defined by (15) as ury = x4 — Vo, 74, and e; = Yr — Yyo (g, 21)'. Define
z = (21,72, . 27), ¥y = (Y1,Y2, ., yr), € = (e1,€2,....er), M, = Ir — Q(Q'Q)"'Q’, and
6 = E(T '2'M,X,) B,, where X, is T xk, matriz of observations on @y Finally, c,(n) is
such that c,(n) = o (\/T) Then, under Assumption 6,for any m in the range 0 < ™ < 1,
dr > 0 and bounded in T, and for some C;,c > 0 fori=0,1,

—(1=n)02 .02 2 (n
Pr[|t.] > c,(n)]0 = 0] < exp - ELALECY p (1) (B.24)
2 (1 + dT) wiaT
+exp (—CoT“) |
where e
= MY (B.25)
loorn ()
or iy =E(T7'ee), o} ) = E(TT'x'Myx), (B.26)
and
1 T
Wrer = 7 ) B [(uam)’] (B.27)
=1
Under of = 0® and/or E (u2,) = 02, = 02, for all t =1,2, ... T,
—(1=m)?2E(n
Prlt] > 6y(m) [0 = 0] < exp | —0—_
2 (1 +dy)
+exp (—CoT“) . (B.28)

In the case where 6 > 0, and assuming that there exists Ty such that for all T > Ty, Ay —
cp(n)/ﬁ > 0, where \p = 0/ (O’L(T)O'E,(T)), then for dr > 0 and bounded in T and some C;
>0,7=0,1,2, we have

Pr(|t,]| > ¢,(n) [0 # 0] > 1 — exp (—CoT"). (B.29)
Under Assumption 7, for some Cy,Cy > 0,
Pr(|t,] > ¢,(n) |0 =0] <exp [—cp(n)s/(s+2)] +exp (—CoT“) , (B.30)
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and

Pr(|t,| > c,(n) [0 # 0] > 1 — exp (—CoT"). (B.31)

Proof. We start under assumption 6 and in the end note the steps that differ under 7. We
recall that the DGP, given by (17), can be written as

y=atr+XB+u=arr+X,08,+ X3, +u

where X, is a subset of Q. Recall that Q, = (Q,z), M, = Ir — Q(Q'Q)_lQ’, M, =
Iy — Qx(Q;Qx)_lQ; Then, M,X, = 0, and let M, X}, = (€pg 1, .. Togr)- Then,

T71/2 ™ T71/2 IMX T71/2 /M
{ = TVY TMXoBy | TYU (B.32)

Jloorm (<2=) - Joermy () froesm) (20

Let 0 = E (T '2'M,X}) By, 1 = Xp8, +u, 1 = (01,72, ...,07) , and write (A.88) as

VT T2 (#hn — g)

t, = + : (B.33)
\/(e,e/T) (x qu) \/(e e/T) ( /qu)
First consider the case where # = 0, and note that in this case
x'Mgx —1/2 ' M,
T1/2 ( L > Myn
’ (e'e/T)
Now by (A.81) of Lemma 15 and (B.7) of Lemma 22, we have
T1/2 (x/qu> —1/2 ' Myn
T T
Pr(|ty| > ¢,(n) |0 =0] =Pr >c(n)[f =0 < (B.34)

(e'e/T)

—1/2
T1/2 <x’qu> / x'Mgn
T

T - cp(n) 1 exp (—COTcl) '

Pr
Oe,(T) 1+ dT

, ~1/2
Then, by Lemma 26, under Assumption 6 and defining (X ) = <iqu> x'M, where
a(X 7) is exogenous to y;, a(X 1) a(X 1) =1 and by (B.7) of Lemma 22, we have,

-(1- 7T)2 o’ (T)U2 (T)CIQJ (n)
(1 + dT) :ce T
+ exp (—C’OTcl)

(B.35)

Pr(|t,| > ¢,(n) 6 = 0] < exp [

11



where
xeT__ZE Uxt77t ZE[xt mbtﬁb"f‘“t)],

and u, ¢, being the error in the regression of z; on Q, is defined by (15). Since by assumption

u, are distributed independently of u,; and x;;, then

xeT TZE[ wbqt/gb } i

where z;, , 3, is the t-th element of M, X;3,. Furthermore F¥ [uit (wgqytﬁb)ﬂ =E(u2,) E (wgq’tﬁb)z -
E(u2,) B,E (:zzbq,ta:gqi) By, noting that under ¢ = 0, u,, and x;, are independently distrib-
uted. Hence

T

J:eT Z mbq tmbqt ﬁb Z E (B36)

Similarly
oty =E(T 'ee)=E (T‘ln’qun) = E [T (XuB, + u) My, (X8, + u)]
= B,E (T7' XM, Xs) By + ZE u?)

and since under # = 0, x being a pure noise variable will be distributed independently of X,
then £ (T'X,M,.X;) = E(T'X,M,X,), and we have

1 T
= B, (T X\M,X,) B, + Z B (u?)
1 T

= T ZB;E (mbqtmbqt /Bb ZE ut <B37)

=1
Using (A.90) and (A.91), it is now easily seen that if either E (u2,) = o2, or E (uf) = o, for
all ¢, then we have w?, 7 = 02,02 .y, and hence

22
™) %

1+ dp)?

(n)

Pr(|t.| > ¢,(n) |0 =0] < exp [_ (21( +exp (—CoT“) .

giving a rate that does not depend on error variances. Next, we consider § # 0. By (A.80) of
Lemma 15, for dp > 0,

T_I/Zw’l\/[qy

(e (28)

Pr

T2 M,y ‘ - cp(n)

> c,(n) §Pr( T1dr

> + exp (—C’OTcl) .
Te,(T)T,(T)

12



We then have

T-122'M,y B T2 (% - 9) n T-122'M,u n T2
Oe,(T)%2,(T) Oe,(T)9,(T) Oe,(T)0,(T) Oe,(T)9,(T)
TY? (mlMT‘m — 9) . T1/20
Oe,(T)92,(T) Oe,(T)0,(T)

Then

12 (='Mgn )
- T ( T 0 N TY29 - cp(n)

Oe (T)0x,(T) Oe,(T)0x,(T) 1+4+dr
x’'M
NG ( T = 0) T1/20 cp(n)
=1-Pr + <
Te(T) 0 (T) Oe (T)0x,(T) 1+ dr

We note that, by Lemma 3,

A 0) e | o
+ <

Pr <
Oe (T)0x,(T) Te(T)Ta,(T) 1+dy
T1/2 <m’1\;qn - Q) T2 ) . (n)
< Pr > S—
Oe,(T)0x,(T) Oe(T)0z) 1+dr

But (T~'2'M,n — 0) is the average of a martingale difference process and so

' M,
T (S 0)[  peg )

Pr > B.38

Oe,(T)T,(T) Oe,(T)0z,(T) 1+dr ( )
1/2 s/(s+2)
<exp |—C} <T1/2 ( =16l _ ‘9%("))) ‘
Ue,(T)Gx,(T) 1 + dT
So overall
T—1/2 "™
Pr it > cp(n)| >1—exp (—CoT™)

\Jleerm) (28)

— exp

s/(s+2)
e} <T1/2 ( T2 9| _ 901)(”))) '
Oe(1)0ayr) 1+dr

Finally, we note the changes needed to the above arguments when Assumption 7 holds,
rather than 6. (B.30) follows if in (B.34) we use (B.11) of Lemma 22 rather than (B.7) and,
in (B.35), we use Lemma 27 rather than Lemma 26 and, again, we use (B.11) of Lemma 22
rather than (B.7). (B.30) follows again by using (B.11) of Lemma 22 rather than (B.7). =

13



Remark 24 We note that the above proof makes use of Lemmas 26 and 27. Alternatively
one can use (A.80) of Lemma 15 in (B.34)-(B.35), rather that (A.81) of Lemma 15 and use
the same line of proof as that provided in Lemma 16. However, we consider this line of proof

as Lemmas 26 and 27 are of independent interest.

D. Lemmas for the deterministic case

Lemmas 24 and 25 provide the necessary justification for the case where x; are bounded

deterministic sequences, by replacing Lemmas 12 and 16.

Lemma 24 Let x;, @ = 1,2,....n, be a set of bounded deterministic sequences and u; sat-
isfy Assumptions 1-3 and 4, and consider the data generating process (1) with k signal
variables 1y, Top, ..., Tpe. Let q, = (qlgt,qg,t,...,ql%t)' contain a constant and a subset of
xy = (T14, ot oo, Tpy) . Let mp = @By + uyy, where ¢y, contains all signal variables that
do not belong to q,. Let ¥, = Q'Q/T be invertible for all T', and HZ HFF =0 (\/E),
where Q = (qy., qy., -, q,,.) and q;. = (¢, Gia, .-, Gir)', for i = 1,2, ..., lp. Suppose that As-
sumption 5 holds for all the pairs x;; and q,, u; and q,, and y; and (¢, x;), where x; is
a generic element of {x1s, Tat, ..., Tt} that does not belong to q,. Let u,, v be as in (15),
such that sup; ; limTHOOHCIQTqﬁ%TH < C < o0, and let Gy, = (Ug; 1, Ugy 2y -y Uy ) = My,
x;, = (i1, Tig, .y tip)'y Uy = (Uy1,Upgys o, Upr) = Mym, n = (771,772,. Snr), My = Ip —
QQQ)™ Q, Fi = FPUFL, tams = B (e pung |Fior), 200 = 5 20y B [(wame — B (zame | Fia))?]
and Wi, o = F Ly E (g, puns — ,uxm,t)Q]. Then, for any  in the range 0 < m < 1, we have,

under Assumption 4,

T
Pr (
t=1

where (r = O (T*), and (s +1)/(s+2) > X If (s+1)/(s +2) < A,

T
Pr (
t=1

for some Cy > 0. If it is further assumed that Il = O (Td), for some X\ and d such that
d<1/3, and 1/2 < X< (s+1)/(s+2), then

- LK (:vimt ’-,thl)

> CT) < exp

_(1_—7T)2<%1 , (B.39)

2
2Tw$z7771,T

E (wiﬂh ’ftq)

> gT) < exp [ Oy +2) } (B.40)

T 2 .
Pr < Z (ﬂzi,tun,t - Mmm,t) > CT) < Cyexp % + exp (—C’OTCl) .
t=1 ;I:mT
Otherwise, if A > (s +1)/(s +2),
T
(Z (U tthnt — M) | > CT> < eXp[ Oy T2 ] + exp (—CoT“) . (B.41)
1

14



Proof. Note that all results used in this proof hold both for sequences and triangular ar-
rays. (B.39) follows immediately given our assumptions and Lemma 9. We proceed to
prove the rest of the Lemma. Note that now ,, is a bounded deterministic vector and

Uy, = (Ug; 1, Uz, 2, - Uy, 1) & segment of dimension T of its limit. We first note that

T
t=1
T

(ufﬂi,tunyt - luil?ﬂ],t) - (T*lu/sz) 2;q1 (Qlu’ﬁ) )

t=1

where u, = (Uyy, ..., Upy) and w, = (Upy, ..., up,)". By (A.6) and for any 0 < 7; < 1 such that

S22 m = 1,we have
T
> CT) < Pr ( D (W st = )| > 7T1CT>
=1

T
Pr ( Z (ﬁxi,tﬂn,t - N:Jcm,t)
t=1
+ Pr (} (T_IU;ZQ) qul (Qlun>‘ > 7T2<T) .

Also applying (A.7) to the last term of the above we obtain

Pr (‘ (T’lu’ _Q) E;ql (Q'un)‘ > WQCT)
< Pr (|25 177wk, Ql 1Qwy . > matr)

(HE e > W;f) +Pr (77 ||, Q| Qs > ma0r)

<pe ([0l > ) e (0@, > (o))

+Pr (1Quy | > (D))

where d7 > 0 is a deterministic sequence. In what follows we set d7 = O (¢¢), with 0 < a < A,

so that (r/d7 is rising in 7. Overall

T
Pr < Z aztunt _,ux’r]t)

> <T> (B.42)

< pr< > m(T) T Pr <||2 s ”;jT)

+ Pr (1Quy > (mabrT)?) + Pr (||, Q> (madrT)?)

T
ur tUnt — Moy, t)
t=1

We consider the four terms of the above, and note that since by assumption {g;;u,} are mar-

tingale difference sequences and satisfy the required probability bound conditions of Lemma

15



10, and {g;1u., +} are bounded sequences, then for some C, ¢ > 0 we have?

sup Pr <||q;u77|| > (7T25TT)1/2> <exp (—CoT“")
and as long as Ip = o (dr),
Pr (11w, Qll > (m202T)"*) =0
. L2 Ir T 2
Also, since [|Q'uy |z =>"1", (thl thut) ;

Pr (| Q| > (m20r1)")

— Pr (HQ'UWH; > 7T25TT>

which upon using (A.45) yields (for some C, ¢ > 0)
Pr(1Qullp > (7207T)"?) < trexp (—CT), Pr(|Quell > (madrT)?) = 0.

Further, it is easy to see that
_ m2(r
Pr( =, > —) =0
(” aq HF o7

as long as 53—52 — 00. But as long as I = o (Tl/ 3), there exists a sequence dr such that
T'T

Cr/or — o0, Iy = o () and > Cljl’ 5 — 00 as required, establishing the required result. =
T'T

Lemma 25 Lety,, fort =1,2,...,T, be given by the data generating process (1) and suppose
that ; = (w14, Tog, ..., Tp)' are bounded deterministic sequences, and u; satisfy Assumptions
1-3, and either Assumption 4 or Assumption 4 hold. Let q., = (q1.t, G2ty -+, qlT’t)' contain a con-
stant and a subset of T, = (¢, Tot, ..., Tnt)', and let ny = Xy By +us, where x4 is ky X 1 dimen-
sional vector of signal variables that do not belong to q.,. Assume that X, = Q'Q/T is invert-
ible for all T, and ||Eq_q1HF =0 (\/E), where Q = (qy., Gy., .-, q;,.) and q;. = (Gi1, G2, -, Gir)',
for i = 1,2,....lp. Moreover, let Iy = o(T'*) and suppose that Assumption 5 holds for

all the pairs vy and q,, and u; and q,. Define € = (v1,79,....,27), ¥ =1, Y2, .., yr)

2The required probability bound on u; follows from the probability bound assumptions on z; and on g,
fori=1,2,...,l7, even if I — 0co. See also Lemma 11.
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M, =I; - QQQ)'Q, and § = T'2'M,X,3,, where X;, is T xk, matriz of observa-

/
Gtz T I
T1/2

e = (e, e9,...,er) be the T x 1 vector of residuals in the linear regression model of y; on q,

tions on xy;. Let uy, v be as in (15), such that sup, ; limy < C < oo. Let

and x;. Then, for any w in the range 0 < m < 1, dr > 0 and bounded in T, and for some
C; >0 fori=0,1,

Pr(|t,] > ¢,(n) 0 = 0] < expl (1 — 1) 00y T 1) % )]

(1 + dT) azuT
+ exp (—COTcl) ,

where
T2 M,y

ty = s

\Jleerm) (28)

037(T) and Ui,(T) are defined by (A.71) and (A.66), and

Wy T = 7 E axtat ’

Under o2 = 0% and/or 02, = o2 for allt =1,2,...,T,

Pr(|t,] > ¢p(n) 6 = 0] < exp

—(1—m)°c(n)
2(1 +dr)”
+ exp (—C’OTCl) .

In the case where 0 > 0, and assuming that c,(n) = o(\/T), then for dp > 0 and some C; > 0,
1=0,1,2,3, we have

Pr(|t,] > cy(n) |0 # 0] > 1 — Cyexp (—C1T<).
Proof. The model for y can be written as
y=arr+XB+u=arr+ X0, + X0, +u

where 77 is a T' x 1 vector of ones, X, is a subset of Q. Let Q, = (Q,z), M, = Ir —

Q(QIQ)_lQI7 qu = IT - Qx(Q;Qw)_lQ?p Then7 Mar = 0. Mqu = (wbq,ly -‘-7wbq,T),'
Then,
T-122'M,y B T-122'M, X, 3, n T-122'M,u

Jleern) (<3=)  fieen) (282) - freen (qux)'

n= Xb/gb +u, n= (771? "'777T)I

ty =

Let

17



0 =Tz’ M, X, 3,
4\Y . ‘M
oty = E(ee/T)=FE (77 Tq "7) , orry = E (X qu) :

and write (A.88) as

VT8 1 T2 [2'M, n— E (2'Myn)]

e (28=) e (238)

M, n— E ('M,n) = [£'M,u — E (£'M,u)],

(M,X,8,) (M X,8,) _ 1 v
S — :TZ(%qlﬁb = Z%bt Tp(1)-
=1

ty =

T

t
Then, we consider two cases: % =0 =0 and 0 # 0. We consider each in turn. First,
we consider # = 0 and note that

T-Y2[2'M,u — E (z'M,u))

\J(ee/m) (28)

ty =

By Lemma 15, we have

T—122'M,n

\/(e e/T) <qu>‘)

T‘l/Qm’qu‘ - cp(n)

Pr(|t,| > ¢,(n) |0 =0] =Pr

of

By Lemma 24, it then follows that,

>c(n)[f =0 <

1+dr

) + exXp (—C()Tcl) .

Oz,(T)0¢,(T)

—(1—=m)02 .02 2 (n
Pr[|tx\>cp<n>|e:o]sexp[ (1= 02 zmpml

2 (1 + dT) ze, T
+ exp (—CoT“")

where wxeT =7 Zt L [(umnt)Z]. Note that, by independence of u; with u,; and @y, we

have
:ceT__ZE uwtnt ZE[ Uyt mbquBb) :| (UigE(U?)

By the deterministic nature of z;;, and under homoscedasticity for 7, it follows that o (T)ai 1) =

2
Wie s and so

Pr (] > cy(n) [0 = 0] < exp [_ - : fd;;g(")]

~+ exp (—C’OTCI) .
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giving a rate that does not depend on variances. Next, we consider # # 0. By Lemma 15, for
dr > 0,

T2’ M,y

(e (22)

Pr

T1/2:1:’qu' - cp(n) )
Oe (T)0x,(T) 1+dr

> ¢y(n)| <Pr (

-+ exp (—C()TCI) .

We then have

T-'2¢'My T '*z'Mju N T2

Oe,(1)0x,(T) Oe,(T)0,(T) Oe,(T)0,(T)

~ fﬂ)

Then,

T122'M,u N T/20

of

Oe,(T)0z,(T) Oe,(T)0x,(T)
1P (‘Tl/ZTl/Qm’Mqu N T2 < cp(n) > ‘
Oe(T)0,(T) Oe(T)0a,(T) 1+dr

We note that

—1/2 1/2
Pr ( T-2z'M,u N T20 < cp(n) )
Oc(T)0a,(T)  Oe(n)0uyr)| — 1+dr
—1/2 1/2
< Pr ( T-122'M,u - T2 cp(n) ) .

O (T)0,(T) Oeyr)0uyr)  1+dr
But T '2'M,u is the average of a martingale difference process and so

1/2 :c’Mqu>
L ) | N

Oe(T)0x,(T) Oe(T)0zT) 1+dp

s/(s+2)
_C <T1/2 ( T2 1] _ p(n) >) '
Oe(1)0a,r) 1+dr

Pr

< exp (—C’OTcl) ~+ exp

So overall,

T-122'M,y

\J(eerm) (28)

Pr

> cp(n)| >1—exp (—CoT)

1/2 s/(5+2)
_exp |—C <T1/2( 6| _ cp(n) >> .
Oe(T)0zT) 1+dp
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E. Auxiliary Lemmas

This Section provides some auxiliary Lemmas used in Sections A and B of the online theory

Supplement.

Lemma 26 Suppose that u;, t = 1,2,...,T, is a martingale difference process with respect to
F | and with constant variance o2, and there exist constants Co,Cy > 0 and s > 0 such
that Pr (Jus| > o) < Cyexp (—Cha®), for all « > 0. Let X1 = (@1, Ta, .., T7), where T, is an
lr X 1 dimensional vector of random variables, with probability measure given by P(X ), and
assume

E(u|Ff) =0, forallt =1,2,..,T, (B.43)

where Fif. = o (x1, Ta, ..., T7). Further assume that there exist functions
a(X 1) =[a1(X7),00(X 7)., ar(X7)] such that 0 < supx, a(Xr)'a(X7) < gr, for some

sequence gr > 0. Then,
T 2
—Sr
Pr ( ;—1 a( X r)ug| > CT> < exp (QgTU2) )
> CT} Then,

Proof
Define Ap= {‘ZtT:l (X r)uy

Pr(Ar) = [ Pr(Ar|Ff) P(X2) < supPr (Ar 17F) |

But, by (B.43) and Lemma 9

—¢F
Pr (Ar |F7) <
r (Ar |F7) < exp (QUQZ,Tlozf(XT)

P(Xr)= sup Pr (Ar | F7)

T

—(F —
sup exp T < exp 5 |
Xr 202% 07 (X ) 2g9ro
proving the result.

Lemma 27 Suppose that u;, t = 1,2,....,T, is a mizing random variable with exponential
mixing coefficients given by oy, = ag®, 0 < ¢ < 1. , with constant variance 0%, and there exist
sufficiently large constants Cy,Cy > 0 and s > 0 such that Pr (|u;] > a) < Cyexp (—Cia?),
for all « > 0. Let X1 = (@1, 2, .., 1), where , is an Iy X 1 dimensional vector of random
variables, with probability measure given by P(X ). Further assume that there exist functions
a(X7) = [a1(X7),00(X7)..., ar(X7)] such that 0 < supx, a(Xr)'a(Xr) < gr, for some

sequence gr > 0. Then,
s/(s+1)
Cr
>(r | <exp | — SV
gr °

Pr <
20

T

Z @t(XT)Ut

t=1




Proof. Define Ap= {‘Zthl (X r)uy

> CT} and consider F7 = o (xy, 3, ..., z7) . Then,

Pr(Ar) = / Pr(Ar|F7) P(X 1) < S)l(lpPr (Ap |F$)/ P(X 1) = supPr (Ar | F7)
XT T

XT XT
But, using Lemma 2 of Dendramis, Giraitis, and Kapetanios (2015) we can choose Cy, Cy such
that

s/(s+1)
Pr(Ar |Ff) <exp |— T_CT ,
Zt:l O‘z%(XT)
and
o/ (s1) s/(s+1)
—Cr (r
supexp |— <exp |— T /2 ,
xr oy/ Y af (Xr) Ir @

thus establishing the desired result. m

Lemma 28 Let Ay = (a;;1) be a lp X lp matriz and Ay = (a;5r) be an estimator of Arp.
Let ||A;1||F > 0 and suppose that for some s > 0, any by > 0 and Cy > 0

Sup Pr (|dij,T — aij,T| > bT> < exp < C (Tl/Zb )S/ s+2)> .

Z7]

Then

o

A1

A, — AL

—Cy (Tl/Qb )5/ 5+2)
< lpexp B.44
) T ( s/(s+2) HA 1HS/ (s+2) HA IHF‘I’bT)S/ 5+2) ( )

Ts/2(s+2)
+ 12 exp
oo ()

where ||A|| denotes the Frobenius norm of A.

Proof. First note that since by > 0, then

N N 2
Pr <HAT - ATHF > bT) —Pr (HAT - ATH > b%)

(ZZ >b])

7j=1 =1
and using the probability bound result, (A.6), and setting m; = 1/Ir, we have

Pr (HAT - ATHF > bT> Z ZPI‘ |aij ang| lt_2b%~) (B45)

Jj=1 i=1

lr
= ZZPF |aUT aUT| >l 1bT)

=1 =1

A . b/ o+2)
< I sup [Pr (|ayr — aijr| > 1;br)] = U7 exp ( = [5752)
1] t
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To establish (B.44) define the sets

Ar = {]| A7 |Ar - Aq|| <1} and By = {|A;" - A7Y|| > br

and note that by (2.15) of Berk (1974) if Ay holds we have

A7

oA,

I
F

- HA?HFHAT—ATHF'

A_1_ _1

|a;' - a7

Hence

Az 'II; Ar
Pr (BT |AT) < Pr " L br
LAzt [ Ar ],

:Pr< A

Pr (BT) =Pr ({BT N .AT} U {BT N .A }) PI‘ BT’AT) Pr (AT) + Pr (BT‘AT) Pr (.AC)

br
o> yam, <HA;1||F+6T>) '

Note also that

Furthermore

Pr (A7) = Pr (|| 47" ||Ar — Ar| >1)

= Pr(||Ar — As| > |la7)I).
and by (B.45) we have

s bs/(s+2) Ts/2(s42)
Pr (.A%) < l%exp ( CoT /2( +2)ls/(Tz)> = exp < HA 1Hs/ (s+2) s/(s+2)>

t

Using the above result, we now have

~ br
Pr (BT) S Pr (HAT - ATHF > HAilHF ||A71||F n bT)) Pr (AT)
Ts/2(s+2)
+ Pr (BT|.AT) exp ” _1HS/(S+2) el R

Furthermore, since Pr (A7) < 1 and Pr (BﬂAg) < 1 then

A . b
pe(er) - P (7" - a7 = r) < e [ - o], > : )

1Az |- (1Al + br)
s/2(s+2)
+ exp T .
(et

Result (B.44) now follows if we apply (B.45) to the first term on the RHS of the above.. ®
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Lemma 29 Consider the scalar random variable X1, and the constants B and C. Then, if
C > |B| >0,
Pr(|I X+ B|>C)<Pr(|X|>C-|BJ). (B.46)

Proof. The result follows by noting that | X + B| < |X|+ |B|. =
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