Financial Stimulus and Microfinance Institutions in Emerging Markets

Carlos BurgaWalter CubaEduardo DíazElmer SánchezPUC-ChileCentral Reserve Bank of PeruCentral Reserve Bank of PeruCentral Reserve Bank of Peru

CEMLA/Dallas FED Financial Stability Workshop

December 1, 2023

The views expressed herein are those of the authors and do not necessarily reflect those of the Central Reserve Bank of Peru

- Financial stimulus policies are usually implemented through the banking sector
 - Banks are heterogeneous in their portfolios: e.g., big banks attend bigger firms

- Financial stimulus policies are usually implemented through the banking sector
 - Banks are heterogeneous in their portfolios: e.g., big banks attend bigger firms
- Many countries have promoted the growth of microfinance institutions
 - Reach out small and young borrowers

- Financial stimulus policies are usually implemented through the banking sector
 - Banks are heterogeneous in their portfolios: e.g., big banks attend bigger firms
- Many countries have promoted the growth of microfinance institutions
 - Reach out small and young borrowers
- $\cdot\,$ However, their participation in financial stimulus programs is still limited
 - High operational costs, less sophisticated institutions

- Financial stimulus policies are usually implemented through the banking sector
 - Banks are heterogeneous in their portfolios: e.g., big banks attend bigger firms
- Many countries have promoted the growth of microfinance institutions
 - Reach out small and young borrowers
- However, their participation in financial stimulus programs is still limited
 - High operational costs, less sophisticated institutions
- Whether promoting the participation of MFIs is desirable or not is an empirical question

Target small firms with \uparrow needs of ext. financing vs. \uparrow leverage of opaque firms + \downarrow screening incentives < 0

This paper:

What are the effects of Loan Guarantee Programs (LGP) on financial stability?

What is the role of micro-finance institutions (MFIs) in shaping the aggregate effects of LGP?

This paper:

What are the effects of Loan Guarantee Programs (LGP) on financial stability?

What is the role of micro-finance institutions (MFIs) in shaping the aggregate effects of LGP?

Context & Empirical approach:

Reactiva Perú, a program of loan guarantees to help firms dealing with Covid-19 restrictions

- Program represented 8% of GDP, key role of MFIs in bancarization, detailed MFIs credit data and balance sheet information

Tracing the effects of loan guarantees on small firm lending in a diff-in-diff setting

- Bank shock \Rightarrow credit supply \Rightarrow firms' delinquency rates

Mapping firm-level elasticities to allocation of loan guarantees across financial institutions

Empirical findings

Average effects:

- More treated banks expand credit supply relative to less treated ones after the program (1 SD \Rightarrow \uparrow 7%), totally driven by LG, while normal loans decline (1 SD \Rightarrow \downarrow 10%)
- Firms attached to highly treated banks increase total outstanding credit (1 SD \Rightarrow \uparrow 10%), reduce normal debt (25%), and are less likely to exhibit repayment delays (3 ppts)

Empirical findings

Average effects:

- More treated banks expand credit supply relative to less treated ones after the program (1 SD \Rightarrow \uparrow 7%), totally driven by LG, while normal loans decline (1 SD \Rightarrow \downarrow 10%)
- Firms attached to highly treated banks increase total outstanding credit (1 SD \Rightarrow \uparrow 10%), reduce normal debt (25%), and are less likely to exhibit repayment delays (3 ppts)

Heterogeneous effects and the role of MFIs:

- Smaller firms are more responsive in terms of delinquency
 - Increasing credit by 10% reduces prob. of repayment delay in 5ppts (vs. 1ppts for larger firms)
- MFIs provide more guarantees to smaller firms: 52% of their LGP portfolio vs. 21% for big banks
- Limited participation: 52% of pre-Covid debt and 30% of guarantees

Empirical findings

Average effects:

- More treated banks expand credit supply relative to less treated ones after the program (1 SD \Rightarrow \uparrow 7%), totally driven by LG, while normal loans decline (1 SD \Rightarrow \downarrow 10%)
- Firms attached to highly treated banks increase total outstanding credit (1 SD \Rightarrow \uparrow 10%), reduce normal debt (25%), and are less likely to exhibit repayment delays (3 ppts)

Heterogeneous effects and the role of MFIs:

- Smaller firms are more responsive in terms of delinquency
 - Increasing credit by 10% reduces prob. of repayment delay in 5ppts (vs. 1ppts for larger firms)
- MFIs provide more guarantees to smaller firms: 52% of their LGP portfolio vs. 21% for big banks
- Limited participation: 52% of pre-Covid debt and 30% of guarantees

BoE: decline in delinquency 4ppts without MFIs and 5ppts with MFIs

- key assumption: homogeneity within size-group

Theoretical results

Building blocks:

- · Bank profits depend on firm characteristics and poaching probability
 - cash-in-hand, initial debt
- Banks trade-off client size and treatment effect
- Two types of banks: Big banks and MFIs
- Calibrated model: size-dependent average treatment effect + Banks distribution of clients

Theoretical results

Building blocks:

- · Bank profits depend on firm characteristics and poaching probability
 - cash-in-hand, initial debt
- Banks trade-off client size and treatment effect
- Two types of banks: Big banks and MFIs
- Calibrated model: size-dependent average treatment effect + Banks distribution of clients

Results and counterfactuals:

- Private allocation not necessarily optimal, depends on poaching & bank future profits from clients
- 30% gains from MFIs observed participation in terms of aggregate debt in default
- Negligible gains from further increasing MFIs' participation

Literature

Loan guarantees

- Lelarge, Sraer, and Thesmar (2010), Brown and Earle (2017), Mullins and Toro (2018), Ru (2018), Cong et al. (2019), Haas-Ornelas et al. (2020), Bachas, Kim, and Yannelis (2021), Barrot et al. (2021), González-Uribe and Wang (2021), Bonfim, Custódio, and Raposo (2022)
- Heterogeneous effects on delinquency rates and optimality of credit allocation

Financial stimulus in recessions

- Bartik et al. (2020), Faulkender, Jackman, and Miran (2020), Granja et al. (2020), Li and Strahan (2020), Autor et al. (2022), Griffin, Kruger, and Mahajan (2022), Huneeus et al. (2022), Joaquim and Netto (2022)
- Role of micro-finance institutions in shaping the allocation loan guarantees and aggregate effect on financial stability

Microfinance institutions in emerging markets

- Ahlin and Jiang (2008), Angelucci, Karlan, and Zinman (2015), Attanasio et al. (2015), Augsburg et al. (2015), Tarozzi, Desai, and Johnson (2015), Buera, Kaboski, and Shin (2020), Breza and Kinnan (2021)
- MFIs participation in a large scale program of guarantees in a global recession

Data & Empirical Framework

Program of guarantees: Reactiva Perú

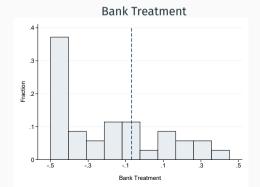
- Government guarantees on private bank loans [average = 97%, median = 98%]
 - Stimulus equivalent to 29% of pre-covid total credit and 8% of GDP
- · Allocated through first-price auctions where banks bid on interest rates
- Auctions for different types of loans
 - Loans to micro-firms, small firms, medium-size firms, large firms, corporations
- High operational costs limited MFIs from participating in the program
- The Central Bank launched auctions only for MFIs, increasing their participation

Program of guarantees: Reactiva Perú

- Government guarantees on private bank loans [average = 97%, median = 98%]
 - Stimulus equivalent to 29% of pre-covid total credit and 8% of GDP
- · Allocated through first-price auctions where banks bid on interest rates
- Auctions for different types of loans
 - Loans to micro-firms, small firms, medium-size firms, large firms, corporations
- High operational costs limited MFIs from participating in the program
- The Central Bank launched auctions only for MFIs, increasing their participation
- Data:
 - Credit registry: Outstanding debt at the bank-firm level in 2019-2021
 - <u>Covid-19 relief funds:</u> Loan guarantees at the bank-firm level in 2020-2021

Share of Covid-19 Loans_{bk} – Share of Total Loans_{bk 0}

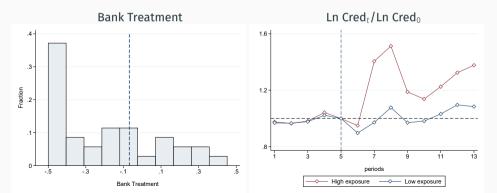
 $Treatment_{bk} = \frac{Share of Source 11 - bk}{Share of Covid-19 Loans_{bk} + Share of Total Loans_{bk,0}}$


Reimbursement shock (Granja et al., 2022)

Share of Covid-19 Loans_{bk} – Share of Total Loans_{bk 0} $Treatment_{bk} =$

Share of Covid-19 Loans_{bk} + Share of Total Loans_{bk,0}</sub>

Reimbursement shock (Granja et al., 2022)


7

Share of Covid-19 Loans_{bk} – Share of Total Loans_{bk 0}

 $Treatment_{bk} = \frac{Share of Covid-19 Loans_{bk} + Share of Total Loans_{bk,0}}{Share of Covid-19 Loans_{bk} + Share of Total Loans_{bk,0}}$

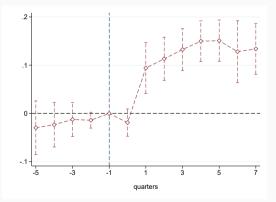
Reimbursement shock (Granja et al., 2022)

Share of Covid-19 Loans_{bk} – Share of Total Loans_{bk 0}

 $Treatment_{bk} = \frac{Share of Covid-19 Loans_{bk}}{Share of Covid-19 Loans_{bk}} + Share of Total Loans_{bk,0}$

Reimbursement shock (Granja et al., 2022)

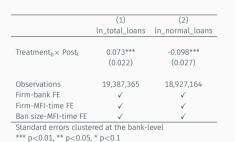
Empirical Results


Loan-level effects: Increasing total credit

 $\ln Y_{ibt} = \beta \times \text{Treatment}_b \times \text{Post}_t + \delta_{ib} + \delta_{q(b),t} + \delta_{it} + u_{ibt}$

	(1)	(2)
	ln_total_loans	ln_normal_loans
T	0.070444	0.000+++
$Treatment_b \times Post_t$	0.073***	-0.098***
	(0.022)	(0.027)
Observations	19,387,365	18,927,164
Firm-bank FE	\checkmark	\checkmark
Firm-MFI-time FE	\checkmark	\checkmark
Ban size-MFI-time FE	\checkmark	\checkmark

Standard errors clustered at the bank-level

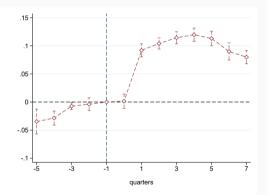

*** p<0.01, ** p<0.05, * p<0.1

Loan-level effects: Decline in normal loans

 $\ln Y_{ibt} = \beta \times \text{Treatment}_b \times \text{Post}_t + \delta_{ib} + \delta_{q(b),t} + \delta_{it} + u_{ibt}$

.1

The program increased total credit, partially crowding out the normal activity of banks

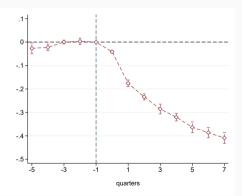

Firm-level effects: Total credit increases for better connected firms

 $\ln Y_{it} = \theta \times \text{Exposure}_i \times \text{Post}_t + \delta_i + \delta_{x(i),t} + u_{it}$

	(1)	(2)	(3) ln deling
	ln_total_loans	ln_normal_loans	th_deting
$Exposure_i \times Post_t$	0.098***	-0.245***	-0.031***
	(0.007)	(0.007)	(0.003)
Observations	12,478,501	12,324,192	12,478,501
Firm FE	\checkmark	\checkmark	\checkmark
Firm size-Year FE	\checkmark	\checkmark	\checkmark
Age-Year FE	\checkmark	\checkmark	\checkmark
Industry-Year FE	\checkmark	\checkmark	\checkmark
City-Year FE	\checkmark	\checkmark	\checkmark
Risk-Year FE	\checkmark	\checkmark	\checkmark

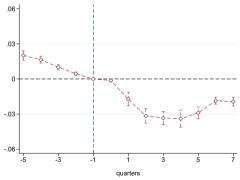
Standard errors clustered at the industry-level

*** p<0.01, ** p<0.05, * p<0.1



 $\ln Y_{it} = \theta \times \text{Exposure}_i \times \text{Post}_t + \delta_i + \delta_{x(i),t} + u_{it}$

	(1)	(2)	(3)
	ln_total_loans	ln_normal_loans	ln_delinq
$Exposure_i \times Post_t$	0.098***	-0.245***	-0.031***
	(0.007)	(0.007)	(0.003)
Observations	12,478,501	12,324,192	12,478,501
Firm FE	\checkmark	\checkmark	\checkmark
Firm size-Year FE	\checkmark	\checkmark	\checkmark
Age-Year FE	\checkmark	\checkmark	\checkmark
Industry-Year FE	\checkmark	\checkmark	\checkmark
City-Year FE	\checkmark	\checkmark	\checkmark
Risk-Year FE	\checkmark	\checkmark	\checkmark


Standard errors clustered at the industry-level

*** p<0.01, ** p<0.05, * p<0.1

 $\ln Y_{it} = \theta \times \text{Exposure}_i \times \text{Post}_t + \delta_i + \delta_{x(i),t} + u_{it}$

	(1)	(2)	(3)
	ln_total_loans	ln_normal_loans	ln_delinq
$Exposure_i \times Post_t$	0.098***	-0.245***	-0.031***
	(0.007)	(0.007)	(0.003)
Observations	12,478,501	12,324,192	12,478,501
Firm FE	\checkmark	\checkmark	\checkmark
Firm size-Year FE	\checkmark	\checkmark	\checkmark
Age-Year FE	\checkmark	\checkmark	\checkmark
ndustry-Year FE	\checkmark	\checkmark	\checkmark
City-Year FE	\checkmark	\checkmark	\checkmark
Risk-Year FE	\checkmark	\checkmark	\checkmark
Standard errors cl	ustered at the ind	dustry-level	
*** p<0.01, ** p<	0.05, * p<0.1		

The program expanded credit supply and reduced repayment delays

 \cdot Need of external financing >> risk-shifting / weak screening

Heterogeneity and Allocation

Heterogeneity: Role of need of external financing. Are smaller firms more sensitive?

 $Delinquency_{it} = \beta_2 \times \ln \text{Loans}_{it} + \delta_i + \delta_{x(i),t} + u_{1,it}$

ln Loans_{it} = $\rho_2 \times \text{Exposure}_i \times \text{Post}_t + \delta_i + \delta_{x(i),t} + v_{2,it}$

Heterogeneity and Allocation

Heterogeneity: Role of need of external financing. Are smaller firms more sensitive?

 $Delinquency_{it} = \beta_2 \times \ln Loans_{it} + \delta_i + \delta_{x(i),t} + u_{1,it}$

 $\ln \text{Loans}_{it} = \rho_2 \times \text{Exposure}_i \times \text{Post}_t + \delta_i + \delta_{x(i),t} + v_{2,it}$

	All firms	Bottom Quintiles	Top Quintil
ln total loans	-0.317***	-0.521***	-0.143***
	(0.030)	(0.024)	(0.010)
Observations	12,478,501	9,548,762	2,929,739
Firm FE	\checkmark	\checkmark	\checkmark
Firm size-Year FE	\checkmark	\checkmark	\checkmark
Age-Year FE	\checkmark	\checkmark	\checkmark
Industry-Year FE	\checkmark	\checkmark	\checkmark
City-Year FE	\checkmark	\checkmark	\checkmark

Standard errors clustered at the industry-level

*** p<0.01, ** p<0.05, * p<0.1

Heterogeneity and Allocation

Heterogeneity: Role of need of external financing. Are smaller firms more sensitive?

 $Delinquency_{it} = \beta_2 \times \ln Loans_{it} + \delta_i + \delta_{x(i),t} + u_{1,it}$

 $\ln \text{Loans}_{it} = \rho_2 \times \text{Exposure}_i \times \text{Post}_t + \delta_i + \delta_{x(i),t} + v_{2,it}$

	All firms	Bottom Quintiles	Top Quintil
\ln total loans	-0.317***	-0.521***	-0.143***
	(0.030)	(0.024)	(0.010)
Observations	12,478,501	9,548,762	2,929,739
Firm FE	\checkmark	\checkmark	\checkmark
Firm size-Year FE	\checkmark	\checkmark	\checkmark
Age-Year FE	\checkmark	\checkmark	\checkmark
Industry-Year FE	\checkmark	\checkmark	\checkmark
City-Year FE	\checkmark	\checkmark	\checkmark

Standard errors clustered at the industry-level

*** p<0.01, ** p<0.05, * p<0.1

Allocation: Who reach out small, more sensitive firms?

MFI distributed their guarantees equally across quintile groups

Financial institution	Type of	Share of	Share of
	client	pre-Covid debt	guarantees
MFI	Bottom Quintiles	.29	.52
	Top Quintile	.71	.48
non-MFI	Bottom Quintiles	.09	.21
	Top Quintile	.91	.79

MFIs represent 52% of pre-Covid loans but obtained 30% of LG

Financial institution	Share of pre-Covid debt	Share of guarantees
MFI	.52	.30
non-MFI	.48	.70

Model

Building blocks

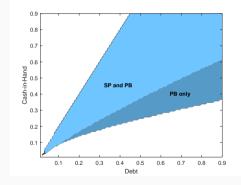
- Bank *k* profits depend on firm j's characteristics and poaching probability (ψ_c)
 - net cash $(\rho_j b_j)$, firm future profits $(\psi_F b_j)$, prob. of survival $(\Phi_j(\varphi), \Phi_j(0))$, participation $(\ell_j^k; \varphi)$

$$\begin{aligned} \Pi_{j}^{k} = & \ell_{j}^{k} \left\{ \Phi_{j}(\varphi) \left(1 + \psi_{F} \right) + \left(1 - \Phi_{j}(\varphi) \right) \delta \right\} b_{j} \\ & + \left(1 - \ell_{j}^{k} \right) \left\{ \Phi_{j}(0) \left[\left(1 - \psi_{C} \right) \left(1 + \psi_{F} \right) + \psi_{C} \right] + \left(1 - \Phi_{j}(0) \right) \delta \right\} b_{j} = \ell_{j}^{k} \Omega_{j}^{k} b_{j} + \Theta_{j}^{k} b_{j} \\ & \text{where} \quad \Omega_{j}^{k} = \mathcal{T}_{j} \left[\left(1 - \delta \right) + \psi_{F} \right] + \Phi_{j}(0) \psi_{C} \psi_{F} \end{aligned}$$

Building blocks

- Bank *k* profits depend on firm j's characteristics and poaching probability (ψ_c)
 - net cash $(\rho_j b_j)$, firm future profits $(\psi_F b_j)$, prob. of survival $(\Phi_j(\varphi), \Phi_j(0))$, participation $(\ell_j^k; \varphi)$

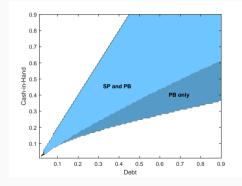
$$\Pi_{j}^{k} = \ell_{j}^{k} \left\{ \Phi_{j}(\varphi) \left(1 + \psi_{F} \right) + \left(1 - \Phi_{j}(\varphi) \right) \delta \right\} b_{j} \\ + \left(1 - \ell_{j}^{k} \right) \left\{ \Phi_{j}(0) \left[\left(1 - \psi_{C} \right) \left(1 + \psi_{F} \right) + \psi_{C} \right] + \left(1 - \Phi_{j}(0) \right) \delta \right\} b_{j} = \ell_{j}^{k} \Omega_{j}^{k} b_{j} + \Theta_{j}^{k} b_{j} \\ \text{where} \quad \Omega_{i}^{k} = T_{i} \left[\left(1 - \delta \right) + \psi_{F} \right] + \Phi_{i}(0) \psi_{C} \psi_{F}$$

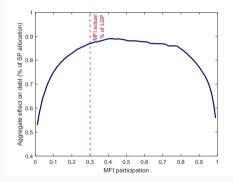

• Banks trade-off: client size (b_j) vs. treatment effect $(T_j \equiv \Phi_j(\varphi) - \Phi_j(0))$

$$\max_{\ell_j^k \in \{0,1\}} \int \ell_j^k \Omega_j^k b_j dG^k(\rho_j, b_j) \qquad \text{s.t.:} \quad \int \ell_j^k \varphi b_j dG^k(\rho_j, b_j) = \gamma_k M_k^k (\rho_j, b$$

- Firm survives iff $\rho_j b_j + \ell_j \varphi b_j > \nu_j$ with $\nu \sim \tilde{\Phi}(.)$
- Size-dependent T_j + distribution of clients G^k determines optimal participation of MFIs

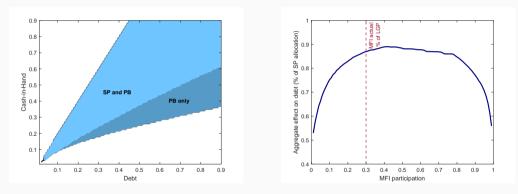
Main results


Private allocation is not socially optimal



Main results

Private allocation is not socially optimal


MFIs strengthen aggregate effects

Main results

Private allocation is not socially optimal MFIs strengthen aggregate effects

- 30% gains from MFIs observed participation in terms of aggregate debt in default
 - Non-participation leads to 50% of debt saved by the program relative to constrained first best
- Negligible additional gains from increasing MFI's participation

Conclusions

- LGP increase credit and reduce delinquency with substantial heterogeneous effects

- LGP increase credit and reduce delinquency with substantial heterogeneous effects
 - Decline in delinquency fifth times larger for smaller firms and MFIs play a key role distributing LG
 - BoE: decline in delinquency is 4ppts without MFIs and 5ppts with MFIs

- LGP increase credit and reduce delinquency with substantial heterogeneous effects
 - Decline in delinquency fifth times larger for smaller firms and MFIs play a key role distributing LG
 - BoE: decline in delinquency is 4ppts without MFIs and 5ppts with MFIs
- MFIs can lead to substantial aggregate gains by improving the allocation of LG

- LGP increase credit and reduce delinquency with substantial heterogeneous effects
 - Decline in delinquency fifth times larger for smaller firms and MFIs play a key role distributing LG
 - BoE: decline in delinquency is 4ppts without MFIs and 5ppts with MFIs
- MFIs can lead to substantial aggregate gains by improving the allocation of LG
 - Model where banks trade-off treatment effect and client size, calibrated with micro-data
 - 30% gains from MFIs observed participation in terms of aggregate debt in default
 - \cdot Non-participation leads to 50% of debt saved by the program relative to constrained first best
 - Negligible additional gains from increasing MFI's participation to the optimal level