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Abstract
Should there be few large or several small banks? Large banks pose scale economies,
but their failure can be systemic, posing an efficiency versus financial-stability trade-
off. I embed this trade-off in a macroeconomic model with heterogeneous banks, en-
dogenous size-distribution and entry-exit, and calibrate it using micro-data. Capital
regulation improves welfare by reshaping banks’ size-distribution. However, regula-
tion that equalises banks’ leverage, default rates or expected default losses is sub-
optimal as it does not internalize that both efficiency and financial-stability risks
are size-dependent. A hump-shaped welfare response underpins the optimal size-
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Figure 1: Left-hand panel: Number of US commercial and savings banks. Centre panel: Concentration
of banks’ assets. HH Index stands for the Herfindahl-Hirschmann Index. Right-hand panel: Kernel density
of the distribution of assets normalised by US GDP in two distinct years. Sources: FDIC, SNL.

1 Introduction

Should the banking sector be organized as few large or several small entities? The answer

is complicated by an efficiency versus financial-stability trade-off.

On the one hand, banks exhibit scale economies [Hughes and Mester, 2013; Wheelock

and Wilson, 2018]. The rise of larger banks globally is testimony to the benefits of scale,

such as diversification of risks or the ability to engage in multiple business lines with

synergies across them. For instance, in the US, there are fewer, larger, and more concen-

trated banks now as compared to the 1990s (Figure 1, [Corbae and D’Erasmo, 2020]). The

fact that alternative measures of profitability (including risk-adjusted ones) are positively

correlated with size also suggests likewise (Figure 2, first three panels).1

On the other hand, financial-stability risks stem from the fact that default by larger

banks is more costly (Figure 2, last panel). There are obvious direct costs associated with

default, like resolution losses, logistical expenses borne by the deposit insurer, and fire-sale

discounts. But there are systemic costs too that are relevant in the case of default by large

banks [Kang et al., 2015], as also evidenced during the Great Financial Crisis of 2008.2

1Also see Figure 17 in the Appendix.
2Larger banks tend to be more complex and more intertwined with the financial system, which means

that their default can have knock-on effects. Larger banks may also engage in excessive risk-taking on the
back of implicit bail-out guarantees, thus posing the so-called too-big-to-fail externality.
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Figure 2: Scatter plot of log assets (x-axis) and various metrics (y-axis) of US commercial and savings
banks. Annual data is pooled over 2000-2019, unless mentioned otherwise. Bank and year fixed effects are
controlled for. Each metric is winsorized at the 1% and 99% levels. First panel: Return on assets (ROA),
defined as net income to asset ratio. Second panel: Return on capital (ROC), defined as net income to
total capital ratio Third panel: Cost-to-income ratio, defined as total operating expenses to total (interest
and non-interest) income ratio. Fourth panel: Scatter plot of log losses associated with bank defaults
versus log assets since 1934. Sources: SNL, FDIC.

In this paper, I develop a tractable framework to understand how banks should be

organised given these opposing forces. Specifically, I conduct a positive and normative

analysis of the role that capital regulation can play in balancing the efficiency versus

financial-stability trade-off.

To provide formal intuition for the trade-off, I first develop a stylized model. Scale

economies stem from diversification of assets, so that larger banks have a more favorable

risk-return profile. However, large bank defaults can be disproportionately more costly.

In this case, the allocation of bank capital by a benevolent planner’s depends on how scale

economies and default costs relate to bank size. When scale economies dominate, it is
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better to organise the capital within a few large banks. However, when default costs are

more substantial, setting up numerous small banks is better.3

For the main analysis, I use insights from the stylized model and develop a heterogeneous-

agent dynamic general equilibrium model of the banking sector. A crucial feature of this

model is that the bank size-distribution is endogenous, and that it responds to changes in

capital regulation. In addition, a bank-default externality serves as an explicit rationale

for regulation which is necessary for a meaningful welfare analysis. Finally, to ensure

quantitative relevance, I calibrate the model to match important moments in US banking

data such as those related to scale economies, size-distribution and default rates.

I use the model to first conduct a positive analysis of capital regulation. A key insight

is that regulation not only affects individual bank behavior, but also generates general

equilibrium effects via its impact on the dynamics of the banking sector. As regulation

tightens, individual banks are more constrained because capital is sticky. In response, they

preserve capital by paying fewer dividends and simultaneously invest in fewer assets. In

the process, banks become less leveraged and default less often. As a corollary, they spend

more time in incumbency, i.e. their average age increases. That said, lower leverage also

means that banks grow more slowly. The net effect of these opposing forces on the size-

distribution of banks is not obvious qualitatively – it depends on which force dominates

in the calibration.

Through its impact on the bank dynamics, regulation has aggregate implications, in-

cluding on output and welfare. In particular, because each bank retains more capital,

there is an increase in aggregate capital in the steady-state. This is despite there being

no possibility to raise capital externally, and underscores how the adjustment in the dis-
3Another important trade-off in banking arises due to competition related issues, i.e. larger banks

may exert greater market power. This paper abstracts away from competition related issues and instead
focuses on one issue, the efficiency versus financial-stability trade-off. This helps keep the models and
the analyses transparent and tractable. See Corbae and D’Erasmo [2021] and Jamilov [2021] for models
of imperfect competition in the banking sector and the analysis of how regulation interacts with bank
competition.
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tribution of bank capital can somewhat mitigate the constraining effect of regulation (and

lead to a smaller decline in aggregate output).

I refer to the economic implications that regulation has through its impact on bank

size-distribution as the banking-dynamics channel of capital regulation. To investigate the

relevance of this channel, I recompute the aggregate impact while keeping the bank size-

distribution fixed. The response in aggregate output becomes more pronounced while the

response in welfare turns opposite, which underscores that the banking-dynamics channel

matters both quantitatively and qualitatively. The emphasis on this channel in this pa-

per is in contrast with other studies on optimal regulation that rely on a representative

bank model and thus abstract away from the heterogeneous effect regulation can have on

different banks and on their overall distribution.

Building on the positive analysis, next I turn to a normative analysis of regulation to

characterise the optimum. Specifically, I study the welfare implications of counterfactual

regimes that are inspired by the evolution of regulatory practice in the last two decades: a

uniform capital-ratio requirement across banks (a’la Basel I), a risk-sensitive requirement

that ensures that banks’ probabilities of default are equalised (a’la Basel II), and a re-

quirement that equalises banks’ expected default losses (a’la Basel-III, G-SIB framework).

The key insight from these analyses is in showing why none of these regimes are optimal.4

In each of the above mentioned regimes, a change in regulatory stringency leads to an

inverted U-shaped welfare response. The maximum welfare achievable is highest in the

third regime. However, these regimes fall short of internalizing the fact that both bank

efficiency and financial-stability risks are size-dependent. The regimes focus on mitigating

the risks banks pose, but do not simultaneously take into account that differences in

efficiency across banks matters for the overall intermediation efficiency of the banking

sector and eventually for aggregate welfare. In other words, these regimes strive to reduce
4The policy dilemma is evident in, for instance, that while the 1994 Banking and Branching Efficiency

Act in the US removed hurdles for banks to become larger, the Great Financial Crisis of 2008 led to the
introduction of too-big-to-fail reforms [BCBS, 2018] that create dis-incentives for banks to become larger.
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the welfare costs posed by a given size-distribution of banks but do not optimise the welfare

benefits. I show that instead of equating a metric like leverage or default across banks, a

flexible size-dependent requirement can take into account both legs of the efficiency versus

financial-stability trade-off. Such a regime also features a hump-shaped welfare profile, but

in contrast to previous regimes, the maximised welfare is higher. In particular, this regime

gives rise to more middle-sized banks relative to the heavy-tailed benchmark distribution.

Zooming in reveals three channels through which regulation impacts welfare. First,

tighter regulation translates into lower financial intermediation capacity of the banking

sector (ceteris paribus), which lowers output and welfare.5 Second, regulation impacts

the average efficiency of the banking sector by re-shaping the bank size-distribution. The

sign of the impact is, however, not obvious. This is because there is a greater mass of

middle-sized banks that are more efficient than the small-sized banks but less efficient as

compared to the large-sized banks. Third, the impact of regulation on expected losses

(EL) due to bank defaults – which ultimately affects welfare too – is also not obvious.

While banks’ probability of default (PD) declines as regulation tightens, changes in the

overall exposure-at-default (EAD) of the banking sector depend on how much more (less)

costly default by middle-sized banks is relative to small-sized (large-sized) banks. That EL

matters for the optimal regulation is reinforced by the fact that a higher loss-given-default

(LGD) rationalises more stringent regulation, and also that the welfare gain in this case

is greater.

The net welfare effect naturally depends on the relative strengths of these channels.

But the fact that these can run in opposite directions is at the core of the regulatory

trade-off. It also shows why focusing on some aspects (like PD or EL) of the trade-off

while ignoring others (like efficiency) can be sub-optimal.

Turning to the specifics of the model, banks are financial intermediaries that raise
5Note that this is despite the fact that the aggregate stock of capital increases as banks retain more

earnings and the equilibrium distribution of banks shifts to the right in the first order stochastic dominance
sense.
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deposits and invest in risky assets. They operate a leveraged balance sheet that is not

indeterminate (a’la Modigliani-Miller) as capital is a state-variable. Depending on idiosyn-

cratic shocks to their assets, banks grow, shrink, or fail. New banks enter the industry

with a random amount of seed capital. There is no aggregate uncertainty, and a stationary

(steady-state) distribution emerges in equilibrium despite bank-level dynamics. For the

calibration, I use standard data moments or values from the literature for about half the

model parameters. For the rest, I use the method-of-moments.

There are two noteworthy aspects of the calibration exercise. First is the emphasis on

disciplining parameters that underpin scale economies. To this end, I target the mean and

standard deviation of banks’ return on assets and also the difference in these moments

across large and small banks. The second novel aspect of the calibration is to match

the model-generated and empirical distributions of bank capital. Specifically, I minimise

the following two metrics. One is the Kolmogorov-Smirnov (KS) statistic, which is the

maximum distance between the model-generated and empirical distribution functions.

Another is the absolute difference in the power-law exponent of the two distributions.

While the KS statistic helps align the two distributions overall, matching the power-law

exponents ensures that the respective heavy-right-tails are aligned in particular.

The calibrated model reveals that compared to the benchmark capital requirement of

4.5%, the optimal uniform requirement across banks is around 5.1%. The corresponding

welfare gain in consumption equivalent terms is around 1%. In case of the size-dependent

regime, the optimal requirement is much less stringent at close to 1% in case of small

banks and more strict at around 7% for the largest banks while varying monotonically in

between. This finding lends support to the G-SIB framework which also imposes stricter

regulation on the larger banks. Yet, it calls for lower regulatory burden for small banks.

Finally, I consider two extensions of the model. First I endogenize asset returns. In

the baseline model, asset returns do not depend on the overall size of the banking sector.

In reality, when banks collectively invest in more assets, the return on any individual
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bank’s investments is likely to be lower. Incorporating this possibility in the model shows

that as banks shrink in response to tighter regulation, asset returns increase, leading to a

second-round positive effect on bank behavior. This countervailing effect allows regulation

to push harder. Second I endogenize the mass of banks. In the baseline model, the mass

of banks is normalised to unity. However, the mass of entrants into the banking sector

may vary with bank profitability. Incorporating this mechanism in the model shows that

as regulation tightens, it creates disincentives for entry as bank profitability declines. As

a result, regulation is more constraining relative to the baseline case and thus the optimal

regulation is less stringent.

Related Literature The primary contribution of this paper is to the macro-finance

literature. Seminal papers in this literature include Bernanke et al. [1999], Kiyotaki

and Moore [1997], Gertler and Kiyotaki [2010], Jermann and Quadrini [2012], Brun-

nermeier and Sannikov [2012] and Boissay et al. [2016], among others. These studies

have established the groundwork for studying how the financial sector can exaggerate real

sector shocks and thus shape macroeconomic outcomes. Typically, they adopt either a

representative-agent model of the banking sector, or take the heterogeneity across banks

as given exogenously. However, heterogeneity matters at a deeper level, as shown in the

(non-financial) firm dynamics literature (Hopenhayn [1992], Hopenhayn and Rogerson

[1993], Asplund and Nocke [2006]). Firm-level differences can evolve over time and shape

aggregate outcomes through a variety of channels. For instance, Clementi and Palazzo

[2016] show that after a positive aggregate productivity shock, the number of entrants

increases and this amplifies the expansion relative to a representative agent model. In this

paper, I argue that it is important to consider bank-level heterogeneity in macro-finance

studies because in reality size is one of the key factors that drives differences in banks’

efficiency and default costs. To this end, I develop a tractable model with a heterogeneous

banking sector where entry-exit and size-distribution are endogenous.
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A thin but growing literature shares the appreciation of bank heterogeneity and bank-

ing industrial organization more generally. An important early contribution is Corbae

and D’Erasmo [2010], where the authors develop an industry dynamics model of imper-

fectly competitive banks to study the relation between business cycles and banking sector

characteristics such as market structure, defaults, risk-taking, and loan supply. In subse-

quent recent work, Corbae and D’Erasmo [2021] study the effect of capital regulation on

such characteristics. Focusing on the link between bank size and market power, Jamilov

[2021] develops a model of monopolistic-competitive banks where large banks default less

often but charge a higher markup than smaller banks, and investigates how regulation

interacts with this trade-off.6 Whited et al. [2021] documents that banks’ market power

varies with size and studies the heterogeneous impact of low interest rates on risk-taking.

Bellifemine et al. [2022] and Wang et al. [2021] study the role of bank market power in

the transmission of monetary policy, while Jamilov and Monacelli [2021] study how the

distribution of market power responds to aggregate shocks. Dávila and Walther [2020]

shows that implicit bailout guarantees can lead to strategic leverage spillovers from large

to small banks, and Liu [2019] shows that the impact of Dodd-Frank regulation in the US

is different for small versus large banks.

The present paper shares some aspects of these studies but also adds to them in the

following ways. One is its emphasis on what the financial-stability versus efficiency trade-

off means for the optimal organisation of the banking sector. While understandably much

attention has been paid to competition issues, the said trade-off remains under-explored.

This is despite efficiency being a significant aspect in banking, not least because of how
6While the pursuits are related, the trade-offs are distinct. In that paper, large banks are more efficient

and default less often (also due to an implicit too-big-to-fail guarantee), but charge higher mark-ups. By
contrast, in the present paper, the expected default loss posed by large banks as compared to small
banks is not obvious because while large banks have a lower default rate, their default is more costly.
This distinction leads to a difference in the policy implications. In that paper, the optimal policy is to
subsidise all banks (especially larger banks) relative to the benchmark – while in the present paper the
optimal policy is the opposite, that is to impose stricter regulation relative to the benchmark, especially
on larger banks.
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data and technological innovations are transforming scale economies and driving financial

institutions (banks and also non-banks) to become larger. Second, the paper features not

only a positive but also a normative analysis of regulation. Relatedly, to capture potential

non-linearities in the model mechanisms, I use global solution methods as opposed to

solving a linearised version of the model. Third is the paper’s calibration strategy that,

as described above, takes the heterogeneous aspects of the model seriously.

The present paper naturally also relates to a large literature on the assessment of

capital regulation. An early contribution in this field is by Van den Heuvel [2008], who

shows that a mis-priced deposit insurance creates a moral hazard issue, induces banks to

be highly leveraged. This rationalizes regulation, and allows studying the welfare effects

of regulation in order to identify the optimal. Relatedly, Christiano and Ikeda [2013]

characterize the optimal regulation when the effort that a bank exerts is unobservable

by its creditors – another moral hazard issue. Begenau [2020] also evaluates optimal

regulation. In that model, households value safe assets, because of which banks’ cost

of funding can decrease when higher capital requirements make deposits scarcer. Other

related papers include De Nicolo et al. [2014] that studies the effects of higher capital and

liquidity requirements on bank lending, efficiency and overall welfare; Nguyen [2015] that

characterizes the optimal capital requirements in the presence of government bailouts; and

Zhu [2008] that studies the welfare implications of risk-weighted viz-a-viz non risk-weighted

capital requirements.

The qualitative predictions about the level of optimal regulation in these papers –

namely, the general call for tighter regulation – is similar to the present paper. But the

underlying mechanisms are quite distinct. For instance, while the above studies typically

use a representative-agent model or one with exogenous heterogeneity, the present paper

shows that industry dynamics (i.e. shifts in the bank-size distribution) is a key channel

through which the effect of regulation transmits to the overall economy. Another dis-

tinction relative to the literature is the emphasis on size-dependent capital requirements.
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After the Great-Financial-Crisis, size-dependent regulation – namely the G-SIB framework

– became a core element of Basel III. The tractable heterogeneous bank model developed

in this paper provides an ideal setup for the assessment of such regulation.7

The paper is organised as follows. I present a stylized model to develop the intuition

for the key trade-off in Section 2. Section 3 develops the main model and derives its ana-

lytical properties. Section 4 defines the stationary competitive equilibrium and discusses

the inefficiency that rationalises regulation in the model. Section 5 presents the calibration

strategy, the numerical solution strategy, and presents the model’s quantitative properties.

Section 6 pursues a series of counterfactual policy experiments and draws the policy impli-

cations of the model. Section 7 considers two extensions of the baseline model and reviews

the attendant implications. Section 8 concludes. The Appendix provides the analytical

proofs of the propositions in the paper.

2 Optimal size-distribution of banks: Intuition

In this section, I present a stylized model to illustrate the social planner’s dilemma when

thinking about the optimal distribution of banks in an economy. Insights from this model

are then used as a basis for the main model presented in the next section.

Time is discrete and there are two dates, 0 and 1. A benevolent social planner has

a fixed amount of capital K, and is faced with the following decision problem on date-0:

what is the optimal number of banks to setup using this capital? Each bank is setup on

an island, where it combines the allocated capital ki with deposit funding fi to invest in

si = ki+fi risky projects on date-0. Banks can only invest in projects located on their own

island. Each project requires unit investment. All projects (on all islands) have the same

date-1 return distribution N(µ, σ2). And while projects on the same island are potentially
7Passmore and von Hafften [2019] complements the approach adopted in this paper. They also study

the issue of optimal size-dependent capital requirements, but using a panel generalised method-of-moments
(panel-GMM) framework. The authors show that G-SIB surcharges should be higher based on the idea
of equalising social-loss-given-default of banks.

11



correlated, projects from distinct islands are independent.

The distribution zi of total return on bank i’s assets is normally distributed with mean

µsi while the variance that depends on the correlation structure across assets. If the

projects are perfectly correlated, the variance is given as σ2s2
i , while if perfectly uncorre-

lated, the variance becomes σ2si. In case of negatively correlated projects, the variance

could even be smaller than σ2si. A convenient method to capture the correlation structure

between the projects of a bank is via a diversification parameter d ∈ [−∞, 2], and posit

that

zi ∼ N(µsi, σ2sdi ).

Each bank must satisfy a minimum capital-ratio constraint: ki/si ≥ χ. Given proportional

returns on assets, the constraint is binding for all banks, and therefore, they all operate

with the same capital ratio. Specifically, a bank with allocated capital ki chooses a balance

sheet of size si = S(ki) := ki/χ.8

Deposit funding costs R < µ for all banks. A bank defaults if it cannot cover its

deposit liabilities i.e. if zi < R(si − ki). The probability of default pi can be written as:

pi = Pr
(
zi ≤ R(si − ki)

)
= Φ

R(si − ki)− µsi
σs

d/2
i

 (1)

where Φ is the cumulative distribution function (CDF) of the standard Normal random

variable.9 That all banks have the same leverage implies that a bank with more capital

allocation ki would have a larger balance sheet. And because of greater diversification
8In this section, I take the capital-ratio constraint as exogenously given, and establish an endogenous

rationale for it in the main model. Also, to keep the exposition in this section tractable, I assume a
non-risk weighted constraint here, and consider risk-weighted or other types of constraints in the main
model.

9As long as there are some diversification benefits, i.e. d < 2, the probability of default as a function
of the size of the bank si for a given level of capital ki goes to zero as s goes to infinity. If d = 2, then pi
converges asymptotically to Φ(R−µ

σ ).
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benefits, it would have a smaller probability of default.10

Finally, I assume that bank default is socially costly. I consider ∆(s) as the loss-rate,

i.e. the loss incurred per unit of assets when a bank with total assets s defaults. I allow

losses to be greater in case of larger banks: ∆′(s) ≥ 0, to reflect the fact that default by

a larger, systemically more important bank can be disproportionately more costly.

I now turn to the problem of a benevolent social planner that needs to decide the

number M of banks across which to distribute the capital endowment K while maximising

the net expected return of the banking sector:

max
M

NR(M) =
M∑
i=1

(
µsi −R(si − ki)

)
︸ ︷︷ ︸

ER(M)

−EL(M) s.t.
M∑
i=1

ki = K.

Here NR(M) is the net expected return, which is expected return ER(M) net of

expected losses EL(M), as a function of the number of banks M in the economy. For

analytic tractability, I assume that capital is distributed equally across the banks, so that

ki = K/M = k. And since the capital ratio constraint binds for each bank, si = s = k/χ.

As a result, ER(M) is independent of M , and equals (µ − R)K/χ + RK. The planner’s

objective reduces to minimising EL(M).

Since projects across islands are uncorrelated, bank defaults are also uncorrelated. This
10To show this, I replace si = ki/χ in Equation (1) and take the derivative w.r.t. ki:

χd/2[R−µ
χ −R]k(1−d/2)

i

σ
< 0.
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simplifies the calculation of expected losses EL(M):11

EL(M) =
M∑
m=0

∆(ms)msB(m;M ; p(M)) =
M∑
m=0

∆(ms)ms M !
m!(M −m)!p(M)m(1−p(M))M−m

Here B(m;M ; p(M)) is the binomial probability density function which denotes the prob-

ability that m banks default at the same time with p(M) being the probability of default

of an individual bank when there are M banks in total.12

The expression for EL(M) embeds an efficiency versus financial-stability trade-off for

the social planner. On the one hand, diversification benefits means that larger banks are

more efficient. Assuming that leverage remains same, as size increases (i.e. lower M), the

probability of default declines, meaning banks are less risky. Despite defaults across banks

being uncorrelated, this means the following:

Remark. If the loss-function ∆(s) is independent of s, the optimal decision is for the

planner to setup one large bank with all the capital K.

Proof. To show this, let ∆(s) = δ. Then EL(M) resolves to δKp(M)/χ, which is min-

imised when M = 1. �

On the other hand, having one or few very large banks may be inefficient when large
11It is possible to generalise the model by having correlated bank defaults, such as by using the setup

in Gârleanu et al. [2015]. In their paper, investors located on a circle choose projects that are also located
on the circle. Projects that are closer to each other in terms of the shortest arc length between them are
more correlated. Because of information frictions or acquisition costs, investors end up choosing projects
that are closer to their own position on the circle. As a result, projects within the portfolio of an investor
are more correlated than projects across portfolios of investors in Gârleanu et al. [2015]. As a special case
of the model in Gârleanu et al. [2015] while maintaining the same spirit, in the stylized model in this
paper, projects held by a bank are correlated, but projects across banks are not. I take this approach to
maintain analytic tractability. Computing the expected loss function when bank defaults are correlated
can be handled using the “correlated” binomial distribution, but then a closed form expression for EL(M)
is not available. The likely effect of correlated bank defaults on the main takeaways of the model in this
section would be that the optimal number of banks would be smaller.

12Note that the social cost depends on the total assets of all m banks that defaulted. This is an
important feature to have because when several banks default at the same time, this can reinforce default
related costs, say due to fire-sale externalities. Alternatively, it is possible to assume that the social cost
when m banks of size s each default is given as m∆(s)s. In this case, the computations are actually
simpler, and the qualitative takeaways continue to hold.

14



bank defaults are disproportionately costly. In this case, breaking down larger banks could

be desirable from a financial-stability point of view – even though this would mitigate some

of the diversification benefits larger banks pose. While proving this point generally using

closed-form solutions is not possible, I consider a specific case below.

Remark. If the loss-rate ∆(s) depends on s, and is given as δs for instance, the optimal

decision for the planner is not obvious, and depends on how large diversification benefits

are.

The expression for EL(M) in this case is given as:

EL(M) =
M∑
m=0

δ
(
K

Mχ

)2
m2B(m;M ; p(M)) = δ

(
K

Mχ

)2 (
Mp(M)(1−p(M))+M2p(M)2

)

where we use the result that if X is a binomial random variable with parameters (M,p)

then E[X2] = Mp(1− p) +M2p2. This leads to:

EL(M) = δ
(
K
χ

)2

︸ ︷︷ ︸
ν

(
p(M) + (M − 1)p(M)2

M

)

The profile of EL(M) is not obvious. Even a general comparison of EL(1) and EL(M)

for large M (which can then help shed light on whether one large or many smaller banks is

more desirable) is not possible. Specifically, EL(1) = νp(1), while EL(M) tends to νp(M)2

as M → ∞. Depending on how flat or steep p(M) as a function of M is, p(1) could be

higher or lower than p(M)2 for large M . Moreover, setting EL′(M) to zero implies that

an interior solution for M may also exist. While it is not possible to derive further insights

analytically, numerical simulations help illustrate the point that the optimal number of

banks is not obvious (see Figure 3). When diversification benefits are high (d = 1.84),

setting up one large bank is optimal. For lower diversification benefits (d = 1.86), the fact

that large bank default is more costly begins to matter, and setting up several smaller

banks can improve the return of the banking sector by minimising expected losses.
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Figure 3: Probability of default (p) and expected loss (EL) as a function of the number of banks (M).
These illustrative computations assume that K = 100, R = 1.04, µ = 1.05, σ = 0.05, δ = 0.1 and χ = 0.1.
The red dots in the left-hand panel show the optimal i.e. EL minimising number of banks.

The stylized model presented in this section illustrates why the choice of the socially

optimal size distribution of banks is not obvious, and underscores the importance of taking

into account the fact that both efficiency gains and financial-stability risks posed by banks

depend on their size.

To make the exposition in this section concise and transparent, I made several assump-

tions. These include the use of a static partial equilibrium setup, and that the planner can

dictate the allocation of capital across banks. These features naturally render this model

less realistic: for instance, policymakers do not dictate capital allocation across banks

and rather use capital-ratio requirements to influence and hopefully achieve the socially

optimal behavior of banks. Moreover, banks are not one-period entities – instead they

optimise over a long horizon over which they can grow, shrink, or exit the industry. In

the next section, I consider a richer framework that overcomes these stylized features and

helps conduct a more realistic analysis of the trade-off highlighted in this section.

16



3 Model

The overarching goal in this paper is to understand how capital regulation can balance

the efficiency versus financial-stability trade-off by shaping the dynamics of the banking

industry, and what this means for the optimal level of regulation. To this end, I develop a

dynamic general equilibrium model of an economy with a heterogeneous banking sector.

The model draws inspiration from two seminal papers. First is Gertler and Kiyotaki [2010],

which introduces a role for banks in a standard macro-economic framework. Second is

Hopenhayn [1992], which develops a model of firm-level heterogeneity. I combine elements

from the macro-finance framework in the former paper with bank-level heterogeneity in

the spirit of the latter paper. Naturally, in the process, I pursue innovations that lead me

to an ideal model for investigating the issues of interest.

For one, I use elements from the stylized model in the previous section to introduce a

novel efficiency versus financial-stability trade-off in the main model. Next, in contrast to

Hopenhayn [1992], the balance-sheet leverage (capital structure) decision of banks (firms)

in this paper is non-trivial – this allows for amplification of idiosyncratic shocks that drive

exits, which is an important stylized feature in the case of banks. Moreover, a mis-priced

deposit insurance and limited liability imply that banks assume higher leverage than what

is socially desirable, and this rationalizes a regulatory constraint on banks’ leverage. This

constraint not only alters individual bank behavior, but it also affects industry dynamics

and aggregate outcomes such as welfare. Taken together, these features of the model

enable both positive and normative analyses of capital regulation.

The model is cast in discrete time and the horizon is infinite. The economy consists

of a household, a banking sector with heterogeneous atomistic banks, the government,

and a benevolent regulator. There are bank-level dynamics, but there is no aggregate

uncertainty. In what follows, I describe the various agents in the model economy.
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Household The household consists of a representative worker and a unit mass of bankers.

The worker receives a fixed wage income W each period. The bankers manage the banking

sector and bring back dividend income E to the household. Collectively, the household

consumes C and saves D in the form of bank deposits. To help keep the household’ prob-

lem tractable, I assume that there is perfect consumption insurance between the two types

of agents (as also in Gertler and Kiyotaki [2010]). Deposits are risk-free due to a deposit

insurance scheme, and offer an interest rate R. The household has a utility function u and

is subject to a lumpsum tax T . The decision problem of the household, taking wage and

dividend incomes as given, and assuming β to be the discount factor, is as follows:

max
Ct,Dt

E0

∞∑
t=0

βtu(Ct) s.t. Ct +Dt = Wt + Et +Rt−1Dt−1 − Tt.

Bankers and banks Each atomistic banker manages a bank. Banks differ in terms of

their size, that is the amount of capital n it has.13 They raise deposit funding d and invest

in s one-period lived assets. Assets generate a risky return ψ.14 For tractability, I assume

that the returns on assets across banks and across time are independently and identically

distributed.15 To ensure viability of banks, I focus on the case where the expected return

on assets is higher than the cost of deposits: E[ψ] > R.

Scale efficiency I extend the idea in Section 2 and allow larger banks to have a higher

expected and less volatile return on assets. Several empirical studies support this assump-

tion. For one, large banks may be able to better overcome fixed operating costs, including

compliance costs Hughes et al. [2019]; Wheelock and Wilson [2012]. In addition, they are
13I assume that banks cannot issue outside equity, which means that capital is a state-variable. This

assumption violates a pre-condition for the Modigliani-Miller capital structure irrelevance result (MM),
and thus allows the capital structure of the bank to be determinate.

14Banks typically hedge some of their risks – all risks cannot generally be hedged (and it may not be
desirable to do so either). I consider ψ to capture the idiosyncratic risks that remain after any hedging.

15Considering serially correlated return on assets at the bank level or assuming correlated returns across
banks are both interesting extensions. They, however, increase the state-space of the bank’s problem and
reduce the analytical and computational tractability of the model.
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better positioned to invest in a more diversified set of assets (Hughes and Mester [2013];

Beccalli et al. [2015]).16

Dividend preferences Bankers have concave preferences H over the stream of divi-

dends they pay, as also in Bianchi and Bigio [2022]. These preferences are not necessarily

the same as the household’s preferences over consumption. Two well-known regularities

rationalise this distinction. First, bankers, or entrepreneurs more generally, tend to be less

risk-averse as compared to workers and households (see for e.g. Kihlstrom and Laffont

[1979]). Second, managers – the agents – despite having some ownership stake, may not

act in the best interest of the shareholders – the principal (see for e.g. Jensen and Meckling

[1976]).

Deposit insurance Banks pay an insurance premium that is proportional to the level

of deposits they have. The deposit insurance fund, which is run by the government, covers

the shortfall in liabilities of defaulted banks as well as any resolution related losses. In case

the insurance premium is insufficient (surplus) to cover the resolution process, a lump-

sum tax (subsidy) is imposed on (passed to) the household. I assume that the insurance

program is mis-priced in the sense that insurance premiums do not adequately reflect

banks’ riskiness.17 This, as I show below, leads to an inefficiency in banks’ decisions and

rationalises capital regulation in the model.

Default and resolution A bank defaults when its capital falls below a cutoff τ ≥ 0.18

Bankers have limited liability, which means they simply walk away from a failed enterprise
16Larger banks may also be able to offer a wider range of products with synergies between them, and

thus reap the benefits of economies of scope, although the evidence on this in the literature is somewhat
mixed (Gambacorta and van Rixtel [2013]; Baele et al. [2007]; Van Lelyveld and Knot [2009]).

17Typical reasons for a mis-priced deposit insurance include the inability of the insurer to observe banks’
risk profiles or impose risk-sensitive premium payments. See Flannery et al. [2017] for a discussion.

18While τ = 0 corresponds to default in the strict sense, τ > 0 denotes bank distress more realistically.
Indeed, banks are often considered insolvent before their net-worth actually falls below zero.
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with zero value in hand. Defaulted banks’ balance sheets are resolved by the deposit

insurer.

I assume that bank default is costly. In practice, this cost can stem from several

channels. First is the obvious resolution related operational expenses incurred by the

deposit insurance agency, including verification costs (see Cooley and Quadrini [2001]).

Second, a forced sale of the defaulted bank’s assets may fetch a discount relative to market

prices, either because of intrinsic uncertainty about the quality of these assets, or because

of fire-sale effects more generally (see Shleifer and Vishny [2011]). Third, one bank’s

default can spillover, lead to contagion or knock-on effects, and thus generate losses for

the wider financial system (e.g. Caballero and Simsek [2013]). This can be a major cost

in the case of large too-big-to-fail banks. Such indirect costs may be even higher during a

crisis when many banks are in trouble at the same time. For the sake of brevity, I abstract

from the micro-foundations of these costs. Instead, like in the previous section, I assume

that the sale of assets s of a defaulted bank results in a loss-rate ∆(s) that may depend

on the amount of assets being resolved. Total loss in case of default by a bank of size s is

given as ∆(s)s.

Entry Insolvent banks are rarely dissolved in practice. Instead they are typically merged

with a healthy bank, say following a bidding process. To keep the model tractable, I do not

explicitly model mergers, and instead assume that defaulted bankers re-enter the banking

industry next period with a random seed capital ne ∼ G(ne) from the deposit insurance

fund. Given that the deposit insurance is funded via premiums imposed on banks – the

above specification captures the spirit of bank entry and exit in practice. Crucially, to

abstract away from potential adverse ex-ante incentives, I assume that bankers do not

internalise any of the post default dynamics.19

19In the case of large banks, implicit bail-out guarantees can have a material impact on their risk-taking
ex-ante, as discussed in Dávila and Walther [2020] and Nguyen [2015] for example. These considerations,
however, are outside the scope of this version of the paper.
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Bank-specific as-
set return shocks
ψ realised, payoff
from assets deter-
mined

Insolvent banks (cannot
pay depositors) resolved
by deposit insurance
program.

Solvent banks pay depositors.
Net cash-flow n is the work-
ing capital. New banks enter
the industry with seed cap-
ital. Bank size distribution
determined.

Banks pay dividends.
Then raise deposits, cover
the deposit insurance pre-
mium, and invest in risky
assets subject to the capi-
tal constraint.

Figure 4: Intra-period sequence of events

Capital-ratio constraint Limited liability combined with a mis-priced deposit insur-

ance generate the rationale for a capital-ratio constraint on banks. Indeed, because de-

posits are risk-free, depositors do not charge the bank a risk premium. This reduces the

cost of deposit funding for the bank. Combined with limited liability, this creates incen-

tives for the bank to assume a higher leverage than what is socially efficient. In turn,

this inefficiency rationalises a minimum capital-ratio constraint on the bank.20 A more

elaborate discussion of this point is in Section 4.

I allow the regulatory constraint to be specified quite generally, from being cast simply

in terms of a minimum capital to asset ratio, to one that depends on the riskiness of the

bank (as in the case of Basel III, BCBS [2011]) or the size of the bank (as in the case of

the G-SIB framework, BCBS [2018]).

20The rationale for regulation in this paper is related to that in Kareken and Wallace [1978], Santos
[2001], and Van den Heuvel [2008]. A large related literature provides alternative rationales for regulation,
namely fire-sale externalities [Kara and Ozsoy, 2020], implicit government guarantees [Nguyen, 2015],
and household preference for safe and liquid assets [Begenau, 2020]. Creditors (instead of regulators)
may also impose a constraint due to information frictions Clementi and Hopenhayn [2006]; Goel et al.
[2017], limited enforcement in Albuquerque and Hopenhayn [2004], or moral hazard issues Adrian and
Boyarchenko [2012]; Christiano and Ikeda [2016].
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3.1 Bank’s problem: Recursive formulation

Bankers wake up each period with a pre-determined balance sheet, i.e. assets and lia-

bilities. The sequence of events that follow during the period are noted in Figure 4. In

a nutshell, first, each bank receives a random payoff from its assets depending on the ψ

shock. Some bankers are unable to cover their deposit liabilities and exit the industry.

Subsequently, new bankers enter the industry with seed capital. The (non-defunct) in-

cumbents realise their net cash flow (revenue from assets minus payment to depositors)

which becomes their current period capital n. Finally, banks pay dividends, pay insurance

premium, raise fresh deposits and invest in assets for next period.

Given aggregate certainty, it is feasible to assert that a steady-state equilibrium exists

where aggregates (such as R) are constant, and verify this assertion later. This allows me

to write the problem of a bank recursively with a single state variable, i.e. capital n:

V (n) = max
s,d,e

(
H(e)+β

∫
ψc

V (n′)f(ψ′; θ(s), σ(s))dψ′
)

where n′ = ψ′s−Rd; ψc = Rd+ τ

s︸ ︷︷ ︸
ψ cutoff for defaults

;

s.t. n+ d = s+ e+ td︸ ︷︷ ︸
Cash-flow identity

; χ ≤ n− e
s

;︸ ︷︷ ︸
Capital constraint

0 ≤ e;︸ ︷︷ ︸
Limited liability

0 ≤ d.

Here V (.) is the value function. Dividend payments are denoted e. The discount

factor is β. A ‘prime’ is used to denote the next period. f(ψ′; θ(s), σ(s)) is the density

function of the return on bank’s assets ψ′, where θ(s) is the mean return while σ(s) is

the standard deviation, both of which are allowed to depend on s to reflect the possibility

that a larger bank has a higher mean and/or a lower variance of return on assets. The

expected continuation value of the bank (i.e. the integral term) depends on the distribution

of bank’s capital next period, denoted as n′, and the probability that it defaults. A bank

defaults when the asset return shock ψ is below the cutoff ψc.

The cash flow identity reflects that each bank uses its capital and deposit funding to
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invest in assets, pay dividends, and cover the deposit insurance premium, where t is the

deposit insurance premium rate.

χ is the regulatory minimum capital-ratio requirement. The constraint is expressed in

terms of post-dividend capital n− e.21

Properties of the bank’s problem To characterise some important properties of the

bank’s problem, it is easier to re-write the problem in terms of a single decision variable

e. Also, to make the analytical exposition tractable without losing generality, I assume

that deposit premium is null, t = 0, and that the default size cutoff is zero, τ = 0. Also

note that the capital-ratio constraint is binding given proportional return on assets and

the fact that expected return on assets is higher than the cost of deposits. It follows, then,

that s = (n−e)/χ, d = (n−e)/(1/χ−1), ψc = R(1−χ), and n′ = [(ψ′−R)/χ+R](n−e),

and implies that:

V (n) = max
e

(
H(e) + β

∫
R(1−χ)

V
([

(ψ′ −R)/χ+R)︸ ︷︷ ︸
Capital
growth

factor (CGF)

]
(n− e)︸ ︷︷ ︸

Post-
dividend
capital

)
f(ψ′; θ(s), σ(s))dψ′

)
.

The problem statement above captures the following trade-offs a bank faces:

1. A higher dividend payout increases current period payoff, but it reduces the current

capital position, relatedly the ability to generate dividends in the future, and thus

decreases the expected future value of the bank.

2. A lower capital-ratio, i.e. higher leverage, increases the bank’s expected return on

capital and enables it to grow faster (i.e. the capital growth factor (CGF) increases

since Eψ > R), but it also increases the variance of its future cash flows and the

probability of default.
21This is because post-dividend capital is what matters for the default risk of the bank. Otherwise, a

bank may window-dress by first reporting a higher capital ratio in terms of n and then paying out a large
dividend.
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Next, I show that the bank’s problem is well defined:

Proposition 1. There exists a unique value function V (n) that solves the bank’s problem,

and V (n) is increasing in n.

Proof. See Appendix B. �

Intuitively, the proof hinges on the fact that β is less than unity, that dividends cannot

exceed the beginning of the period capital position of the bank, and the concavity of

preferences over dividends.

Given that the bank’s problem cannot be solved analytically, Proposition 1 is an im-

portant existence result. It implies that the Value Function Iteration algorithm can be

used to compute arbitrarily accurate estimates of V and the corresponding policy func-

tions s, d, and e. I describe the attendant computational method in Appendix G. Next, I

present two characteristics of the bank’s problem that reflect the planner’s trade-off.

Proposition 2. Banks with greater post-dividend capital n−e have a smaller default rate.

Proof. See Appendix C. �

Intuitively, a bank with a higher n−e will have more assets given the capital constraint

is binding: s = (n − e)/χ. The lower probability of default of such a bank follows from

the fact that more assets on a bank’s balance sheet implies, ceteris paribus, lower riskiness

on the back of higher expected return on assets and a lower standard deviation. Next,

consider the following remark.

Remark. As long as ∆(s) > 0, the deposit insurance agency’s cost of resolving a defaulted

bank – given as the total shortfall in its liabilities – is an increasing function of the size of

the bank.

Proposition 2 and the remark above together highlight the efficiency versus financial-

stability trade-off that the benevolent planner faces when determining the optimal size-

distribution of banks (similar as in the stylized model in Section 2): a larger bank is more
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efficient and has a lower probability of default, ceteris paribus, but it also poses a larger

social loss conditional on default.

3.2 Distribution of bank capital

Let the cumulative distribution of bank capital be given as µ. That is, µ(N) denotes the

mass of banks that have capital n ≤ N in the middle of the period. The distribution of

banks evolves from one period to the other as follows. In a given period, banks choose their

balance sheet components s(n) and d(n) depending on their respective capital amounts n.

In the next period, banks grow, shrink, or exit depending on their asset return shocks ψ.

Finally, new banks enter the industry with a random seed capital distributed according

to G(.). Formally, the evolution is given as follows:

µ′(N) = M ′
∫ N

τ
dG(ne)︸ ︷︷ ︸

Entry

+
∫
τ

∫ 1[τ ≤ ψ′s(n)−Rd(n) ≤ N
]
f(ψ′; θ(s(n)), σ(s(n)))dψ′


︸ ︷︷ ︸

Transition of incumbents net of exits

dµ(n)

The first term on the right captures the mass M ′ of entrant banks that enter next period

and have start-up capital less then N . The second term represents the flow of incumbent

banks into the [τ,N ] subset of the state space, net of those that default. It is useful to

express the evolution of bank capital distribution in terms of an operator: µ′ = T (µ,M ′).

T admits the following property:

Proposition 3. T is linearly homogeneous in (µ,M). That is if µM is a fixed point of T

corresponding to an entry mass M , µM = T (µM ,M), then:

µM ×
M̂

M
= T

(
µM ×

M̂

M
, M̂

)
.

Proof. See Appendix D. �

Intuitively, the key to the linear homogeneity of T is that the default rate of banks
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does not change with the mass of entrants. When the mass of entrants increases for a

given steady state distribution, the mass of incumbents increases in a way that the mass of

defaulting banks always matches the mass of entrants. Next, note the below proposition

which ensures that a stationary distribution exists.

Proposition 4. For any given M > 0, T has a fixed point.

µM = T (µM ,M)

Proof. See Appendix E. �

How does tighter regulation impact banks? Tighter regulation affects banks in

three ways. First, a larger χ lowers the capital growth factor (CGF) of banks: (ψ′ −

R)/χ + R ↓. Second, it improves the default cutoff and thus lowers the default rate of

banks: ψc = R(1 − χ) ↓ =⇒ Pr(ψ′ ≤ ψc) ↓. Third, banks lower their dividend payouts.

This is because as the capital constraint binds more strongly, the opportunity cost of

paying dividends (i.e. distributing capital) increases.

The combined effect of these mechanisms on the dynamics of the banking industry –

the size distribution in particular – is not obvious ex-ante. For one, the expected capital

growth factor (ECGF) of a bank of size n:

ECGF (n) =
∫
R(1−χ)

(
ψ′ −R
χ +R

)
f(ψ′; θ(s(n), σ(s(n)))dψ′

can increase or decrease as χ increases. This is because as regulation tightens the growth

factor becomes smaller but default also becomes less likely. That said, assuming for the

sake of simplicity that the distribution of ψ does not depend on s leads to the following

result.

Proposition 5. If the distribution of ψ does not depend on s, then tighter regulation
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lowers the expected capital growth factor (ECGF) of banks.

Proof. See Appendix F. �

Second, conditional on survival, the impact of tighter regulation on how the net worth

of banks evolves is also not clear. For a bank with current period capital n, the capital

position in the next period is given as:

n′ = [(ψ′ −R)/χ+R)] (n− e).

As regulation tightens, banks pay less dividends, so n−e increases, but the capital growth

factor (CGF) becomes smaller, making the impact ambiguous. Part of the problem in

signing the impact is that a closed form solution for banks’ dividend policy function e(n)

is not available. That said, intuitively, for larger banks (as compared to smaller ones),

cutting dividends is less costly due to the concavity of preferences over dividends. Thus,

larger banks are likely to experience a smaller impact on their growth prospects.

Given the limits to obtaining further analytical insights due to unavailability of closed

form solutions (which is typical in the case of heterogeneous agent models), I use numerical

methods to solve the model in Section 5, and conduct counterfactual policy experiments

on that basis.

4 Stationary competitive equilibrium

I focus on the stationary competitive equilibrium (SCE) of the economy where despite bank

level dynamics, aggregates – including the size-distribution of banks – are time-invariant.

Definition For a given capital constraint χ, an SCE consists of (i) bank value function

V (n), (ii) bank policy functions s(n), d(n), e(n), (iii) bank capital distribution µ(n), (iv)
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entrant massM , (v) aggregate bank capitalN , bank dividends E, consumption C, deposits

D, output Y , taxes T , bankruptcy costs O and interest rate R such that:

1. V (n), s(n), d(n) and e(n) solve the bank’s problem given R;

2. C satisfies the household’s first-order-condition given R;

3. Deposit market clears at interest rate R:

∫
d(n)dµ(n) = D; (2)

4. Goods market clears: W + Y = C + S +O where:

Output: Y = E[ψ]S

Consumption: C = E +W + (R− 1)D − T ;

Dividends: E =
∫
e(n)dµ(n);

Bank Assets: S =
∫
s(n)dµ(n);

Bankruptcy cost: O =
∫ ( ∫ ψc ∆(s(n))ψ′s(n)f(ψ′; θ(s(n)), σ(s(n)))dψ′

)
dµ(n);

5. The distribution of bank capital is the unique fixed point of the distribution evolution

operator T given entrant mass M :

µ = T (µ,M);

6. And the government runs a balanced budget:

T + tD = M
∫
nedG(ne)+

∫ ( ∫ ψc
(

(1−∆(s(n)))ψ′s(n)−Rd(n)
))
f(ψ′; θ(s(n)), σ(s(n)))dψ′

)
dµ(n)
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where the left-hand side terms denote the lump-sum tax and deposit insurance pre-

mium proceeds respectively, while the right-hand side terms denote the total start-up

funding cost and the shortfall in liabilities of defaulted banks respectively.

The existence of an equilibrium is facilitated by the fact that the bank’s problem is well

defined and admits unique value and policy functions, and that an invariant distribution

of bank capital exists. The equilibrium can be solved for as follows. First, the household’s

first-order condition implies that R = 1/β since C is time-invariant in a stationary equi-

librium. Given R, the bank’s problem is solvable, and policy functions are determined. In

turn, the steady-state distribution of capital as well as the equilibrium mass of entry-exit

are obtained. Finally all other aggregates are pinned down using the expressions noted in

the definition of the SCE above. I note this existence result in the proposition below:

Proposition 6. Given a capital constraint χ, the model economy admits a unique sta-

tionary competitive equilibrium.

Rationale for regulation Before closing this section, a few comments on the social

efficiency of the stationary competitive equilibrium (SCE) are in order. The goal is to

show that there is a role for regulation in the model, that regulation has meaningful

welfare implications, and that a positive analysis of regulation is possible.

To this end, I compare the problem of a constrained social planner’s problem with that

of the banks, and provide intuition for why the planner’s choices differ from the banks’

privately optimal choices. I consider a planner that wishes to maximize the lifetime utility

of the representative household in the steady-state: u(C)/(1 − β), but is constrained in

its planning abilities in the following sense. While it can dictate decision rules s(.), e(.)

to incumbent banks, it does not interfere with government’s budget constraint or dictate

consumption rules to the household. Planner’s decision rules s(.), e(.) map to household

consumption C exactly like in the SCE, that is: C = W+Y −S−O = W+(E[ψ]−1)S−O.
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Since W is given exogenously, the planner’s problem is effectively:

max
s(n),e(n)

(E[ψ]− 1)
∫
s(n)dµ(n)−

∫ ( ∫ ψc

∆(s(n))ψ′s(n)f(ψ′; θ(s(n)), σ(s(n)))dψ′
)
dµ(n)

Note that the choice of s(n), e(n) by the planner shapes µ(n), and ultimately affects

both the value added of bank intermediation (first term) as well as the bankruptcy cost

(second term). The above expression thus highlights the wedge between the planner’s

objective (which takes into account bankruptcy costs) and the banks’ objectives (which

ignores bankruptcy costs). I refer to this wedge as a default externality posed by the

banks. This externality stems from the fact that banks assume higher leverage (than

what is socially optimal) due to a mis-priced deposit insurance, which in turn increases

their default probabilities, and therefore increases the social cost of their default which

they do not internalize. The default externality rationalises regulatory intervention in this

model.22

5 Quantitative Analysis

In this section, I first describe the calibration of the benchmark model. I then describe

how I solve the stationary competitive equilibrium numerically while employing global

(non-linear) solution methods.

5.1 Calibration

I calibrate the benchmark model to data on the US commercial banks during the period

2000 to 2019. I obtain bank-level micro-data (i.e. balance sheet and profitability metrics)
22Proving formally that the stationary equilibrium is constrained inefficient is beyond the scope of this

paper. The main reason is that closed form solutions for bank policy functions and equilibrium distribution
of capital are not available. In the next section, I confirm the intuition provided here by showing via
numerical methods that tighter bank regulation can indeed lead to non-trivial welfare improvements in
this economy.
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from the FDIC Call and Thrift Financial (CTR) reports (via S&P Global SNL database). I

use the FDIC’s Failed Banks and Historical Statistics on Banking databases for information

on bank defaults.

As regards the various functional forms used in the model, in line with standard prac-

tice, I assume that households have a standard constant relative risk aversion (CRRA)

utility function with a risk-aversion parameter equal to 2. On the bankers’ side, I assume

that preferences over dividends are given as H(e) = log(1 + e), which reflects their lower

risk aversion relative to that of the household’s. To flexibly embed variation in bank ef-

ficiency by size, I assume that bank asset returns are normally distributed with both the

mean and the standard deviation of returns being functions of the level of assets of the

bank: mean θ(s) = θ0 − θ1/(1 + s) and standard deviation σ(s) = σ0 + σ1/(1 + s). The

distribution of start-up capital for entrant banks is assumed to be log-normally distributed

as G(θG, σG).

I divide the model parameters into two sets.

As regards the first set of parameters (first block in Table 1), I use standard values

from the literature or directly calibrate the parameter using its empirically observed value.

I set the discount factor β to 0.99, which is consistent with an annual risk free interest

rate of around 1%. In line with the Basel III minimum common-equity Tier-1 capital ratio

requirement, χ is set at 4.5% for all banks. The loss-rate ∆ is set at 22% for all banks.

This value is based on the average losses incurred by the FDIC in resolving defaulted

banks’ assets. Finally, the deposit insurance premium rate is set to 20 basis points (bps),

which is guided by the FDIC deposit insurance premium rate that typically varies between

2 to 40 bps. Labor income endowment W is set to unity, and it serves as the numeraire.

The second set of parameters (second block in Table 1) are less standard, and are esti-

mated jointly using the Method of Moments (MM). These are parameters that determine

the profile of banks’ return on assets, namely θ0, θ1, σ0, σ1, the distribution of start-up

capital, namely θG, σG, and the bank default threshold τ . To estimate these, I target a
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Parameters (value set individually) Symbol Value
Discount factor β 0.99
Benchmark regulation χ 4.5%
Loss-rate of failed banks’ assets ∆ 22%
Deposit insurance premium t 20 bps
Parameters (value set jointly using Method of Moments) Symbol Value
Mean asset pay-off: common component θ0 1.0201
Mean asset pay-off: size dependence θ1 .0051
S.d. of asset pay-off: common component σ0 .0195
S.d. of asset pay-off: size dependence σ1 .0055
Mean size of entrant θG 165.02
S.d. of size of entrant σG 7.4954
Default threshold τ 7.0114
Moments Data Model
Mean of ROA 0.776% 0.803%
S.d. of ROA 0.914% 2.208%
Mean of ROA, larger versus smaller banks 23.8 bps 27.5 bps
S.d. of ROA, larger versus smaller banks -25.5 bps -29.7 bps
Dividend payout to capital ratio 4.996% 3.603%
Exit rate 3.966% 2.461%
Ratio to smallest to median bank 1.453% 1.003%
KS statistic (relative to data distribution) 0.0 0.0515
Power-law exponent of bank-size distribution -0.7715 -0.7186

Table 1: Summary of parameter values (first two blocks), and a comparison of data and model moments
(third block). ROA = return on assets. S.d. = standard deviation. KS = Kolmogorov-Smirnov (KS)
statistic, which is equal to the maximum distance between the model and data implied cumulative distri-
butions of bank capital. The maximum distance is computed using the point-wise distance between the
two distributions on a grid. See appendix G for details on the grid.

number of moments computed from bank-level micro data. The goal is to target those

moments that are more informative about the parameters that underpin how efficiency

may vary by bank size and how the bank size distribution is shaped.

The first two moments are the mean and standard deviation of return on assets (ROA)

– which relates to the overall profitability of banks. Next, to discipline the profitability

of large banks relative to small banks in the model, I target the difference in mean ROA

across larger and smaller banks, and similarly the difference in standard deviation of ROA.

I classify banks as larger or smaller based on the median bank size. Third, I target the

dividend payout to capital ratio, which is another gauge of bank profitability. All these
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moments are based on the pooled data during the period 2000 to 2019 (one period in the

model is considered equivalent to one year in the data). Finally, I target the exit rate, a

key aspect of the dynamics of the banking industry. I define the exit rate in the data as

the ratio of annual number of defaults and mergers to the number of incumbent banks,

averaged across 2000 to 2019.

Finally, I ensure that the model-implied and empirical bank-size distribution are aligned.

For this, I adopt a two-pronged strategy. First, I minimise the Kolmogorov-Smirnov (KS)

statistic that captures the maximum distance between the empirical cumulative distribu-

tion function obtained from the model-implied distribution and from the data. Second,

I minimize the distance between the power law (PL) exponent estimated on the model-

implied distribution and its empirical counterpart.23 While minimising the KS statistic

helps align the overall model-implied distribution to the empirical one, minimising the

distance between the PL exponents helps ensure that the respective heavy-tails of the

distributions – an important empirical regularity in banking – are also aligned. I pursue

these two minimization within the MM approach, i.e. these two statistics are minimized

alongside minimizing the distance between the other model and data moments.

The third block in Table 1 describes the results of the MM approach. Overall, I estimate

7 parameters using 9 moments. It is useful to note that two of the targets, namely the

KS statistic and the PL exponent, are effectively multiple moments because the entire

empirical distribution (as opposed to some specific moments such as percentiles or the

mean) is a target. As such, it is natural that the data and model moments are not exactly

equal. That said, the approach delivers a reasonably close fit and helps ensure that the

model is adequately disciplined by stylized facts in the data.
23To estimate the PL component, I regress the log density on the log size of banks for when size is

above a certain threshold. The threshold itself is chosen so that the Kolmogorov-Smirnov goodness-of-fit
statistic is optimised.
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Figure 5: Bank value and policies as a function of capital, which is the state variable.

5.2 Assessing the stationary competitive equilibrium

I solve the stationary competitive equilibrium of the model economy using global solution

methods that I describe in Appendix G.24 The equilibrium value and policy functions of

the banks are plotted in Figure 5. The value function V is concave and increasing in

bank capital n, which is the state variable (panel 1). This is expected, not least given the

concavity of preferences bankers have over dividends. Dividend policy is shown in panel

2. The convexity of dividend policy underscores that when capital is low, banks choose a

lower dividend to capital ratio given that capital is more valuable to preserve (in order to

meet the capital constraint). A larger bank, by contrast, can afford to pay an increasingly

larger fraction of their capital as dividends because the marginal value of retained earnings

is lower (due to the concavity of the value function). Panels 3 and 4 show that because

banks are capital constrained by regulation, those with more capital are able to acquire
24Matlab codes used in this paper are available on the author’s website.
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Figure 6: Variation in bank profitability across banks of different sizes.

more deposit funding and more assets.

A key feature of the model is to incorporate differences in bank efficiency by size.

Figure 6 shows how mean return on assets (ROA) and its standard deviation vary with

bank size: larger banks have a higher and less volatile ROA. This not only reflects the

empirical regularity that underpins our calibration, but is also consistent with empirical

studies on scale economies in banking, such as Wheelock and Wilson [2018], and Hughes

and Mester [2013] who show that even after adjusting for potentially greater risk-taking,

bigger banks pose higher efficiency.

Another key aspect of the model is the endogenous size distribution of banks. In

Figure 7, I compare the model generated distribution with that in data. The first panel

shows the density, while the second panel shows the cumulative distribution function. The

close alignment of the model and empirical distribution is not unexpected given that the

distribution is one of the targets of the calibration. But this is not guaranteed ex-ante

either, and reflects the strength of an otherwise parsimonious model.

The bottom panels of Figure 7 estimate a power law on the right-tail of the model

and data distributions respectively. These panels underscore the ability of the model

to not only generate a heavy tailed distribution of bank capital, but also one that is

closely aligned with its empirical counterpart (compare the slopes of the fitted line in the
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respective panels).
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Figure 7: A comparison of model-implied distribution of bank capital with its empirical counterpart.
Pooled empirical distribution of banks during 2000-2019. The empirical distribution has been scaled to
match the size of the grid used to solve the model.

A good match of the model-implied and empirical distributions serves two important

purposes. It allows for a quantitatively relevant assessment of the effect of changes in

regulation on banking industry dynamics. Relatedly it facilitates an understanding of

what changes in banking dynamics implies for optimal regulation. I pursue these analyses

in the next section.

6 Counterfactual regulation

The goal in this section is to understand how changes in capital requirements affect banking

dynamics, and to derive the optimal regulation. To this end, I consider counterfactual

policy experiments where I perturb the benchmark regulation in various ways.
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6.1 Uniform capital-ratio requirement

In the benchmark economy, all banks face the same non-risk-sensitive minimum capital-

ratio requirement χ of 4.5%. In this section I study the case where χ increases uniformly

for all banks. As χ increases, a bank with a given amount of capital is obviously more

constrained and is able to invest in fewer assets (first panel of Figure 8). At the same

time, banks pays smaller dividends (second panel). This is because as regulation tightens,

the shadow value of capital increases, and retained earnings become more important. In

addition, banks’ default probabilities decline (third panel). Indeed, as banks become less

leveraged, deposit liabilities relative to expected payoff from assets become smaller, and

so does the likelihood that banks are unable to cover their liabilities.

The impact of tighter regulation on the distribution of banks is more interesting (first

panel of Figure 9, also recall discussion in Section 3.2). On the one hand, since banks

default less often, they spend more time in incumbency and their average age increases

(Proposition 2). On the other hand, since banks are less leveraged, they grow at a slower

rate (Proposition 5). The combined effect is that as regulation tightens, the mass of

middle-sized banks increases (second panel).

The welfare implication of tighter regulation is not obvious. There are three channels

that work in potentially different directions and pose trade-offs. First, tighter regulation
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Figure 9: Response in bank distribution as a function of the minimum capital-ratio requirement χ.

reduces banks’ probability of default (PD), which is also welfare improving. Second, tighter

regulation makes each bank more constrained, and leads to lower bank intermediation per

unit of capital, which is welfare reducing. Third, as a result of the rightward shift (in

the first order stochastic dominance sense) in the distribution of bank capital, average

efficiency of the banking sector increases (welfare improving) but at the same time exposure

at default (EAD) also increases (welfare reducing).

To assess which effect dominates, I consider the problem of a benevolent regulator

that strives to maximize overall welfare by adjusting minimum capital-ratio requirement

χ. Welfare in this economy is measured by the household’s lifetime utility u(C)/(1 − β)

where C is the aggregate consumption of bankers and workers in the household. I focus

on comparing welfare across steady states, i.e., before and after an unanticipated change

in regulation.25

The transmission chain I am interested in is as follows. As regulation tightens, indi-
25I abstract away from welfare dynamics during the transition from one steady-state economy. In large

part, this is due to the computational challenges associated with computing the transition of the entire
distribution of bank capital. For example, it is not obvious if the approach in Krusell and Smith [1998]
(where the entire distribution can be adequately summarized by a few moments) can be used given that
the bank distribution in this paper is heavy tailed. A potential caveat of comparing welfare in steady-
states is that banks’ adjustment to new regulation may initially lead to lower welfare, which can make
the transition to the new steady-state prohibitively costly. However, given that in practice major reforms
are typically phased-in gradually, giving banks time to adjust, this caveat is likely to be less relevant.
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Figure 10: Aggregate outcomes as a function of the minimum capital-ratio requirement χ.

vidual banks adjust their behavior. This leads to shifts in the dynamics of the banking

sector, especially the size-distribution. In turn, the various macroeconomic aggregates,

including output and bankruptcy costs, also adjust. And this has implications for how

much households eventually consume, and therefore their welfare. In Figure 10, I present

a series of computations to show exactly how a change in regulation transmits through

the model economy.

For one, average profitability increases as χ increases (first panel). This has to do with

a rightward shift in the distribution of banks, and the fact that larger banks pose efficiency

gains.

Second, the total amount of bank capital in the economy increases (second panel).

This finding underscores that even when banks cannot raise capital externally, the banking

sector as a whole responds to tighter regulation by accumulating more capital via retained

earnings. This increase in aggregate capital acts as a counteracting force to regulation,
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and uncovers a banking-dynamics channel of regulation.

Third, the total amount of financial intermediation in the economy declines. This is

because while aggregate capital increases, the fact that each bank is more constrained is

the dominating force. Accordingly, aggregate assets of the banking sector (or total bank

credit) declines (third panel). Relatedly, as banks become less leveraged, the average

default rate among banks drops (fourth panel).

Bankruptcy costs, i.e. expected losses due to bank defaults, also declines (fifth panel),

although this is not obvious ex-ante. On the one hand, banks’ probability of default (PD)

declines as regulation tightens. On the other hand, as the distribution of banks shifts

and there are fewer smaller-sized and more middle-sized banks, the exposure-at-default

(EAD) for the banking sector increases. The combined impact on bankruptcy cost, which

is formally given as EL = PD × EAD × LGD, is therefore ambiguous.26 Nonetheless,

the simulations reveal that the former, i.e. PD effect, dominates. The observed decline in

bankruptcy costs is an important channel via which tighter regulation produces welfare

gains.

The welfare-improving and welfare-decreasing effects of tighter regulation, taken to-

gether, result in an inverted U-shaped response in aggregate welfare (sixth panel). The

welfare maximising level of χ is around 5.1%, tighter relative to the benchmark of 4.5%.

While not directly comparable, this result points in the same direction as that suggested

in Begenau [2020], Admati and Hellwig [2014], Nguyen [2015] and Fender and Lewrick

[2016].

The gain in welfare from a tightening of regulation from 4.5% to 5.1% can be expressed

in terms of consumption equivalence (CE), defined as the fractional increase ν in consump-

tion that the household would receive should it live in the optimal regime forever. That is,

if A denotes the benchmark regime and B denotes the optimal capital regulation regime,
26LGD is loss-given-default, which is given as ∆ in the model, the loss-rate on a defaulted bank’s assets.
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then ν is given as:

u
(
(1 + ν)CA

)
/(1− β) = u

(
CB

)
/(1− β)

The value of ν in this case is 1.09%, suggesting that tighter regulation leads to a material

improvement in the household’s consumption.

Role of industry dynamics A natural question that arises is how important is the

banking-dynamics channel – i.e. the endogenous response in the size-distribution and

entry-exit of banks – for welfare and policy implications. To assess this, we consider a

counterfactual setting where the distribution of banks is kept fixed as in the benchmark,

and only individual banks’ behaviour is allowed to respond to a change in χ. The first

two panels of Figure 11 show how two key macroeconomic aggregates response to higher

χ in this setting. Because the distribution of banks remains fixed, and because for each

given level of capital the corresponding bank is more constrained in its ability to invest

in assets, aggregate assets decline by more as compared to the baseline case (first panel).

The reason is that, unlike in the baseline, now there is no countervailing force to regulation

in the form of a rightward shift in the bank size distribution and the attendant increase

in aggregate capital (recall Figure 10, second panel). As a result, in this setting, welfare

declines precipitously as regulation tightens, whereas in the baseline setting, it followed

an inverted U-shape.

Role of the loss-rate A higher loss-rate on defaulted banks’ assets, i.e. a higher LGD,

can strengthen the case for regulation. This is because when the loss-rate ∆ increases,

bankruptcy costs increase (ceteris paribus). And reducing bankruptcy costs is a crucial

channel via which regulation improves welfare. Indeed, in line with this intuition, we

find that as ∆ becomes larger, the optimal policy becomes more stringent, as shown in

the third panel of Figure 11. Moreover, the welfare gain in going from the benchmark

to the optimal policy regime is greater when the loss-rate is larger. This can be seen
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Figure 11: First two panels: The response in aggregate outcomes, comparing the baseline case with
a counterfactual one where the distribution of bank capital is held fixed as in the benchmark economy.
Last panel: The implications of a change in the loss-rate ∆ for the effect of regulation on welfare, and
ultimately for optimal regulation.

by comparing the vertical distance between the black and red dots when ∆ = 0.2 versus

when ∆ = 0.4. The figure also illustrates that as χ increases beyond optimal levels, the

welfare difference between alternative ∆ regimes becomes smaller. This is because as

banks’ default probabilities approach zero due to a higher χ, any change in the loss rate

∆ becomes less relevant.

6.2 Equating the probability of default across banks

Thus far I considered a regulatory regime where all banks face the same minimum capital-

ratio requirement, and therefore, are equally leveraged. However, regulation can be im-

posed differently. A common approach is imposing risk-sensitive capital requirements

(such as in case of the Basel III framework), wherein the requirement is more stringent

for banks whose assets are more risky. A perfectly risk-sensitive requirement may, in fact,

equate banks’ probability of default (PD).

To assess the implications of such a requirement, I consider χ(.) to be such that for

any given bank size n, Prn(ψ′ < ψc(n)) = α where ψc(n) is the default cutoff, and the

subscript Prn reflects the fact that the distribution of ψ′ potentially depends on n. α
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Figure 12: Risk-sensitive regulation that equates the probability of default (PD) across banks.

can be thought of as a Value-at-Risk (V aR) parameter that governs the stringency of

the requirement: lower value of α implies tighter regulation. As the first two panels in

Figure 12 show, the capital requirement needed to equalise PD across banks is one that

is less stringent for larger banks. This is because larger banks have an inherently more

favorable risk-return profile, and thus can satisfy the same PD as a smaller bank while

maintaining a lower capital-ratio (i.e. higher leverage). As regulatory stringency captured

by α changes, welfare traces an inverted U-shaped profile, as in the previous analysis

(third panel). However, the maximum welfare achieved in this regime in lower than that

achieved in the previous analysis. The reason for this sub-optimal welfare result in this

case is that while large and small banks have the same PD, the expected loss (EL) of large

banks is higher. Because EL is a key input to welfare in the economy, an unbalanced EL

distribution leaves scope for welfare to be improved. By contrast, in the previous regime,

where all banks are equally leveraged, larger banks end up having a smaller PD, which

makes their EL relatively more comparable to that of smaller banks.
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6.3 Equating expected losses across banks

Inspired by the insight from the previous analysis, I now consider the case where χ(.) is

such that the expected loss (EL) posed by each bank, given as PD×EAD×LGD where

EAD = s and LGD = ∆, is equalised. Although not explicitly stated as such, this is

roughly the idea behind the G-SIB framework (see BCBS [2018]) that strives to mitigate

systemic risks posed by large banks by imposing a greater capital requirement on them.27

In contrast with the previous analysis, larger banks face a more stringent requirement

in this regime, irrespective of the targeted level of EL (first panel of Figure 13). The

implied PDs and ELs are plotted in the second panel. By design, EL is the same across

banks, but because EAD of larger banks is greater, this must be compensated by a smaller

PD.

As regulatory stringency increases in this case, welfare traces an inverted U-shaped

profile, similar to both previous analyses. Interestingly, however, the maximum welfare

achieved in this regime is the highest so far. The intuition for this result is that equating

EL across banks takes into account the fact that the distribution of default probabilities

and exposure at default – both which underpin the overall EL of the banking sector –

depend on the distribution of banks.

6.4 Size-dependent policy

The three alternative regulatory regimes considered so far equalise a specific metric across

banks. These are (i) the non-risk-weighted capital-ratio (i.e. leverage), (ii) the probability

of default PD, or (iii) the expected loss EL, respectively. The shortcoming of these

rules, however, is that they do not fully internalize the efficiency versus financial-stability

trade-off.

To see this, consider the first regime studied above. In that regime, the capital require-
27Indeed, the experience of the Great Financial Crisis, where failure or distress among large banks drove

systemic losses, is one of the key motivations behind the adoption of the GSIB framework.
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Figure 13: Regulation that equates expected losses (that is, EL = PD times LGD times EAD) across
banks.

ment is the same for all banks, and does not take into account any differences across banks.

In the second regime, a perfectly risk-sensitive requirement takes into account that large

banks are more efficient and thus less likely to default (PD), but abstracts away from how

overall exposure at default (EAD) depends on the distribution of banks. The third regime

improves upon the first two by taking both PD and EAD into account and equalising

EL across banks. In doing so, the third regime acknowledges that larger banks are less

likely to fail (ceteris paribus) but also more costly to resolve when in default. Yet, it is not

obvious why equalising EL across banks should be the principal criteria behind setting χ.

EL is only one determinant of aggregate welfare in the economy – the value of financial

intermediation in the economy, underpinned by the aggregate assets of the banking sector,

is another key component of overall welfare. This component also depends on how banks

respond to regulation, and therefore, only optimising on the basis of EL falls short off fully

optimising the efficiency versus financial-stability trade-off. In other words, equalising PD

or EAD across banks optimises aspects of the costs the banking sector poses, but does

not take into account the benefits it brings. To this end, in this section I consider a fully

flexible size-dependent capital requirement, and assess the welfare implications of such a
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profiles. Optimal ”A” corresponds to the optimal uniform regulation, while Optimal ”B” corresponds
to the optimal size-dependent regulation. The tuples in the legend indicate the values of χs and χl as
described in Equation (3).

Formally, I assume that χ(n) can vary depending on the amount of capital a bank

has at the beginning of the period.28 To strike a balance between retaining a flexible

specification and avoiding dimensionality issues, I consider χ(n) to have a quadratic form

with three free parameters:

χ(n) = χ0 + χ1n+ χ2n
2

To further discipline the optimisation problem of the regulator striving for the welfare

maximising χ(n) profile, I restrict attention to χ(n) ∈ [0%, 100%]. This ensures that

the minimum requirement does not diverge to absurd values. I also assume the following

limiting condition, limn→n χ
′(n) = 0, to ensure that as bank size increases regulation

stabilises at a certain level, which could even be a 100% capital requirement.29 The
28Recall that size is measured by the amount of capital banks have. Alternatively, size could be measured

by the amount of assets and regulation could be set on that basis. However, capital is a state variable
for banks’ decisions, and banks’ assets are uniquely determined by the amount of capital they have.
This means that in this model regulation that varies across banks on the basis of their assets would be
equivalent to the one that varies on the basis of their capital.

29I consider this parametric form for χ for tractability. Otherwise, the space of functions over which to
optimise can become high dimensional. For instance, in principle, the model can admit the analysis of a
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condition reduces the number of free parameters in χ(n) from three to two. In turn it

allows χ(n) to be expressed in terms of χs and χ
l, the minimum requirement applicable

to the smallest and the largest banks (i.e. n = n) respectively:

χ(n) =
(
χ
s − χl

)(
n/n

)2
− 2

(
χ
s − χl

)(
n/n

)
+ χ

s (3)

The welfare profile as a function of (χs, χl) is hump-shaped as shown in Figure 14, left-

hand panel. This is similar in spirit to the inverted U-shaped profile in previous regimes.

The welfare maximizing regulation profile is shown in right-hand panel. Compared to

the benchmark of 4.5%, and the optimal size-independent regulation of 5.1%, the optimal

size-dependent regulation features a relatively stringent requirement of around 7% for the

largest banks. Even though the rationale for regulation and underlying mechanisms are

different, this result points in the same direction as Dávila and Walther [2020]. It also

supports the spirit of the G-SIB framework in terms of imposing tighter regulation on

the larger banks. In fact, quantitatively, the model implied requirement of 7% is close to

what the G-SIB framework has set in place for the largest G-SIB (namely J. P. Morgan,

which faces a surcharge of 2.5% on top of the baseline requirement of 4.5%). That said,

in contrast to the G-SIB framework, the analysis suggests a much relaxed requirement in

case of the smaller banks, close to 1%.

The economic rationale for such a regime may be understood as follows. On the one

hand, this regime allows smaller banks to assume higher leverage, which has the benefit

that they can potentially grow faster and rapidly benefit from scale economies. Obviously,

this means that small banks default somewhat more often, but then, small bank defaults

are socially less costly. On the other hand, once banks become large and their default

more costly, this regime limits the expected loss posed by them by lowering their default

rate via a higher capital requirement.

step function χ(n) – as in the case of the G-SIB framework – but this requires many more free parameters
to optimise on and is computationally challenging.
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Qualitatively, this regime is comparable to the previous one in the sense that the op-

timal regulation is tighter for larger banks (recall first panel of Figure 13). However, a

flexible size-dependent regime can achieve higher welfare. While this result is mathemati-

cally obvious since the regulator is less constrained in this regime, the main insight is about

where the welfare gain comes from. As discussed above, the gain stems from the fact that

a policy rule that only equates EL or PD across banks misses on the size-dependency of

both efficiency and financial-stability. Quantitatively, the welfare gains from adopting a

flexible regime are substantial, at 11.5% in consumption equivalence terms.30

7 Endogenous returns on assets and mass of banks

Thus far I have assumed that the return on banks’ assets is given exogenously, and that the

mass of banks is fixed at unity. While these assumptions make the model more tractable,

they abstract away from two potential channels through which regulation can transmit. In

this section, I relax these assumptions and reassess the regulatory and welfare implications.

7.1 Response of returns on assets to regulation

I first endogenize the return on assets. To this end, I assume that the banking sector as a

whole faces a downward sloping demand for bank credit. That is, when banks collectively

invest in more assets, the return on any individual bank’s investments is lower. This

means that as regulation tightens and alters the level of banks’ aggregate investment, the

return on assets also changes. This then triggers a second-round effect on individual banks’

behaviors, which is new relative to the channel in the benchmark model. Ultimately, this

has implications for aggregate welfare and optimal regulation.
30That said, a more flexible policy rule may be more difficult to implement in practice. Simpler rules

that equate some tangible metric across banks can be easier to state, implement, and ensure compliance as
compared to a more complex rule that imposes bank-specific requirements based on, say, their performance
in a stress test.
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Figure 15: Response to changes in the minimum capital-ratio requirement when return on assets is
endogenous.

To analyse the role of this channel, I assume that θ, the expected return on any indi-

vidual bank’s assets, is a decreasing function of aggregate bank assets S in the economy:31

θ(S) = ρ0 + ρ1

(1 + S/Sbenchmark)
,

where I assume that θ(S) is such that θ(Sbenchmark) = θ0 where recall that θ0 (Table 1) is

the component of θ that does not depend on an individual bank’s size. For tractability of

studying this new channel, I switch off bank-level economies of scale, so that θ1 = 0. One

parameterization that is consistent with this condition is ρ0 = 1.0191, ρ1 = 0.002. With

that, I assess the implications of an increase in the minimum capital-ratio requirement

above its benchmark value of 4.5%.32

31The reduced form approach to modeling the relation between θ and S in this paper is similar to the
one adopted in the seminal Monte-Klein model (Klein [1971]; Monti [1972]), and also more recently in Liu
[2019]. That said, this relation can be micro-founded by assuming a representative firm that seeks bank
funding and exhibits decreasing returns to capital, like in Gertler and Kiyotaki [2010] for example.

32The algorithm to solve the model for a given level of regulation in this case is more involved as
compared to the one in the benchmark. For a guessed starting value of return on assets, θguess, I
solve the model and compute the corresponding S. Then, I compute the θimplied implied by the S
according to the assumed functional relation between them. Finally, I adjust the guess as follows: θguess →
(1−ω)θguess+ωθimplied where ω is the adjustment weight that I set to 0.33 (to keep the updating process
stable).
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As shown in the first panel of Figure 15, as χ increases, total assets of the banking

sector declines (blue line). But compared to the benchmark economy, the decline is smaller

(compare blue line with red line). This is because as aggregate assets decline, return on

assets increases (second panel), which improves the ability of banks to generate earnings

and build capital. This further pushes the bank size-distribution rightwards (in a stochastic

dominance sense). The extended model, therefore, embeds an additional countervailing

force in response to tighter regulation. In turn, this allows regulation to push harder as

the welfare cost of tighter regulation – which comes from the fact that banks become

constrained and can intermediate less – is lower in a ceteris paribus sense. Indeed, as the

third panel shows, optimal χ as well as the maximised welfare in the endogenous θ case

are higher than in the exogenous θ case.33

7.2 Response of mass of banks to regulation

In the benchmark economy, recall that insolvent banks re-enter the industry upon receiving

a random amount of seed capital. This captures the spirit of bank entry-exit in practice

wherein insolvent banks are typically merged with incumbent banks after some capital

injection by the acquirer, but abstracts away from the possibility that an additional mass

of banks may enter the industry each period depending on how profitable it is to do so.

To allow for this profitability-dependent entry in the model, and therefore to have an

endogenously determined equilibrium mass of banks, I consider the following extension of

the benchmark model.

I assume that there is a mass of potential entrants whose opportunity cost of entering

the banking sector is randomly distributed as per Fe(.; θe, σe), where Fe is a cumulative

normal distribution with mean θe and standard deviation σe. The opportunity cost can

be thought of as the value of an investment project that the entrant has access to – the
33Note that the exogenous θ case is not identical or directly comparable to the benchmark regime as θ1

is assumed to be zero in this case in order to focus on the role that an endogenous theta0 plays.
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so-called outside option. This means that a potential entrant enters the banking industry

if the expected present discounted value of entering:

EVe =
∫
V (ne)dG(ne)

is greater than their opportunity cost (as also in Hopenhayn [1992]). So, when EVe

increases, there are more entrants. The relationship between EVe and entrant mass can

then be expressed as follows:

M(EVe) = αeFe(EVe; θe, σe),

where M is the mass of entrants and αe is a scaling factor. What this specification

means is that as EVe increases relative to θe, the mass of entrants increases asymptot-

ically to a maximum of αe. To facilitate a comparison with the benchmark economy, I

impose the condition that M(EV benchmark
e ) = Mbenchmark, and consider the following pa-

rameterization that is consistent with the above specification: αe = 1.01 ∗ Mbenchmark,

θe = EV benchmark
e /1.05, and σe = 0.02 ∗ EV benchmark

e .

Next, I assess the implications of a change in the minimum capital-ratio requirement

from its benchmark value of 4.5%.34 As regulation tightens, banks become more con-

strained, and the expected present discounted value of all banks declines. As a result, the

expected value of entry into the banking sector also declines, and fewer entrants enter the

industry (first panel of Figure 16). The total mass of incumbent banks, however, follows

an inverted U-shaped pattern (second panel). This non-monotonic response is because

the mass of incumbent banks depends on how fast the mass of entrants declines relative

to the drop in incumbent banks’ average default rate.
34The solution algorithm in this case is similar to the one where return on assets is endogenous, except

that in each iteration, there are three additional steps. For a given value of θguess, first EV e is computed.
Then the mass of entrants M is backed out. Correspondingly, the mass of incumbents is obtained, which
in turn is used to compute the model implied value of S and eventually θimplied.
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Figure 16: Response to changes in the minimum capital-ratio requirement when the mass of banks is
endogenous.

To illustrate this point via an example, let the mass of entrants be M , the mass

of incumbents be M I , and the default probability be p. In the stationary competitive

equilibrium, these quantities must satisfy the relation p = M/M I . When regulation

tightens, p drops since banks are better capitalised, while M drops since expected value

of entry is lower. Then, if p drops by a lot more (less) relative to M , mass of incumbents

would increase (decrease).

Relatedly, it is useful to note that initially the decline in default rate is rapid, driving

up the mass of incumbents, while once there is a more rapid decline in expected value of

entry, entry also drops substantially, which brings down the equilibrium mass of banks.

Aggregate capital, which is closely related to the mass of incumbent banks, also follows

an inverted U-shaped pattern (third panel). This is in contrast to the benchmark where

aggregate capital increased monotonically for the range of χ considered (recall Figure 10).
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The policy implication in this case is that the optimal regulation (fourth panel) is less

stringent as compared to the optimal in the benchmark economy (where it was close to

5.1%). Indeed, by constraining banks, tighter regulation creates disincentives for poten-

tial entrants to enter the banking sector, and makes regulation more costly than in the

benchmark economy.

8 Conclusion

This paper in concerned with the efficiency versus financial-stability trade-off in banking

– the fact that larger banks may be more efficient but their default can be socially more

costly. It strives to understand how capital regulation can help balance this trade-off. The

goal is both positive and normative analysis of capital regulation in this regard.

To achieve its goal, the paper develops a tractable general equilibrium model of a

heterogeneous banking sector with endogenous size-distribution and entry-exit. Two core

aspects of the model are that the organisation of the banking sector features a non-trivial

response to regulation, and that there is an explicit welfare rationale for regulation, namely

the bank default externality.

The paper shows that banking industry dynamics is an important channel through

which capital regulation operates. While individual banks are obviously affected by reg-

ulation, regulation also shapes the overall dynamics of the banking sector, especially the

size-distribution of banks. In turn, this has aggregate implications that do not necessarily

go in the same direction and thus pose a trade-off for the regulator. For instance, tighter

regulation leads to a rightward shift in the size-distribution of banks and at the same time

a less heavy right-tail. While this leads to an increase in the aggregate capital stock, the

impact on aggregate efficiency and expected default losses is ambiguous.

The paper uses a series of counterfactual experiments to determine the optimal regu-

lation. It shows that a capital requirement regime that equates leverage, default rate, or
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expected default losses across banks falls short of balancing the efficiency versus financial-

stability trade-off. This is because such regimes focus on minimising the costs posed by the

banking sector, but fail to take account of how bank efficiency and thus their added-value

responds to regulation. The paper shows that the optimal regulation should, therefore, be

size-dependent.

The paper lends support to the idea of imposing tighter regulation on larger banks, as

in case of the G-SIB framework, but it also stresses that regulation can do better by taking

into account the fact that both efficiency and financial-stability risks vary as a function of

bank size. Taking differences in bank efficiency seriously is increasingly relevant for policy

design today as established technology companies and start-ups tend to gain financial-

sector market share rapidly on the back of data-driven scale economies. The tractable

model developed in this paper can facilitate the analysis of these issues in subsequent

research.
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Appendices

A Risk-adjusted profitability metrics versus bank size

Figure 17: The panels show a scatter plot of log assets (x-axis) and risk-adjusted profitability metrics
(y-axis) of US commercial and savings banks. Annual data is pooled over 2000-2019, bank and year fixed
effects are controlled for, and each profitability metric is winsorized at the 1% and 99% levels. Left-hand
panel: Return on risk-weighted assets, defined as net income to risk-weighted asset ratio. Right-hand panel:
Risk-adjusted return on assets, defined as net income to assets ratio divided by its standard deviation.
Source: SNL.

B Characteristics of the bank’s problem

Proof. To keep the proof tractable and analytically feasible, I assume that deposit premium

t = 0, default size cutoff τ = 0, and that the capital constraint is not sensitive to size or

riskiness of a bank, i.e. χ = (n−e)/s. With these simplifications, I note that s = (n−e)/χ,

d = (n− e)/(1/χ− 1), ψc = R(1− χ), and n′ = [ψ′/χ− R(1/χ− 1)](n− e). The bank’s

problem can thus be written in terms of a single decision variable e as follows:

V (n) = max
e

(
H(e) + β

∫
R(1−χ)

V
([
ψ′/χ−R(1/χ− 1)

]
(n− e)

)
f(ψ′; θ, σ)dψ′

)
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I follow the strategy in Stokey and Lucas [1989] to prove that the Bellman operator

underpinning the above equation has a unique fixed point. First note that the payoff H(e)

is bounded since 0 ≤ e ≤ n. Next, I show that the Blackwell Conditions are satisfied. Let

C be the class of continuous functions on the non-negative real line R+, and define the

Bellman operator Q for an arbitrary value function q ∈ C as:

Q(q(n)) = max
e

(
H(e) + β

∫
R(1−χ)

q
([
ψ′/χ−R(1/χ− 1)

]
(n− e)

)
f(ψ′; θ, σ)dψ′

)

The first Blackwell Condition has to do with the Monotonicity of the Bellman operator

Q, that is:

∀ l, q ∈ C s.t. l(n) ≤ q(n) ∀n ∈ R+ =⇒ Q(l(n)) ≤ Q(q(n)) ∀n ∈ R+

Let el and eq be the maximands of Q(l(n)) and Q(q(n)) respectively. Crucially, el is a

feasible choice for the Bellman operator on q at n. This implies that:

Q(l(n))

∣∣∣∣∣∣
at el

≤ Q(q(n))

∣∣∣∣∣∣
at el

≤ Q(q(n))

∣∣∣∣∣∣
at eq

where the |at e notation stands for the computation of the Bellman operator at e. The

first inequality follows simply from the fact that l(n) ≤ q(n), while the second one follows

from the fact that eq maximises Q(q(n)). The second Blackwell Condition has to do with

the Discounting property of Q:

∃∆ ∈ (0, 1) s.t. ∀q ∈ C, ∀a ≥ 0, ∀n ∈ N =⇒ Q(q(n) + a) ≤ Q(q(n)) + ∆a

To show this, consider:

Q(q(n) + a) = max
e

(
H(e) + β

∫
R(1−χ)

(
q(n′) + a

)
f(ψ′; θ, σ)dψ′

)
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≤ max
e

(
H(e) + β

∫
R(1−χ)

q(n′)f(ψ′; θ, σ)dψ′
)

︸ ︷︷ ︸
Q(q(n))

+ max
e
βa

∫
R(1−χ)

f(ψ′; θ, σ)dψ′︸ ︷︷ ︸
probability of solvency: 0<ζ<1

The inequality follows from the fact that the maximized sum of two or more functions

cannot exceed the sum of the maximized values of those functions. In the second maxi-

mization, e = 0 is the optimal choice since it results in the smaller variance in ψ′ and thus

a higher probability ζ ∈ (0, 1) of remaining solvent. In turn, this implies that the second

term is equal to βζa. With ∆ = βζ, this verifies the second Blackwell condition. Thus,

the Bellman operator has a unique fixed point, say V , which corresponds to the bank’s

value and policy functions.

To show that V is increasing, let n1 < n2 be two potential states for the bank’s

problem, and let e1 be the corresponding policy choice when state is n1. Then choosing

e2 = n2 − n1 + e1 > e1 effectively keeps the post dividend capital in state n2 the same as

that in state n1. As a result, the policy choices namely s and d and endogenous variables

n′ and ψc are also the same across the two states since all of them depend on post dividend

capital. Finally, since a feasible dividend choice in case of state n2, i.e. e2 achieves strictly

greater payoff relative to n1 (H is an increasing function), the maximized value at n2 i.e.

V (n2) is greater than V (n1). �

C Leverage and default

Proof. The default probability of a bank with post dividend capital n̂ can be written as:

p(n̂) =
∫ ψc

f(ψ′; θ(s), σ(s))dψ′ = F (ψc; θ(s), σ(s))

where F (.) is the cumulative distribution function of ψ′. Under the simplifying assump-

tions considered for this proposition, the default cutoff is the same for all banks and is

given as ψc = R(1 − χ). The dependence of p on n̂, therefore, results from the fact that
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θ(s) increases and σ(s) decreases as n̂ increases. This is because a larger n̂ leads to a

larger s = n̂/χ, and that θ′(s) > 0 and σ′(s) < 0. Therefore, p′(n̂) < 0. �

D Homogeneity of distribution evolution operator T

Proof. Let µM be the stationary distribution corresponding to M : µM = T (µM ,M).

Next, define a transition function W (n,N) which denotes the probability that a bank of

size n on date t evolves into a bank of size in the range [τ,N ] on date t+ 1. Note that this

implicitly means that defaults are excluded when accounting for the transition. Then,

µM(N) = M
∫ N

0
dG(ne) +

∫
τ
W (n,N)dµM(n) (4)

Multiplying both sides by M̂/M gives the following

µM(N)M̂
M

= M̂
∫ N

0
dG(ne) +

∫
τ
W (n,N)dµM(n)M̂

M

But this means that the measure µM scaled by
[
M̂
M

]
is a new measure that is invariant

under the operator T and entry mass M̂ . This proves the proposition. �

E Fixed-point of the distribution evolution operator

T

Proof. The proof closely follows corollary 4 in Hopenhayn and Prescott [1992]. As shown

there, a sufficient condition for the existence of a fixed point is that the distribution

evolution operator T is increasing: that is, if µ′ < µ then T µ′ < T µ, where < stands for

stochastic dominance.

I proceed as follows. Let A be an increasing set, that is A equals the set of all
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elements of the state space that are larger than some element of A. Then, for any n′ > n,

the transition function satisfies W (n′,A) > W (n,A). This is because in the context of

the model economy, any increasing set is basically the entire state space beyond a certain

point, say n, in which case W (n,A) is the probability that a bank evolves to become

larger than that point. But following the intuition behind proposition 2, this probability

is higher for larger banks.

Now let f be any increasing, non-negative, and bounded function. Without loss of

generality, f can be cast as a measurable indicator function of some increasing set A. This

implies that
∫
fd[T µ′](n) = T µ′(A). Next, given that in equation (4) in Appendix D the

term due to entrants remains unaffected when applying T on two alternative distributions

µ′ and µ, we can focus on the term due to incumbents, in particular the transition function

W : T µ′(A) =
∫
τ W (n,A)dµ′(n). Them, since W (.,A) is increasing as we showed above,

we get the following result, where the first inequality follows from the fact that µ′ < µ:

∫
τ
W (n,A)dµ′(n) ≥

∫
τ
W (n,A)dµ(n) = T µ(A) =

∫
fd[T µ](n)

�

F Impact on expected capital growth factor

Proof. The expected capital growth factor (ECGF) is given as:

ECGF =
∫
R(1−χ)

(
ψ′ −R
χ +R

)
f(ψ′)dψ′

The derivative w.r.t. χ (while applying the Liebniz rule) is given as follows:

∂ECGF

∂χ
= −

∫
R(1−χ)

(
ψ′ −R
χ2

)
f(ψ′)dψ′ −

[(
ψ′ −R
χ2 +R

)
f(ψ′)

]
ψ′=R(1−χ)

(−R)
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The second term is zero, and the first term is negative since E[ψ′] > R, which completes

the proof.

�

G Computational details

Solving the bank’s problem (Bellman equation): I use value-function iteration to

obtain the value and policy functions of the bank’s problem. The state-space, which is

bank capital, is discretized using 50 log-spaced grid points on the interval [τ, 5000] where

τ is the smallest possible size of the bank – a bank with capital below this threshold is

considered defaulted. Note that the upper limit on the grid is set arbitrarily, and can

be adjusted without material consequences for the conclusions in this paper. I use cubic-

spline interpolation and linear extrapolation to evaluate the value functions at off-grid

points. Starting with an initial guess for the value function, I iterate on the solution to

the bank’s problem subject to the various constraints. I continue to update the value

function until the maximum difference (at any grid point) between the old and updated

value functions is smaller than a threshold. I then obtain the policy functions on a grid

with 1000 equally spaced points using spline interpolation.

Computing the stationary distribution: To obtain the invariant distribution of bank

capital, I construct a state-transition matrix using banks’ policy functions. The transition

matrix denotes the probability that a bank transitions from the neighbourhood of one grid

point to the neighbourhood of another grid point in the state space. The neighbourhoods

are chosen to be of equal size across grid points, so that the entire state space is covered.

To handle entry and exit of banks, I introduce a so-called dump-state in the state-space.

The dump-state corresponds to n < τ . A bank whose capital drops below τ (due to low

return on assets) defaults and enters this dump-state from one of the incumbent states.
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An entrant bank is one that leaves the dump state to enter one of the incumbent states.

This approach works precisely because in the stationary equilibrium, the mass of entrants

equals the mass of defaulters. The ergodic distribution of the transition matrix gives the

stationary distribution of the state variable, that is, the steady-state distribution of bank

capital. Essentially, this distribution is one that is invariant when operated upon by the

transition matrix. The mass of banks in the dump state in the steady-state distribution

denotes the mass of defaulting banks.

Computing aggregates including welfare: Next, I use the stationary distribution

of compute overall bank capital, deposits, dividends, and assets in the economy using

the set of equations that describe the equilibrium (see Section 4). Using the same set of

equations, I then compute total output in the economy, insurance premium receipts, and

the shortfall in liabilities of defaulting banks. In turn, this pins down the government

budget constraint. Finally, I obtain household consumption and welfare.
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