Unemployment Insurance and Macro-Financial (In)Stability

Yavuz Arslan (Liverpool) Ahmet Degerli (FED Board) Bulent Guler (Indiana) Gazi Kabas (Tilburg) Burhan Kuruscu (Toronto)

CEMLA/Dallas FED Financial Stability Workshop November 2023

Views expressed here are those of authors and do not reflect the views of the FED Board.

- Study of unemployment insurance can be summarized by Baily-Chetty formula.
 Optimal unemployment insurance weighs
 - Social insurance benefits through better consumption smoothing Brown (1955), Blinder (1975), Christiano (1984)
 - Social costs through higher taxes, discouraged job creation and job search -Moffitt (1985), Hagedorn etal (2019)

- Study of unemployment insurance can be summarized by Baily-Chetty formula.
 Optimal unemployment insurance weighs
 - Social insurance benefits through better consumption smoothing Brown (1955), Blinder (1975), Christiano (1984)
 - Social costs through higher taxes, discouraged job creation and job search -Moffitt (1985), Hagedorn etal (2019)
- ► This paper: Two *new* mechanisms.

- Study of unemployment insurance can be summarized by Baily-Chetty formula.
 Optimal unemployment insurance weighs
 - Social insurance benefits through better consumption smoothing Brown (1955), Blinder (1975), Christiano (1984)
 - Social costs through higher taxes, discouraged job creation and job search -Moffitt (1985), Hagedorn etal (2019)
- ► This paper: Two *new* mechanisms. A higher unemployment insurance
 - Weakens household balance sheets: Households
 - reduce precautionary (liquid) savings &
 - increase mortgage debt/leverage.

- Study of unemployment insurance can be summarized by Baily-Chetty formula.
 Optimal unemployment insurance weighs
 - Social insurance benefits through better consumption smoothing Brown (1955), Blinder (1975), Christiano (1984)
 - Social costs through higher taxes, discouraged job creation and job search -Moffitt (1985), Hagedorn etal (2019)
- ▶ This paper: Two *new* mechanisms. A higher unemployment insurance
 - Weakens household balance sheets: Households
 - reduce precautionary (liquid) savings &
 - increase mortgage debt/leverage.
 - Weakens bank balance sheets: Banks hold more and riskier mortgages. * Literature

1. A quantitative GE model that features

▶ interactions between household, bank, and firm balance sheets.

1. A quantitative GE model that features

▶ interactions between household, bank, and firm balance sheets.

2. County and state level evidence on house prices and mortgages

- Higher UI \rightarrow
 - Higher loan-to-income (LTI) ratios
 - More and higher-LTI mortgages in bank balance sheets.

- Higher UI \rightarrow
 - Higher loan-to-income (LTI) ratios
 - More and higher-LTI mortgages in bank balance sheets.
 - Larger response of house prices, foreclosures, output,.. to aggregate shocks

- Higher UI \rightarrow
 - Higher loan-to-income (LTI) ratios
 - More and higher-LTI mortgages in bank balance sheets.
 - Larger response of house prices, foreclosures, output,.. to aggregate shocks
- ► However, **unexpected** discretionary increases in UI stabilizes recessions.

- Higher UI \rightarrow
 - Higher loan-to-income (LTI) ratios
 - More and higher-LTI mortgages in bank balance sheets.
 - Larger response of house prices, foreclosures, output,.. to aggregate shocks
- ► However, **unexpected** discretionary increases in UI stabilizes recessions.
- ► GE effects matter:

1. Quantitative GE model evidence:

- Higher UI \rightarrow
 - Higher loan-to-income (LTI) ratios
 - More and higher-LTI mortgages in bank balance sheets.
 - Larger response of house prices, foreclosures, output,.. to aggregate shocks
- ► However, **unexpected** discretionary increases in UI stabilizes recessions.

► GE effects matter:

■ Increasing UI for the whole economy creates a systemic risk,

1. Quantitative GE model evidence:

- Higher UI \rightarrow
 - Higher loan-to-income (LTI) ratios
 - More and higher-LTI mortgages in bank balance sheets.
 - Larger response of house prices, foreclosures, output,.. to aggregate shocks
- ► However, **unexpected** discretionary increases in UI stabilizes recessions.

► GE effects matter:

■ Increasing UI for the whole economy creates a systemic risk,

not captured by cross-sectional variation across regions within the economy.

1. Quantitative GE model evidence:

- Higher UI \rightarrow
 - Higher loan-to-income (LTI) ratios
 - More and higher-LTI mortgages in bank balance sheets.
 - Larger response of house prices, foreclosures, output,.. to aggregate shocks
- ► However, **unexpected** discretionary increases in UI stabilizes recessions.

► GE effects matter:

■ Increasing UI for the whole economy creates a systemic risk,

not captured by cross-sectional variation across regions within the economy.

Cross-sectional studies potentially understate destabilizing effects of UI.

2. Evidence from US counties and states:

- ► Higher UI \rightarrow higher loan-to-income (LTI) ratios
 - Cross-sectional (border-county) evidence
 - Event study after an unexpected cut in UI in Missouri

2. Evidence from US counties and states:

- ► Higher UI \rightarrow higher loan-to-income (LTI) ratios
 - Cross-sectional (border-county) evidence
 - Event study after an unexpected cut in UI in Missouri
- ► House prices and mortgage loans respond more to aggregate shocks
 - Cross-sectional (border-county) evidence

Quantitative Model

- OLG of finitely-lived households
- Subject to idiosyncratic income and unemployment risk.
- ► Unemployed receive UI benefits.
- ► HHs receive utility from consumption and housing services.
- HHs can either rent or own a house of desired size; can save in liquid assets.

- House purchase can be done through a defaultable fixed-rate mortgage
- Terms of mortgage contracts (down payment and mortgage interest rate) are endogenous
- ► Homeowners can resize their house and/or refinance their mortgage

➡ HH's Problem

- combine labour and capital to produce final good
- finance a fraction of their wage bill in advance from banks

- combine labour and capital to produce final good
- finance a fraction of their wage bill in advance from banks
- Banks
 - accept deposits at an exogenous rate,
 - give short-term loans to production firms, and
 - issue and invest in long-term mortgages to HH's.

- combine labour and capital to produce final good
- finance a fraction of their wage bill in advance from banks
- Banks
 - accept deposits at an exogenous rate,
 - give short-term loans to production firms, and
 - issue and invest in long-term mortgages to HH's.
 - Banks can default with a fraction of their assets and not pay creditors \rightarrow
 - endogenous leverage constraint &
 - credit supply $\propto \underline{\text{bank net worth}}$

- combine labour and capital to produce final good
- finance a fraction of their wage bill in advance from banks
- Banks
 - accept deposits at an exogenous rate,
 - give short-term loans to production firms, and
 - issue and invest in long-term mortgages to HH's.
 - Banks can default with a fraction of their assets and not pay creditors \rightarrow
 - endogenous leverage constraint &
 - credit supply $\propto \underline{\text{bank net worth}}$
 - credit supply = credit demand from firms & households \rightarrow eq'm bank lending rate

Quantitative Results

- ► Calibrate the model economy to match US moments, most importantly
 - E-U-E transition rates, income risk, unemployment insurance
 - Household and bank balance sheets
 - Aggregate quantities and prices

- ► Calibrate the model economy to match US moments, most importantly
 - E-U-E transition rates, income risk, unemployment insurance
 - Household and bank balance sheets
 - Aggregate quantities and prices
- ► Study
 - 1. Steady state effects of higher UI on household and bank balance sheets
 - 2. Destabilizing effects of UI: a boom-bust experiment.

Large variation in UI replacement rates (<u>maximum UI benefit</u>) in US counties

Steady-State Comparisons

Boom-Bust Experiment: (De)Stabilizing Effects of Unemployment Insurance

A Remark:

Results generalize to productivity, house price expectations, & bank leverage shocks.

Boom-Bust Dynamics (UI=40%)

Higher UI amplifies the bust in the housing market

Higher UI amplifies the **bust** in the banking sector

Real Sector

Higher UI amplifies the bust in income, output, and consumption.

Foreclosure Rate

GE Matters: Bank balance sheet channel amplifies the destabilizing effect of UI

17/25

Unexpected temporary UI expansion stabilizes

 Increase discretionary UI benefits in the benchmark model (UI=40%) to 60% during the bust

Evidence from US States and Border Counties

- 1. Mortgage debt/leverage is higher in regions with higher UI.
- 2. Regions with higher UI experience larger fluctuations in aggregates.

Empirical Methodology: Border Discontinuity Design

We use counties that have borders to each other but are in different states.

1. UI and Loan-to-Income Ratio

Strong positive correlation between UI Generosity and Loan-to-Income ratio

Using Panel data at the county level:

 $LTI_{bcy} = \beta * UIbenefits + \gamma * Controls + YearFE + CountyFE + BankFE + \varepsilon_{bcy}$

Dependent Variable: Loan-to-income ratio								
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
UI Benefits	0.462***	0.261***	0.148***	0.216***	0.220***	0.213***	0.042***	0.056***
	(0.032)	(0.041)	(0.040)	(0.077)	(0.076)	(0.074)	(0.015)	(0.017)
Controls	Ν	Y	Υ	Υ	Υ	Υ	Ν	Υ
Year FE	Ν	Ν	Υ	Υ	Υ	Υ	Ν	Ν
County FE	Ν	Ν	Ν	Y	Y	Y	Ν	Ν
Bank FE	Ν	Ν	Ν	Ν	Y	Ν	Ν	Ν
Bank*Time FE	Ν	Ν	Ν	Ν	Ν	Y	Ν	Y
Pair*Time FE	Ν	Ν	Ν	Ν	Ν	Ν	Y	Y
Obs.	2,950,010	2,021,977	2,021,977	2,021,977	2,021,365	2,008,819	2,220,346	1,510,563
\mathbb{R}^2	0.075	0.082	0.100	0.183	0.305	0.370	0.204	0.415

2. UI amplifies the effect of interest rates on newly issued mortgages

	All		Pair(matching)	Pair(border)
	(1)	(2)	(3)	(4)
$\Delta Int.Rate_{q-1}^{10y}$ X UI Ben.	-0.039***	-0.036***	-0.016*	-0.017*
,	(0.009)	(0.011)	(0.009)	(0.009)
$\Delta Int.Rate_{q-1}^{10y}$	-0.337***			
,	(0.113)			
County Controls	Υ	Υ	Y	Υ
State Controls	Υ	Υ	Y	Υ
Macro Controls	Υ	Y	Y	Ν
County FE	Υ	Y	Y	Y
Month FE	Υ	Ν	Ν	Ν
Time FE	Ν	Y	Ν	Ν
Pair(matching)*Time FE	Ν	Ν	Y	Ν
Pair(border)*Time FE	Ν	Ν	Ν	Y
Obs.	93,873	93,873	29,214	34,932
R ²	0.490	0.774	0.892	0.933

Standard errors in parentheses

* p<0.10,** p<0.05, *** p<0.01 >> Volatility Regression

2. UI amplifies the effect of interest rates on house prices

	А	.11	Pair(matching)	Pair(border)
	(1)	(2)	(3)	(4)
$Int.Rate_{q-1}^{10y}$ X UI Ben.	-0.002***	-0.002***	-0.002**	-0.001*
	(0.000)	(0.000)	(0.001)	(0.001)
$Int.Rate_{q-1}^{10y}$	-0.017***			
,	(0.005)			
County Controls	Υ	Y	Υ	Υ
State Controls	Υ	Y	Υ	Υ
Macro Controls	Υ	Y	Ν	Ν
County FE	Y	Y	Υ	Υ
Seasonality FE	Υ	Ν	Ν	Ν
Time FE	Ν	Y	Ν	Ν
Pair(matching)*Time FE	Ν	Ν	Υ	Ν
Pair(border)*Time FE	Ν	Ν	Ν	Υ
Obs.	280,903	280,903	175,826	124,384
\mathbb{R}^2	0.180	0.297	0.705	0.722

Standard errors in parentheses

* p<0.10,** p<0.05, *** p<0.01

- ► We provided evidence from
 - a quantitative GE model &
 - micro data from US and mortgage markets that

UI destabilizes aggregate fluctuations and raise financial instability risks.

- ► The arguments can be extended to other policies that lowers income risk, e.g.
 - other social insurance policies and progressive income taxation.

Thanks!

In PSID, on average over the years,

- 34% of unemployed head of households were homeowners when they were unemployed.
- ► 38% if either head or spouse were unemployed.
- 51% homeownership rate among head of households who experienced some unemployment.
 - 58% homeownership rate among households where head or spouse experienced some unemployment.

Literature on Stabilizing Effects of Unemployment Insurance

Unemployment insurance as an automatic stabilizer:

McKay and Reis (2016, 2020), Di Maggio and Kermani (2017)

Stabilizing effects of discretionary unemployment insurance extensions:

Nakajima (2012), Hagedorn, Karahan, Manovskii, and Mitman (2013), Kekre (2019), Coglianese (2015), Hsu, Matsa, and Melzer (2018), Chodorow-Reich, Coglianese, and Karabarbounis (2018)

Countercyclical unemployment insurance:

Kroft and Notowidigdo (2016), Landais, Michaillat and Saez (2018), Nakajima (2019)

Contribution relative to

Quantitative papers: we study new channels

Missouri Experiment

- Unexpected cut in UI generosity in Missouri in April 13, 2011.
- ▶ UI duration in Missouri decreased from 73 weeks to 57 weeks.

	Weights		Missouri	Synthetic Missouri
Connecticut	0.021	LTI	2.08	2.08
Illinois	0.113	Ave. Wages	39570.50	39571.20
Indiana	0.294	$\Delta log(Wages)$	2.70	2.70
Minnesota	0.041	HP	253.74	255.39
Nebraska	0.024	Unemp. Rate	6.72	6.73
Ohio	0.004	Pop.	5900265.67	6370584.61
Tennessee	0.402	$\Delta log(GDPpc)$	0.53	0.53
West Virginia	0.101	log(GDP pc)	10.66	10.66

Missouri Experiment (* LTI-UI Relation)

Renter can either continue to rent or buy a house:

$$V^{r}(\widehat{\theta}) = max\left\{\underbrace{V^{rr}(\widehat{\theta})}_{rent}, \underbrace{V^{rh}(\widehat{\theta})}_{buy}\right\}$$

The value of becoming a homebuyer is given by

$$V^{rh}(\widehat{\theta}) = \max_{c,h,d,d' \ge 0} \left\{ u(c,h) + \beta_i E V^h(\theta') \right\}$$

subject to

$$c + p_h h + a' = y(j, z; w) + R_i a + d(q^m(\widehat{\theta}; h, d) - \varphi_m) - \varphi_f I(d > 0)$$
$$d \le (1 - \underbrace{\iota}_{=0}) p_h h$$

Homeowner can stay, sell, resize, refinance or default:

$$V^{h}(\theta) = max\left\{\underbrace{V^{hh}}_{stay}, \underbrace{V^{hr}}_{sell}, \underbrace{V^{hu}}_{resize}, \underbrace{V^{hf}}_{refi}, \underbrace{V^{d}}_{default}\right\}$$

where V^{rh} is the homebuyer's value, given by:

$$V^{hd}(\theta) = \max_{c,s,a' \ge 0} \left\{ u(c,s) + \beta E \left[\pi V^r(\theta') + (1-\pi) V^d(\theta') \right] \right\}$$

s.to

$$c + \frac{a'}{1+r_i} + p_r s = a + w(1-\tau) y(j,z) + \max\{(1-\varphi_e) p_h h - d, 0\},\$$

In case of selling the house:

• $\pi = 1$ and the higlighted part is replaced by $p_h h - d$

External Parameters

Preferences:

$$u(c,s) = \frac{\left(c^{1-\gamma}s^{\gamma}\right)^{1-\sigma}}{1-\sigma}$$

Parameter	Explanation	Value
σ	risk aversion	2
α	capital share	0.3
$ ho_{arepsilon}$	persistence of income	0.955
$\sigma_{\mathcal{E}}$	std of innovation to AR(1)	0.198
φ_h	selling cost for a household	7%
φ_e	selling cost for foreclosures	25%
ζ	fixed cost of mortgage origination	2%
δ_h	housing depreciation rate	2.5%
τ	variable cost of mortgage origination	0.75%
η	rental adjustment cost	1

Internally Calibrated Parameters

Parameter		Value
β_K	discount factor–capitalist	1.06
eta_D	discount factor-depositor	0.76
\underline{h}	minimum house size	0.53
r	deposit rate	0.03
γ	weight of housing services in utility	0.23
\bar{H}	housing supply	1.0
ϕ_k	share of wage bill financed from banks	1.42
eta_L	bank discount factor	0.82
ξ	bank seizure rate	0.23
κ	rental maintenance cost	0.05
δ_k	capital depreciation rate	0.10

Interactions and amplification channels during the bust

 Focus on the effects of long-term interest rates on the housing markets at the county level and estimate

$$\begin{split} \Delta y_{c,t} &= \beta_1 \Delta Int. \ Rate_{t-1}^{10y} + \beta_2 \Delta Int. \ Rate_{t-1}^{10y} \cdot UIBen._{c,t} + UIBen._{c,t} \\ &+ Macro \ Controls_{t-1} + State \ Controls_{c,t} + County \ Controls_{c,t} \\ &+ \theta_c + \mu_t + \epsilon_{c,t} \end{split}$$

Monthly county level mortgage (compiled by Neil Bhutta) and house prices data

Credit Spreads from Gilchrist and Zakrajsek (AER, 2012)

FIGURE 1. SELECTED CORPORATE CREDIT SPREADS

Notes: Sample period: 1973:1–2010:9. The figure depicts the following credit spreads: GZ spread = the average credit spread on senior unsecured bonds issued by nonfinancial firms in our sample (the solid line); Baa-Aaa = the spread between yields on Baa- and Aaa-rated long-term industrial corporate bonds (the dashed line); and CP-Bill = the spread between the yield on one-month A1/P1 nonfinancial commercial paper and the one-month Treasury yield (the dotted line). The shaded vertical bars represent the NBER-dated recessions.